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Abstract

We describe an algorithm to compute the extremal eigenvalues and corresponding eigen-

vectors of a symmetric matrix which is based on solving a sequence of Quadratic Binary

Optimization problems. This algorithm is robust across many different classes of symmetric

matrices; It can compute the eigenvector/eigenvalue pair to essentially any arbitrary preci-

sion, and with minor modifications, can also solve the generalized eigenvalue problem. Per-

formance is analyzed on small random matrices and selected larger matrices from practical

applications.

1 Introduction

The problem of computing eigenvectors and eigenvalues to a desired precision has many

applications in science and mathematics, including web page ranking [1], planar embeddings

[2], and principal component analysis [3], among many others. The recent development of

new computing paradigms has led to the development of annealing devices, which are special-

ized hardware designed to solve Quadratic Binary Optimization Problems (QUBOs). Such

annealers include D-Wave’s quantum annealers and Fujitsu’s Digital Annealer. This has lead

to a corresponding interest in reformulating computational tasks as QUBOs and solving them

using these annealing devices. This strategy has been applied to several problems including

graph partitioning [4], solving polynomial equations [5], and vertex coloring [6]. Here we

compute eigenvectors of symmetric matrices by solving a sequence of QUBOs, which allow

the eigenvectors and eigenvalues to be found to any desired precision. A mathematically simi-

lar approach to this problem is considered in [7, 8], but accuracy is increased by increasing the

size of the associated QUBO. In contrast, the proposed algorithm can compute eigenvectors to

essentially arbitrary precision without increasing the size of the QUBOs, which can have as few

as twice as many variables as the original eigenvalue problem. The trade-off for using small

QUBOs is that more iterations are required. A similar approach is considered in Appendix C

of [9], although here the effects of different parameters are more thoroughly studied, and the
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presentation gives a very general optimization framework. The performance data is collected

using D-Wave’s Ocean Simulated Annealing (SA) package.

As mentioned, the state-of-art of QUBO eigensolver is proposed in [8]. In the aforemen-

tioned work, the only way of increasing precision is to increase the QUBO size by increasing

the number of bits required to represent the real numbers. In the hereby proposed method we

can compute the eigenpair to arbitrary any precision without increasing the size of the QUBO.

The paper is organized as follows. The relevant mathematical background for symmetric

matrices and use of QUBO solvers as a descent method is explained in Section 2.1. The algo-

rithm for computing the eigenvector/eigenvalue pair is given in Section 2.3. Experimental

results with various parameters and matrices are presented in Section 3, followed by the con-

clusion in Section 4.

2 Methods

2.1 Mathematical background

Let A be a symmetric matrix. A well-known consequence of the spectral theorem is that the

smallest eigenvalue λ and corresponding eigenvector v are global minima for the Rayleigh quo-

tient xtAx/xtx

l ¼ min
kxk¼1

xtAx; v ¼ argmin
kxk¼1

xtAx ð1Þ

The proposed algorithm uses a QUBO formulation of the problem to both obtain a good

initial guess for the global minimum, and to implement an iterative descent from the initial

guess. Similar to classical descent methods such as Newton Conjugate-Gradient and the BFGS

algorithms [10], this algorithm requires computing, but not inverting, a Hessian matrix at

each descent step. We begin with an overview of QUBOs and how they can be used to approxi-

mately solve certain constrained quadratic optimization problems.

Let {0, 1}m denote the set of binary vectors of lengthm, and let Q be a symmetricm ×m
matrix. The combinatorial optimization problem

argmin
xb2f0;1g

m
xtbQxb

is called a quantum unconstrained binary optimization problem, or QUBO, and it is known to

be NP-hard [11]. As mentioned before, interest in casting various problems as QUBOs has

increased due to the development of annealing devices, which are a class of hardware that use

ideas from statistical mechanics to produce approximate solutions to a QUBO. See for example

[12] or [13].

To solve a real-variable optimization problem using a QUBO, we require a method of

approximating each real variable by b binary variables. This number b will be a parameter

referred to as the number of bits.

Let’s start with a few concrete examples of the arithmetic involved, beginning with a dem-

onstration of how to multiply two real numbers such as x = −.5 and y = .5 using 2 bits. Form

the precision vector p = (−1, .5) with corresponding precision matrix

P ¼ ptp ¼
1 � :5

� :5 :25

 !

. Set xb ¼
1

1

 !

and yb ¼
0

1

 !

so that

x ¼ p � xb; y ¼ p � yb ð2Þ
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� :25 ¼ x � y ¼ xtbp
tpyb ¼ ð1; 1Þ

1 � :5

� :5 :25

 !
0

1

 !

ð3Þ

Now let Q be a symmetric matrix, and we shall demonstrate how to compute the quadratic

form ðx; y; zÞQ

x

y

z

0

B
@

1

C
A using binary variables. As above, set z = p � zb where zb is a binary vector

and z is the corresponding real number. We can rewrite the quadratic form as

ðxtb; y
t
b; z

t
bÞ

pt

pt

pt

0

B
B
B
@

1

C
C
C
A
Q

p

p

p

0

B
B
B
@

1

C
C
C
A

xb

yb

zb

0

B
B
B
@

1

C
C
C
A

ð4Þ

The middle three terms can be written more succinctly as (I3� pt)Q(I3� p) = Q� P where I3
is the 3 × 3 identity matrix and� is the tensor product.

Now we describe the construction in full generality. Given a precision vector p ¼
� 1; 1

2
; 1

22 ;
1

23 ; . . . 1

2b� 1

� �
of length b, the set of integer multiples of 1

2b� 1 in the interval � 1; 1 � 1

2b

� �

is exactly the set

C1;b≔fp � xbjxb 2 f0; 1g
b
g ð5Þ

We use the sub-scripted xb as a convention to emphasize that xb is a binary vector, i.e. the sub-

script does not refer to the number of bits. More generally, the n-fold product of C1,b is the set

Cn;b≔fðIn � pÞxbjxb 2 f0; 1g
nb
g ð6Þ

where In is the identity matrix. The set Cn,b will be referred to as a discretized cube. Let Q be a

symmetric n × nmatrix, r an n-vector and suppose we want to solve the constrained quadratic

programming problem

argmin
x2½� 1;1�n

rtxþ xtQx ð7Þ

To get an approximate solution to (7) using a QUBO, first replace the unit cube by a discre-

tized unit cube to get the optimization problem.

argmin
x2Cn;b

rtxþ xtQx
ð8Þ

Settingm = nb, x = (In� p)xb, and P = ptp, this is equivalent to the following QUBO problem:

argmin
xb2f0;1g

m
rtðIn � pÞxb þxtbðQ� PÞxb ð9Þ

¼ argmin
xb2f0;1g

m
xtbDiagðr

tIn � pÞxb þ xtbðQ� PÞxb ð10Þ

¼ argmin
xb2f0;1g

m
xtbðDiagðr

tIn � pÞ þ Q� PÞxb ð11Þ

Here Diag(v) refers to the diagonal matrix with entries from v. Going from lines (9) to (10)

uses the following identity valid for binary vectors: vtxb ¼ xtbDiagðvÞxb.
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To summarize, given a number of bits b, this procedure approximates the real optimization

problem in n variables (7) with the QUBO (11) of size n�b. We conclude by remarking that we

are not restricted to the cube [−1, 1]n. If we instead want to optimize over the cube [−δ, δ]n, we

need to repeat the same construction with the precision vector δ � p. An immediate question is

how much error is introduced by replacing the cube with a discretized cube.

Lemma 1. Lipschitz Estimate
Let xT be an optimal solution to (7), and let xA be an optimal solution to (8). Then

jrtxA þ xtAQxA � ðr
txT þ xtTQxTÞj �

ffiffiffiffiffi
n
2b

r

sup
½� 1;1�n
k2Qx þ rk ð12Þ

Proof. Let x̂T be the point in Cn,b closest to xT. The gradient of rtx + xtQ x is 2Qx + r, and

kx̂T � xTk �
ffiffiffin
2b

p
, leading to the Lipschitz estimate

jrtx̂T þ x̂T tQx̂T � ðrtxT þ xtTQxTÞj �
ffiffiffiffiffi
n
2b

r

sup
½� 1;1�n
k2Qxþ rk ð13Þ

Combining (13) with the inequality rtxT þ xtTQxT � rtxA þ xtAQxA � rtx̂T þ x̂T tQx̂T we get

the following implication:

jrtxA þ xtAQxA � ðr
txT þ xtTQxTÞj �

ffiffiffiffiffi
n
2b

r

sup
½� 1;1�n
k2Qx þ rk ð14Þ

Lemma 1 makes a trade-off apparent. With more bits, the solution on the discretized cube

will better approximate the true solution of (7) but will require solving a larger QUBO.

Indeed, numerical experiments from subsequent sections will show that b = 2 generally

requires more iterations than b = 8, indicating that the quality of the approximate solution at

each step is worse, although interestingly using b = 2 takes less time overall since solving

smaller QUBOs requires less computational effort. It is also worth noting that estimate (12)

does not control the actual distance between solutions, ||xA − xT||. In the special case when Q is

positive definite, this distance can be controlled, but it would be interesting to have estimates

in greater generality.

The annealers that one works with in practice are never ideal, and so will rarely return the

absolute best solution xA but instead a response consisting of many samples x1, x2, . . ., xl of

good solutions with energies E(xi)� E(xi+1). (Here energy of a solution xi refers to the value of

the objective function at xi). An obvious approach is to treat the lowest energy solution x0 as

the best approximation of xT. A subtler approach that can reap great benefits in practice is to

take a linear combination of the full response:

1

l

Xl

i¼1

e� bðEðxiÞ� Eðx0ÞÞxi ð15Þ

as an approximation of xT, where β is a parameter. Experiments in later sections were con-

ducted either using the best response x0 or the full response with β = 100 and performance is

compared for several values of n and b. Although (15) is an ad hocmethod, the reason for why

it works could be due to the energy distribution of the QUBO results. Provided the probability

of getting an exited state is Boltzmann distributed (Fermi distribution limit for a single particle

at low temperature limits); some responses with considerable low energies could introduce

“bit flips” that might correct for the discretization error when added as a linear combination

with weights that would decay as an exponential of their energies. A more formal explanation

using quantum dynamics for why equation 14 works deserves a further study.
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Another approach to get better approximations of xT is to solve a sequence of QUBOs with

bias. More precisely, get an initial approximation of xT by following the previous procedure to

produce xT1
. Then modify the QUBO by adding a linear term � axtT1

x where α> 0 and find

approximate solutions to

argmin
Cn;b

rtx þ xtQx � axtT1
x ¼ argmin

Cn;b

ðr � axT1
Þ
tx þ xtQx ð16Þ

By Cauchy-Schwartz,
xT1

kxT1
k
¼ argmin

kxk¼1

� xtT1
x, thus in solving (16) the annealer is encouraged

to produce solutions in the direction of xT1
. The annealer produces a new lower-energy solu-

tion xT2
and this process can be repeated until the new solution no longer has lower energy

than the previous. Experimental results in later sections contain data with α = 0 and.1. Biasing

is most helpful in the initial phase of the algorithm when it is iteratively producing solutions

close to previous solutions. In later phases biasing is less useful, as will be evident from the

results.

2.2 An iterative descent algorithm

Algorithms that solve continuous optimization problems rely on a good initial guess and an

iterative descent rule. These tasks can be formulated as QUBO problems when trying to mini-

mize the Rayleigh quotient over the unit sphere.

2.2.1 Obtaining an initial guess. Let λ1� λ2� . . .� λn be the eigenvalues of A. To get an

initial approximation of λ1, one can ask to solve

argmin
x2Cn;b

xtAx
ð17Þ

as an approximation of

argmin
kxk¼1

xtAx ð18Þ

An immediate problem is that if A is positive definite, the solution to (17) is just x = 0. This

can be remedied by replacing A with A − λIn, where λ 2 (λi, λi+1) for some i. The eigenvectors

are unaffected, the eigenvalues can be recovered from the new matrix and the solutions to

argmin
x2Cn;b

xtðA � lInÞx ð19Þ

tend to be long, nonzero vectors very close to the span of eigenvectors which have negative

eigenvalues for A − λIn, namely v1, . . ., vi. A good initial choice is the average of the eigenvalues

l ¼
trðAÞ
n . This is a natural choice since it ensures the initial guess to be within the bounds of the

eigenspectrum. As the algorithm progresses, λ will decrease towards λ1. To converge in fewer

iterations, it’s better to choose λ close to, but greater than λ1, as we will examine later.

These observations lead to the following iterative fixed-point method to produce a good ini-

tial guess for the lowest eigenvector. Initially solve (19) with l ¼
trðAÞ
n to produce a guess v1.

Update λ using the Rayleigh quotient l ¼
vt

1
Av1

kv1k
2 and solve (19) again possibly using v1 as a bias

vector to produce a second guess v2. Repeat until λ is no longer decreasing.

For small matrices, say 10 × 10, this procedure often suffices to produce the lowest eigen-

value with 2-3 digits of accuracy and the corresponding eigenvector to within a distance of

order.1 of the true eigenvector. The descent stage of the algorithm increases the precision to

essentially arbitrary order as it will be explained in the next section.
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2.2.2 Iterative descent. Suppose we want to minimize a function f : Rm ! R, and letrf
andH(f) denote the gradient and Hessian of f, respectively. Starting with an initial guess x0, a

common strategy is to Taylor expand f around x0

f ðxÞ ¼ f ðx0Þ þ rf � dþ d
t Hðf Þ

2
dþ oðkdk3

Þ ð20Þ

d≔x � x0 ð21Þ

and choose δ to minimizerf � δ, which is gradient descent, or to minimizerf � dþ dt Hðf Þ
2
d,

which includes second order methods such as Newton’s method, BFGS, Newton Conjugate-

Gradient, etc. Once a better solution x1 = x0 + δ has been found, Taylor expand around x1

again and repeat. The proposed algorithm obtains a good descent direction by using a QUBO

to find good approximate solutions to

argmin
d2Cn;b

rf � dþ dt
Hðf Þ

2
d

Similar to Newton-CG and BFGS, this method requires computing, but not inverting, the Hes-

sian matrix, and benefits from a line search which possibly increases the size of δ. See [10] for

more details on classical optimization algorithms and the benefits of line search. Here the line

search step amounts to minimizing a quadratic expression, and so the optimal scaling can be

directly computed.

If kth approximate solution xk is closer to the true solution than any point in the discretized

cube, one cannot expect minimizing the QUBO to produce a better solution. A key part of the

descent phase is enforcing a minimum step size in addition to the line search so that the candi-

date k + 1st solution is possibly worse than that kth. If the candidate solution is worse, the algo-

rithm discards the candidate and replaces the discretized unit cube Cn,b by a scaled-down

discretized cube t � Cn,b where t� 1, which amounts to repeating the procedure outlined in

section 3 with the precision vector t � p. Once the discretized cube has been scaled down, the

algorithm continues running until it needs to scale down the cube further, or exits having

achieved the desired accuracy.

2.3 The algorithm

With the key ingredients covered, we are in a position to present the algorithm. As a reminder,

at each step, the objective function is of the form f(x) = xt(A − λIn)x, whose gradient and Hes-

sian can be calculated asrf = 2(A − λIn)xt and H(f) = 2(A − λIn) respectively. These formulas

are implicitly used in the descent phase of the algorithm. At several stages, the algorithm solves

optimization problems of the form argmin
x2t�Cn;b

rtx þ xtAx. These are turned in to QUBOs as

explained in section 2.1, and annealers are used to minimize the QUBOs that appear, possibly

using full responses or biasing. In subsequent section the effects of biasing, full responses and

other parameters will be analyzed.

Algorithm 1 Controlled Precision QUBO-based Algorithm to Compute Eigenvectors of

Symmetric Matrices
Inputs: Symmetric n × n matrix A, bits for precision vector b,

desired precision �tol
Outputs: Smallest evec v and eval λ within �tol of true values
l 

trðAÞ
n

H  A − λIn // Enforcing Indefiniteness
v argmin

Cn;b

xtHx // Initial Guess Phase
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v v
kvk

while vtAv < λ do
l vtAv

kvk2

H  A − λ � In
v argmin

Cn;b

xtHx

v v
kvk

end while
precision  .1 // Descent Phase
while precision > �tol do
H  A − λIn
d argmin

precision�Cn;b

2vtHdþ dHd // Getting Descent Direction

δ  δ − hv, δiδ // Orthogonalizing δ, v
tmin = max{−vtHδ/(δtHδ), 1} // Line search step
δ  tmin � δ

if ðvþdÞtAðvþdÞ
kvþdk2

< l then // Checking if solution improves

v vþd
kvþdk

λ  vtAv
else
precision  .1 � precision // Increasing precision otherwise

end if
end while
return v, λ

Two steps merit a bit more explanation. Replacing δ by δ − hv, δiδ forces v, δ to be orthogo-

nal. Since the Rayleigh quotient needs to be optimized over the sphere, the update direction δ
should be tangent to the sphere at v, and the tangent space of the sphere at v is precisely the set

of vectors orthogonal to v. Second, the scaling δ is computed as tmin = max{−vtHδ/(δtHδ), 1}.

The expression −vtHδ/(δtHδ) is the line search step coming from minimizing the quadratic

(v + tminδ)tH(v + tminδ). Strictly speaking this quadratic expression only has a minimum when

δtHδ is positive, and in practice when using this algorithm it almost always is, and if not, set

tmin = 1. A minimum scaling tmin� 1 is enforced so that the candidate update v + tminδ possi-

bly overshoots the exact solution, resulting in a worse estimate of the lowest eigenvector. Over-

shooting is an indication that the discretized cube is no longer fine enough to produce better

solutions, and so the candidate update is discarded and the discretized cube is scaled down.

Intuitively the scaling at each step should be about the order of 1

2b� 1, and the numerical experi-

ments below all use a.1 factor.

Oftentimes in practice one wishes to solve a generalized eigenvalue problem of the form Av

= λBv. In the case when A, B are symmetric and B is strictly positive definite, the smallest gen-

eralized eigenvalue minimizes the generalized Rayleigh quotient

l ¼ min
kxk¼1

xtAx
xtBx

v ¼ argmin
kxk¼1

xtAx
xtBx ð22Þ

The following small changes solves the generalized eigenvalue problem, again to essentially

arbitrary precision. First, instead of initializing λ as
trðAÞ
n , one can generate a random unit vector

w (or use a specified vector) and initialize l ¼ wtAw
wtBw. Second, replace every Rayleigh quotient

with the corresponding generalized Rayleigh quotient. Lastly, instead of updatingH asH = A
− λIn, update asH = A − λB, as the latter preserves the B-eigenspectrum of A, while the former

does not.

We conclude by emphasizing that this algorithm reaches arbitrary precision without

increasing the size of the QUBOs, all of which involve n � b binary variables. Additionally, all
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quadratic problems are of the form rt x + xt(A − λIn)x where A is fixed, implying that the

potential non-zero coefficients of the QUBO do not change (examine formula (11)).

3 Experimental results

The algorithm and its variants are tested on a class of random matrices of varying sizes and on

benchmark sparse matrices using D-Wave’s simulated annealing (SA) software unless other-

wise specified. For each experiment, the algorithm ran until the Rayleigh quotient of the

approximate eigenvector was within 10−8 of the true value. The total annealing time is hence

computed as the total amount of time the algorithm spends on performing SA. The SA is the

bottle-neck for the algorithm, and we include the time to give the reader a sense of how the

run-time varies with the size of the matrix n and the number of bits b, as we will demonstrate

in subsequent sections. Adjusting the time for each anneal will not affect the accuracy of the

algorithm, as it can reach desired precision with any reasonably good annealer, but may affect

the run-time. For a specific architecture, one might be able to tune the anneal time optimally

based on n and b, which is not a question we attempt to answer here.

3.1 Basic performance

First, we demonstrate the convergence as a function of the number of iterations using example

matrices from the TAMU SuiteSparse collection [14]. Fig 1 shows performance on the breast-

tissue_10NN matrix, a weighted graph adjacency matrix of size 106 × 106 for 2, 4, 6 and 8 bits

using best response and no biasing.

Interestingly using fewer bits gives less time to reach desired accuracy despite requiring

more iterations. A log − log regression on the MP matrices (see next section) gives that the

anneal time grows like (n � b)1.57 and the number of iterations grows like n.44b−.32 so the total

time is roughly n2b1.2. The algorithm works on even larger matrices, as is demonstrated in Fig

2 using the spaceShuttleEntry_1 matrix, a 560 × 560 control matrix.

Fig 3 demonstrates the performance for the generalized eigenvalue problems using

mesh1em1 as the Amatrix and meshe1 as the Bmatrix, two 48 × 48 matrices from the Suite-

Sparse database.

In order to try to get algorithms that run as fast as possible, one might ask if it is possible get

the algorithm to work using 1 bit of precision. With the current scheme this cannot be done.

However, by reformulating the problem as an Ising instead of QUBO, one can indeed use only

one bit precision. Ising problems are of the form

argmin
x2f� 1;1gn

htx þ xtQx

the main distinction from QUBOs being the spin variables ±1. QUBOs or Ising problems are

mathematically equivalent, and most annealers are capable of solving either.

Using the Ising formulation, its possible to mimic the same algorithm, which works well on

very small matrices. However, for larger matrices, such as for the 106 × 106 weighted adjacency

matrix the single-bit version of the algorithm takes longer than using two bits, taking 32.3 sec-

onds and requiring over 400 iterations (compare with Fig 1). An educated guess for why this

might happen follows. Since the solutions produced by Ising problems have coordinates that

are all non-zero and of the same magnitude, if the algorithm has already produced a solution

whose kth coordinate is close to the true value, the added solution from the Ising problem will

force that coordinate away from the optimal value. Using two bits is effective because the solu-

tions can have coordinates that are positive, negative, or zero.

PLOS ONE QUBO-based algorithm to compute eigenvectors of symmetric matrices

PLOS ONE | https://doi.org/10.1371/journal.pone.0267954 May 9, 2022 8 / 15

https://doi.org/10.1371/journal.pone.0267954


3.2 Analysis of the parameters

To demonstrate the effect of biasing and full response parameters, the algorithm is tested on

small matrices of sizes 3, 10 and 20 with number of bits b = 2, 4, 6 and 8. In the interest of not

overwhelming the reader with plots and data, only the data for matrices of size 10 and 20 is dis-

played. We analyze the error at the end of the initial guess phase, and the average number of

iterations each method requires. For each choice of size, bits and parameters, 10 Marchenko-

Pasture matrices [15] with parameter λ = .3 are generated and the average errors at the end of

the descent phase is recorded. Ideally this initial phase should end with the smallest possible

error before beginning the descent phase. Towards this end, taking full responses (Eq (15))

and biases (Eq (16)) can be very beneficial. However, this benefit fades as the sizes of the

QUBOs increase as one can see from Figs 4 and 5.

The choice to initialize λ as
trðAÞ
n is motivated by a desire to produce an initial guess which is

close to, but greater than, the true lowest eigenvector. To demonstrate this effect on 10 × 10

and 20 × 20 matrices, we compare performance initializing as
trðAÞ
n , which is the average of all

Fig 1. Digits of accuracy plotted against number of iterations. Total annealing time is the total amount of time the algorithm spends on performing SA, since SA

dominates the cost of the method. Evec error is the distance of the computed vector from the true unit eigenvector. Precision refers to the scaling applied to the

discretized cube at each iteration. The initial guess phase corresponds to a precision of 1. Observe that whenever the error increases, the algorithm responds by

increasing the precision, which often gives large accuracy gains within the subsequent 2-3 iterations.

https://doi.org/10.1371/journal.pone.0267954.g001
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Fig 2. Error plot for 560 × 560 space Shuttle control matrix.

https://doi.org/10.1371/journal.pone.0267954.g002

Fig 3. Error plots for generalized eigenvalue problem on two 48 × 48 mesh matrices.

https://doi.org/10.1371/journal.pone.0267954.g003
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the eigenvalues against initializing as the highest Gershgorin bound, which upper bounds the

maximum eigenvalue [16]. Choosing an initialization closer to the true eigenvalue often leads

to fewer iterations, although the difference is somewhat small and fades as the number of bits

increases, as seen in Fig 6.

3.3 Gap size analysis

Here we analyze the effect of the spacing between eigenvalues. In particular, the gap |λ1 − λ2|

can significantly affect the number of iterations required to reach a given precision. For this

experiment, given a gap size g = |λ1 − λ2|, an orthogonal matrix U is chosen at random with

respect to the Haar measure using the SciPy implementation of [17]. The algorithm is then

analyzed on the matrix UtDiag(0, g, 1, . . ., n − 2)U. As Fig 7 demonstrates, as the gap size

decreases the algorithm takes longer to achieve a given accuracy. The exception is when the

gap is 0, and the smallest eigenvalue appears with multiplicity. In this case the algorithm actu-

ally requires fewer iterations.

Fig 4. Eigenvector error for MP matrices at the end of initial guess phase. Observe that for small QUBOs the full response decreases the error significantly.

https://doi.org/10.1371/journal.pone.0267954.g004

Fig 5. Average number of iterations required for MP matrices for different parameters.

https://doi.org/10.1371/journal.pone.0267954.g005
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Fig 8 has two example error plots demonstrating the slower convergence. Observe that the

eigenvector error relative to both the precision and eigenvalue error increases as the gap size

decreases.

In the case when there is degeneracy, that is the gap g is 0, one might want two eigenvectors

that span the eigenspace. This can be accomplished by running the algorithm once to get an

approximate eigenvector v1, replace the matrix A with Aþ av1vt1 where α> 0, and run the

algorithm again to get the eigenvector v2. By the spectral theorem for the symmetric matrix

Aþ av1vt1, vt
1
v2 ¼ 0 implying that v2 is an eigenvector for A. Replacing A by Aþ av1vt1 is nec-

essary for numeric purposes. The gap g is never numerically zero, so if the algorithm is run

twice on the matrix A even with different randomization, it will often produce the same vector.

One can also try to take advantage of the first computation by initializing the approximate

eigenvalue to λn + � in the second run of the algorithm. The data shown below in Fig 9 was col-

lected for a ¼
trðAÞ
n � ln and � = 1, and one can see a slight boost in performance in the second

run of the algorithm.

Fig 6. Total iterations required for different initializations of λ.

https://doi.org/10.1371/journal.pone.0267954.g006

Fig 7. Average number of iterations on 30 samples as a function of the gap size |λ1 − λ2|. The smaller the gap, the more iterations required, especially when the

number of bits is small. In the extreme case where the gap is 0 and the lowest eigenvalue appears with multiplicity, the algorithm is actually faster in the sense that

fewer iterations are needed for the computed eigenvalue to approximate the true eigenvalue.

https://doi.org/10.1371/journal.pone.0267954.g007
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4 Conclusion

We have proposed and tested an algorithm to find eigenvectors of symmetric matrices by min-

imizing the corresponding Rayleigh quotient with an iterative steepest-descent method. Initial

guesses and subsequent descent directions are found by looking for minima over discretized

cubes of various sizes, encoded as QUBO problem which is in turn solved with a SA method.

The algorithm is able to reach essentially arbitrary precision even for fairly large matrices. We

have performed a thorough study of the effect of the different parameters, including, the eigen-

value spacing, initial guesses, number of bits, and the matrix size. We have explored the possi-

bility of using a single bit precision by reformulating the QUBO problem as an Ising problem.

Finally, we have introduced two novel approaches to accelerate the convergence such as bias-

ing and using a larger set of solution from the SA step. These two approaches might be applica-

ble to other QUBO based problems. We encourage the reader to test these algorithms on other

annealing devices.

Fig 8. Sample plots for two 10 × 10 matrices with gap size .1 and .01. As the gap size decreases, the ratio of eigenvector error to precision and eigenvalue error

increases.

https://doi.org/10.1371/journal.pone.0267954.g008

Fig 9. Average number of iterations running the algorithm twice on matrices with complete degeneracy. One can see slightly better performance on the second

run, particularly on the 20 × 20 matrices.

https://doi.org/10.1371/journal.pone.0267954.g009
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16. Gershgorin S. Über die Abgrenzung der Eigenwerte einer Matrix. Bull Acad Sci URSS. 1931; 1931

(6):749–754.

17. Mezzadri F. How to generate random matrices from the classical compact groups. Notices of the Ameri-

can Mathematical Society. 2006; 54.

PLOS ONE QUBO-based algorithm to compute eigenvectors of symmetric matrices

PLOS ONE | https://doi.org/10.1371/journal.pone.0267954 May 9, 2022 15 / 15

https://doi.org/10.1038/ncomms10327
http://www.ncbi.nlm.nih.gov/pubmed/26739797
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1070/SM1967v001n04ABEH001994
https://doi.org/10.1371/journal.pone.0267954

