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Abstract

Motivation: Medulloblastoma (MB) is a brain cancer predominantly arising in children. Roughly

70% of patients are cured today, but survivors often suffer from severe sequelae. MB has been ex-

tensively studied by molecular profiling, but often in small and scattered cohorts. To improve cure

rates and reduce treatment side effects, accurate integration of such data to increase analytical

power will be important, if not essential.

Results: We have integrated 23 transcription datasets, spanning 1350 MB and 291 normal brain

samples. To remove batch effects, we combined the Removal of Unwanted Variation (RUV)

method with a novel pipeline for determining empirical negative control genes and a panel of met-

rics to evaluate normalization performance. The documented approach enabled the removal of a

majority of batch effects, producing a large-scale, integrative dataset of MB and cerebellar expres-

sion data. The proposed strategy will be broadly applicable for accurate integration of data and in-

corporation of normal reference samples for studies of various diseases. We hope that the inte-

grated dataset will improve current research in the field of MB by allowing more large-scale gene

expression analyses.

Availability and implementation: The RUV-normalized expression data is available through the

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) and can be accessed via the

GSE series number GSE124814.

Contact: holger.weishaupt@igp.uu.se or fredrik.swartling@igp.uu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Medulloblastoma (MB) is a brain tumor arising in the cerebellar ver-

mis predominantly in pediatric patients. It is currently treated by

surgery, radiotherapy and chemotherapy, achieving 5-year overall

survival rates of about 70%. However, survivors often suffer from

permanent neurocognitive sequelae.

It is now commonly accepted that MB harbors four distinct mo-

lecular subgroups, referred to as Wingless/Integrated (WNT), Sonic

hedgehog (SHH), Group 3 (G3) and Group 4 (G4) (Taylor et al.,
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2012). These subgroups have been shown to exhibit distinctive mo-

lecular landscapes (Northcott et al., 2017) and are associated with

different clinical risk groups (Kool et al., 2012). As a consequence,

personalized therapy of MB patients appears now almost within

reach (Gopalakrishnan et al., 2015; Sengupta et al., 2017).

However, to fully endorse such treatment options, more research

is required to understand the origin and development of MB and

how model organisms for drug testing can be derived. The establish-

ment of such knowledge is heavily dependent on molecular profiling

data. For instance, the possibility of further delineating MB sub-

groups into subsets has been hypothesized earlier (Taylor et al.,

2012), but it was not until larger cohorts had been gathered that

such subsets have been reported in detail (Schwalbe et al. 2017;

Cavalli et al., 2017; Northcott et al., 2017). Furthermore, while the

discovery of genomic events and potential driver genes has also been

greatly advanced (Cavalli et al., 2017; Northcott et al., 2017), it is

yet to be fully revealed how these genes are linked to the phenotype

at a system wide level. Related investigations would likely require

more integrative methods such as molecular networks (Barabási et

al., 2011; Vidal et al., 2011), the reverse engineering of which in

turn is also heavily dependent on large-scale datasets.

Gene expression is one of the most profiled types of high-

throuput data in the MB field. However, the establishment of large

MB patient cohorts has been hampered by the low incidence rate of

only �1.8 new cases per year per million people (Louis et al., 2016).

Consequently, a multitude of transcription datasets of varying com-

positions and numbers of samples has been released to the public.

Additionally, while healthy controls play a crucial role in many

types of analyses, publicly available MB transcription datasets typic-

ally lack any normal cerebellar samples. Yet, several independent

transcription datasets with cerebellar samples exist in the literature.

Thus, while the data generated by the community reflects an unpre-

cedented collection of MB and cerebellar transcriptional profiles, it

is not clear how such a resource can be fully exploited, considering

that it is distributed across different studies and platforms.

While meta-analyses represent a possible avenue to deal with

scattered datasets (Kool et al., 2012; Morgan et al., 2014), a more

generic use for such data would instead require them to be merged

into one integrated resource, a task that is greatly hampered by

batch effects, i.e. study related systematic biases caused for instance

by variations in sample handling or profiling platforms (Lazar et al.,

2013). To combine transcription data from different batches, several

MB related studies have made use of methods to remove or minim-

ize batch effects (Margol et al., 2015; Natarajan et al., 2012;

Northcott et al., 2014; Pöschl et al., 2014). However, these efforts

were typically conducted on only a few batches each or lacked a

thoroughly documented evaluation of batch effects and their

removal.

In this study we report the first effort of establishing a large scale

resource of MB and cerebellar gene expression data through merg-

ing of a majority of the related publicly available datasets and care-

ful inspection and removal of batch effects using the Removal of

Unwanted Variation (RUV) algorithm (Gagnon-Bartsch and Speed,

2012; Jacob et al., 2016).

Numerous other tools for the removal of batch-effect have been

proposed (e.g. Giordan, 2014; Heider and Alt, 2013; Huang et al.,

2012; Johnson et al., 2007; Leek et al., 2012). Among those,

ComBat (Johnson et al., 2007) and sva (Leek et al., 2012) represent

two of the most widely used approaches for batch correcting.

Specifically, in a comparison of different batch-effect removal algo-

rithms, not including RUV, ComBat has been demonstrated to be

generally preferrable (Chen et al., 2011). However, algorithms that

utilize batches as covariates, such as ComBat and sva, might face

problems in distinguishing between batch effects and biological dif-

ferences, or might artificially increase differences between pheno-

types (Nygaard et al., 2016; Parker et al., 2014). In the present

study such difficulties can be expected to be particularly distinct,

since tumor samples and normal controls are largely separated into

individual batches.

Rather than relying on batch covariates, the RUV method

(Gagnon-Bartsch and Speed, 2012) can correct for batch effects via

Negative Control Genes (NCGs). While likely more suitable for the

batch-normalization of the outlined datasets, this technique requires

additional knowledge about NCGs, which are expected to exhibit

almost constant expression between any of the investigated condi-

tions. House keeping genes were suggested as one potential source

of controls (Gagnon-Bartsch and Speed, 2012). However, given that

such genes are typically identified as genes with high expression

across adult tissues under normal conditions (Eisenberg and

Levanon, 2013), they are not generically applicable to MB.

Here, we empirically estimated NCGs from the available MB

and cerebellar transcription datasets and we show that the selection

of NCGs has a substantial impact on the batch effect removal.

Utilizing the RUV method in conjunction with such controls and a

thorough strategy for evaluating batch-removal performance, we

were able to merge 1641 MB and cerebellar gene expression sam-

ples, identify the dominant sources of batch effects and produce a

batch-corrected dataset.

2 Implementation and Results

Detailed methods are described in the Supplementary Methods.

2.1 Collection of gene expression datasets
Following an extensive screening of the literature, 1796 MB and

normal brain (cerebellar) transcription samples were selected, which

were distributed across four platforms (Fig. 1A) and 23 datasets

(Fig. 1B). For MB we considered only primary tumor samples, while

for the normal controls only samples clearly annotated as cerebel-

lum, cerebellar cortex or upper rhombic lip were included.

Accounting for duplicate samples of the same patient in any

study (Fig. 1B), the final collection comprised a total of 1641 puta-

tively unique patients (Supplementary Table S1), including 1213

MB cases with available subgroup affiliations and 137 MB cases

without (Fig. 1C), and 291 normal brain samples. Patient ages were

available for a large portion of the samples and showed the expected

distributions for the MB cases (Fig. 1D) (Kool et al., 2012). The age

distribution of normal brain samples was not perfectly matched to

the MB age range, with many samples from patients in late adult-

hood, but the datasets also included a number of embryonic and

pediatric samples (Fig. 1D).

Upon merging of the datasets (see Supplementary Methods), a

single gene expression dataset was obtained, which spanned 14 883

unique genes.

2.2 Subgroup classification of MB samples
Given the number of datasets with diverse sources and the number

of samples with lacking subgroup affiliations in the merged data, a

classification procedure was implemented in order to investigate

supplied class labels and if possible assign class labels to yet unclassi-

fied samples.

Specifically, two different classifiers were established, using ei-

ther the Prediction Analysis for Microarrays (PAM) method
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available through the R package pamr or an Elastic Net classifier

implemented in the glmnet package. The former classifier was

applied to a set of 100 genes comprising 25 signature genes for each

MB subgroup, which were empirically derived through differential

gene expression analyses (Supplementary Fig. S1A, Supplementary

Table S2). The latter classifier was applied on all genes, enabling the

method to independently derive the classification coefficients

(Supplementary Table S3). Upon application to all 1213 samples

with supplied MB subgroup affiliation, using leave-one-out classi-

fiers, the PAM classifier correctly classified 1172 samples

(�0:966%), while the ElasticNet classifier performed slightly better

with 1183 (�0:975%) correctly predicted samples (Fig. 2A–B). By

considering an existing class label to be reliable, if it was reproduced

by both classifiers, a total of 1158 samples were classified correctly,

while 55 class labels could not be reproduced and the corresponding

samples were relabeled as having an unknown subgroup affiliation

(Fig. 2C; Supplementary Fig. S2A). The percentage of correctly pre-

dicted class labels by the PAM classifier was highly robust over a

large range of numbers of signature genes chosen per subgroup

(Supplementary Fig. S1B). Indeed, as few as four signature genes

A B

C D

Fig. 1. Collection of MB and cerebellar gene expression datasets. (A) Numbers of samples per platform initially selected for merging. (B) Distribution of unique

MB and cerebellar patients and duplicate samples across the included studies. The numbers of samples included from each study are shown on top of each bar.

(C) The final numbers of unique MB samples per subgroup. (D) Distributions of phenotypes with available information over four age groups based on age in

years (y ): embryonic (y � 0), infants (0 < y � 3), children (3 < y < 18) and adults (18 � y ). The number of samples in each respective category is stated on top

of each bar

A C

B D E

Fig. 2. Reclassification of MB samples. (A–B) Confusion matrices depicting the number of correctly and incorrectly predicted class labels by the PAM classifier (A)

and the ElasticNet classifier (B). (C) Results of the re-classification of MB samples with supplied subgroup affiliation. The heatmap shows the expression of 100

MB signature genes. (D) Heatmap showing the classification results for samples with previously unknown MB subtype affiliation. (E) Pie chart showing the num-

ber of MB subgroup cases after reclassification

Batch-normalization of medulloblastoma gene expression datasets 3359

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz066#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz066#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz066#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz066#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz066#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz066#supplementary-data


appeared sufficient to correctly classify over 85% of the samples in

every subgroup (Supplementary Fig. S1B), which is in line with a

previous classification effort that reported a classifier comprising a

total of 22 genes (Northcott et al., 2012a).

After removing the MB subgroup label from samples with unre-

producible subgroup affiliation, new PAM and ElasticNet classifiers

were trained on the MB samples with retained subgroup labels and

applied to the 137 samples (�10% of all MB samples), for which no

subgroup label was originally supplied. 128 of these samples

received matching class predictions from both classifiers and were

labeled with the corresponding subgroup, while 9 samples could not

be robustly classified and were retained without subgroup label (Fig.

2D; Supplementary Fig. S2B). As a result of the relabeling of pro-

vided subgroup affiliations and classification of unlabeled samples,

the dataset finally comprised a total of 1286 (�95%) MB samples

with subgroup labels and 64 (�5%) MB samples without (Fig. 2E).

Thus, by collecting and comparing the individual datasets, it was

possible to re-evaluate existing subgroup affiliations, and the out-

lined classification strategy was highly successful in predicting ro-

bust class labels for samples without available subgroup affiliations.

The majority of incorrect classifications affected G3 and G4 sam-

ples, for which some degree of intermixing was expected

(Supplementary Fig. S2A–B). In addition, the expression profiles of

samples that could not be robustly classified appeared in many cases to

correlate with multiple subgroups or lack a high correlation with any

particular subgroup, and in some cases also showed an artificially high

correlation with normal cerebellar samples (Supplementary Fig. S2C).

Many of such samples were interpreted as borderline cases falling in

between two or more subgroups (Supplementary Fig. S2D and E).

2.3 Visualization of batch effects
To inspect the existence of batch effects in the merged data, we

started with plotting the relative log expression (RLE), which

revealed substantial differences between expression distributions

(Fig. 3A). Furthermore, an inspection of the multi-dimensional scal-

ing (MDS; Fig. 3B) and hierarchical clustering (HC; Fig. 3C) plots of

the data demonstrated that samples clustered on the top level due to

platforms, suggesting that differences between platforms presented

the major contribution to batch effects observed in the dataset.

Within platforms however, samples appeared to cluster predomin-

antly due to phenotype rather than study. Thus, in order to merge

the listed datasets, batch-removal would have to predominantly ad-

just for platform related differences in gene expression profiles.

2.4 Empirical negative control genes
NCGs for normalizing the presented data should exhibit stable ex-

pression within each phenotype, between MB subgroups and be-

tween MB and cerebellum. To our knowledge, a documented list of

such genes does not yet exist. Instead potential NCGs were empiric-

ally determined from the collected datasets.

Specifically, to estimate the extent of gene expression variation

across the three comparisons, three scores were computed for each gene

(Supplementary Fig. S3), based either on the relative mean absolute de-

viation (RMD) of expression values among samples from the same

phenotype, or one-way ANOVA tests to estimate mean expression dif-

ferences between MB and normal brain or between MB subgroups, re-

spectively. The three scores were ultimately integrated using the mean

rank, and the 2.5% (n¼372) top ranking genes were selected as NCGs.

A

C

B

Fig. 3. Visualization of batch effects in raw, merged dataset. (A) Modified RLE plot showing the median, interquartile region (IQR), and non-outlier ranges of each

sample’s RLE distribution. (B) Scatter plot showing the result of a two-dimensional MDS analysis utilizing the top 1200 most variable genes. (C) Hierarchical clus-

tering of MB samples and the 1200 most variable genes
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The mean gene expression values of NCGs were distributed across

the largest part of the range of observed mean expression values in

the merged data (Fig. 4A). Additionally, these genes also spanned a

wide range of expression dispersion across all samples as measured by

the mean absolute deviation (MAD) (Fig. 4A). Due to the way in

which these genes were selected, it was not surprising that there was

no significant overlap with published house keeping genes (Fig. 4B).

However, a further investigation of the empirically selected NCGs

confirmed that they exhibited similar expression levels between phe-

notypes within individual studies, with generally increased variation

between studies and the largest variations observed between plat-

forms (Fig. 4C and D). Together, these results confirmed the previous

findings, suggesting that platforms presented the largest contribution

to batch effects. Additionally, these results demonstrated the suitabil-

ity of the selected NCGs for normalizing the data, due to their ability

to capture such differences while exhibiting more robust expression

levels between phenotypes within platforms.

To evaluate the importance of the NCGs for the batch effect cor-

rection, we further considered three reference sets of NCGs, i.e. (i)

314 house keeping genes proposed by Eisenberg and Levanon

(2003) and retained in the merged data (HKG), (ii) the 372 genes

with the lowest expression RMD values calculated across all sam-

ples (Ctrl1) and (iii) 372 genes chosen randomly (Ctrl2).

2.5 Batch effect removal
Batch effect correction was performed via the naiveRandRUV

method (Jacob et al., 2016), employing the NCGs and a range of

combinations of regularization parameters. Selection of a suitable

configuration then required the use of a panel of metrics by which

the performance of the batch-correction could be evaluated. A

multitude of related methods has been proposed during the last

years, reviewed for instance in (Lazar et al., 2013). Given the avail-

ability of phenotypic affiliations in the present data, particular focus

was placed on metrics that evaluate normalization performance

based on various aspects of phenotype relationships.

Specifically, beyond the use of the three visual tools described

above, six quantitative metrics were utilized as follows. The stand-

ard deviation of median RLE values (rmRLE) was used as a quantifi-

cation of RLE plots. To evaluate the clustering of samples, (i) a k-

means clustering was performed, followed by the computation of

the Adjusted Rand Index (ARI) in order to estimate the agreement

with the optimal clustering, and (ii) the entropy of the order of plat-

form labels in the HC was calculated. A more general quantification

of similarities between samples was estimated by calculating ratios

of mean Intra- to Inter-Group Distances (IIGD). The mean classifi-

cation accuracies of classifiers established from merged data was

computed on the basis of a support vector machine (SVM) frame-

work. Finally, a differential gene expression analysis was conducted

to determine the mean Overlap with Positive control Genes (OPG).

Initial inspection of the metrics between raw and RUV-normalized

data suggested an overall improvement of data integration following

batch effect removal based on five measures, rmRLE, IIGD, ARI,

Entropy and SVM (Fig. 5A–E). The OPG measure was found less

informative for evaluating the batch-correction, as it produced close

to maximum scores already in the raw data, with batch normalization

only leading to slight absolute improvements (Fig. 5F). Importantly, a

comparison between RUV normalizations performed with the empir-

ically defined control genes or performed on the three types of con-

trols revealed a general superiority of the empirical NCGs, as

A B

C D

Fig. 4. Empirical selection of NCGs. (A) Scatter plot of the mean and mean absolute deviation (MAD) of expression values across all samples for NCGs or all other

genes in the dataset. (B) Venn diagram illustrating the overlap of the empirically defined NCGs with published house keeping genes (Eisenberg and Levanon,

2003, 2013). (C) Strip chart showing the gene expression of the NCGs with highest MAD (UBL4B, top panel) and second highest MAD (ATF2, bottom panel). Gene

expression levels for samples are shown according to subgroup, study and platform. (D) Strip chart depicting the variation of expression values between pheno-

types, between studies, and between platforms for the empirically defined NCGs (one dot per gene and category). For each gene, the variation between pheno-

types was calculated within each study as the RMD across phenotype means and the maximum RMD across studies was utilized as the final value. Similarly, the

variation between studies was calculated on study means within each platform and the maximum across platforms was recorded. The variation between plat-

forms was calculated as the RMD across platform mean expression values. ***: P<0.001 (Wilcoxon signed-rank test)
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demonstrated by significant improvements for at least four of the

measures (IIGD, ARI, SVM, OPG) as compared to each of the other

sets of control genes (Fig. 5B, C, E and F).

A closer inspection of the four evaluation metrics, rmRLE, IIGD,

ARI and Entropy, revealed clear dependencies between the respect-

ive scores and the RUV regularization parameters, i.e. the normal-

ization strength (nu.coeff) and number of independent sources of

variation (k) (Fig. 5G–J). To select a putatively best performing

batch-corrected dataset, we first ranked RUV setups based on the

mean rank of ARI and Entropy measures (Fig. 5K). The 30 top-

ranking settings were further evaluated visually and in terms of

rmRLE and IIGD (Fig. 5L). The RUV run with k ¼ 10 and nu.coeff

¼ 3 � 10�5 was considered to produce the best batch-corrected data,

which was subsequently chosen as the final normalized dataset.

A visual inspection of the respective dataset demonstrated a clear

removal of the majority of batch effects observed in the raw data

(Fig. 6). Specifically, the normalization diminished the heteroge-

neous RLE distributions between samples (Fig. 6A). At the same

time, two-dimensional or three-dimensional MDS plots (Fig. 6B;

Supplementary Fig. S4), PCA plots (Supplementary Fig. S5), and a

HC plot (Fig. 6C) revealed a substantial clustering of samples by

phenotype rather than platform, with the HC recapitulating the

expected organization (Northcott et al., 2011).

2.6 Validation of the overall strategy on independent

training and test datasets
The hitherto described normalization scheme was based on NCGs

derived from the same dataset, to which they were then applied in the

RUV normalization. Thus, we sought to validate the proposed batch-

removal approach also on two independent datasets, i.e. a training data-

set used only for NCG extraction and an independent testing dataset,

which was then normalized using the identified NCGs. Accordingly, the

entire merged dataset (excluding samples with lacking MB subgroup

labels) was split into two separate datasets, one comprising 7 studies

with 958 samples and one containing 16 studies with 619 samples

(Supplementary Table S5), used for training and testing, respectively. A

detailed description of the validation experiment is described in the sup-

plementary methods and illustrated in Supplementary Figures S6–S9.

Briefly, the training dataset was used to identify NCGs, which were

then used to RUV-normalize the testing data, resulting in a successful

batch-correction of the dataset and thus confirming the validity of the

proposed strategy (Supplementary Fig. S8–S9).

3 Discussion

A large range of omics profiling techniques have become available

for the study of MBs, which beyond transcriptional assays also

Fig. 5. Evaluation of batch effect removal. (A–F) Box plots depicting the distribution of rmRLE (A), IIGD (B), ARI (C), Entropy (D), SVM (E) and OPG (F) scores

obtained from the raw expression data or after batch normalization over a range of regularization parameters and using either empirically defined NCGs (RUV) or

three reference sets of control genes (HKG, Ctrl1, Ctrl2). (G–J) Heat maps illustrating the dependence of the rmRLE (G), IIGD (H), ARI (I) and Entropy (J) scores on

the choice of RUV regularization parameters. (K) Scatter plot showing the ranking of promising RUV regularization parameters based on both ARI and Entropy

scores. (L) Scatter plot depicting the rmRLE and IIGD scores for the top 30 RUV settings from (K) and the selection of the final batch-normalized dataset. ***:

P<0.001; *: P<0.05 (Wilcoxon rank sum test)
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enable investigations of methylation (Danielsson et al., 2015;

Schwalbe et al. 2013; Schwalbe et al. 2017; Cavalli et al., 2017;

Hovestadt et al., 2014; Northcott et al., 2017), histone modifica-

tions (Dubuc et al., 2013; Northcott et al., 2014), copy number

aberrations (Northcott et al., 2012b) or mutations (Robinson et al.,

2012). These studies can with benefit be combined to obtain a more

complete view on the biological foundation of MB, or be utilized in-

dividually to address more specific questions. Among the different

techniques, transcriptional profiling remains one of the most widely

employed methods for functional studies.

Yet, expression datasets of MB and normal brain are largely

scattered across various studies and platforms. Thus, it is of crucial

importance to understand how these data can be integrated into one

comparable resource. By merging a large number of publicly avail-

able transcription datasets, we showed that batch-effects, especially

between technical platforms, present a major factor interfering with

the integration of such data.

Given the distribution of phenotypes across batches, we argued

that a batch effect removal strategy based on NCGs was the most

feasible way to normalize the dataset. A bottleneck with this tech-

nique was the lack of a set of golden standard NCGs. To overcome

this problem, we have implemented a novel approach for the em-

pirical estimation of NCGs. Comparing the performances of batch

effect removal attempts utilizing either the empirically defined

NCGs or other sets of controls, we were able to show that the

choice of NCGs has a pronounced effect on normalization and

that our empirically defined controls performed generally

superior.

Another major obstacle is the question of how to estimate the

existence of batch-effects in the data and evaluate the perform-

ance of associated normalization approaches. To address this

issue, we have investigated a broad panel of visual and quantita-

tive criteria, reflecting either previously described metrics or

bespoke methods. Our findings exemplify the notion that the

choice of evaluation metrics is perhaps just as crucial as the choice

of negative control genes, and that multiple methods need to be

combined to address various aspects of data quality affected by

batch effects.

4 Conclusions

In summary, we have established the largest publicly available nor-

malized dataset of microarray gene expression covering both MB

and normal brain samples. We anticipate that this resource will

greatly aid the research community due to the increased sample size

and inclusion of normal controls. Furthermore, this study also

presents a proof of principle for the presented batch effect normal-

ization strategy. We hope that the outlined approach will provide a

useful reference for future normalization efforts in the field of MB

or other diseases. Specifically, while the recent years have seen a

gradual replacement of gene expression microarrays by RNA-seq

profiling, future studies will also be hampered by the low incidence

rate of MB, likely leading to the generation of multiple RNA-seq

datasets, which once again require sophisticated batch effect nor-

malization strategies.

A

C

B

Fig. 6. Visualization of batch effects in RUV-normalized dataset. (A) Modified RLE plot showing the median, interquartile region (IQR), and non-outlier ranges of

each sample’s RLE distribution. (B) Results of a two-dimensional MDS analysis utilizing the top 1200 most variable genes. (C) Hierarchical clustering of MB sam-

ples and the 1200 most variable genes
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