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In this study, we proposed a new type of hybrid visual stimuli for steady-

state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs),

which incorporate various periodic motions into conventional flickering

stimuli (FS) or pattern reversal stimuli (PRS). Furthermore, we investigated

optimal periodic motions for each FS and PRS to enhance the performance

of SSVEP-based BCIs. Periodic motions were implemented by changing

the size of the stimulus according to four di�erent temporal functions

denoted by none, square, triangular, and sine, yielding a total of eight

hybrid visual stimuli. Additionally, we developed the extended version of

filter bank canonical correlation analysis (FBCCA), which is a state-of-the-

art training-free classification algorithm for SSVEP-based BCIs, to enhance

the classification accuracy for PRS-based hybrid visual stimuli. Twenty healthy

individuals participated in the SSVEP-based BCI experiment to discriminate four

visual stimuli with di�erent frequencies. An average classification accuracy and

information transfer rate (ITR) were evaluated to compare the performances

of SSVEP-based BCIs for di�erent hybrid visual stimuli. Additionally, the user’s

visual fatigue for each of the hybrid visual stimuli was also evaluated. As the

result, for FS, the highest performances were reported when the periodic

motion of the sine waveform was incorporated for all window sizes except for

3 s. For PRS, the periodic motion of the square waveform showed the highest

classification accuracies for all tested window sizes. A significant statistical

di�erence in the performance between the two best stimuli was not observed.

The averaged fatigue scores were reported to be 5.3± 2.05 and 4.05± 1.28 for

FSwith sine-wave periodicmotion and PRSwith square-wave periodicmotion,

respectively. Consequently, our results demonstrated that FS with sine-wave

periodic motion and PRS with square-wave periodic motion could e�ectively

improve the BCI performances compared to conventional FS and PRS. In
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addition, thanks to its low visual fatigue, PRSwith square-wave periodicmotion

can be regarded as the most appropriate visual stimulus for the long-term use

of SSVEP-based BCIs, particularly for window sizes equal to or larger than 2 s.

KEYWORDS

brain-computer interfaces (BCIs), steady-state visual evoked potential (SSVEP),

steady-statemotion visual evoked potential (SSMVEP), hybrid visual stimulus, periodic

motion

Introduction

Brain-computer interfaces (BCIs) are promising alternative

communication technologies that have been generally developed

for people who suffer from neuromuscular disorders or

physical disabilities such as spinal cord injury, amyotrophic

lateral sclerosis, and locked-in syndrome (Daly and Wolpaw,

2008). BCIs have provided new non-muscular communication

channels that allowed for interaction between a user and the

external environment. A variety of non-invasive brain imaging

modalities have been employed to record brain activities in

the field of BCIs. For example, functional magnetic resonance

imaging (fMRI), magnetoencephalography, and functional near-

infrared spectroscopy have been successfully employed to

implement BCIs. In addition, electroencephalography (EEG)

is another representative non-invasive neuroimaging modality

that has been the most intensively studied owing to its

advantages over the other modalities, such as high temporal

resolution, affordability, and portability (Dai et al., 2020; Zhang

et al., 2021).

In the EEG-based BCIs, the user performs certain mental

tasks according to paradigms designed for eliciting task-related

neural activities. Motor imagery, event-related potential, P300,

and auditory steady-state response are popular paradigms

employed to implement EEG-based BCIs (Lotte et al., 2018;

Abiri et al., 2019). Steady-state visual evoked potential (SSVEP)

is also one of the most promising EEG-based BCI paradigms,

which has attracted increased interest from BCI researchers in

recent decades (Waytowich et al., 2018). SSVEPs are periodic

brain activities evoked in response to the presentation of visual

stimulus flickering or pattern-reversing at a specific temporal

frequency. SSVEP signals are entrained at the fundamental

and harmonic frequencies of the visual stimulus and are

well-known to be mainly observed in the occipital region of

the brain over a wide range of 1–90Hz (Herrmann, 2001;

Choi et al., 2019a). SSVEP-based BCIs interpret the user’s

intention by detecting the visual stimulus that the user gazed

at based on these characteristics and have various advantages

over the other paradigms, such as high information transfer

rate (ITR), excellent stability, and little training requirement

(Zhang et al., 2020; Kim and Im, 2021). Thanks to these

advantages, SSVEP-based BCIs have been successfully applied

to various applications including mental speller (Nakanishi

et al., 2018), assistive technology for patients (Perera et al.,

2016), online home appliance control (Kim et al., 2019), and

hands-free controllers for virtual reality (VR) (Armengol-Urpi

and Sarma, 2018) or augmented reality (AR) (Arpaia et al.,

2021).

In general, two types of visual stimuli have been employed

to evoke SSVEPs: (1) flickering stimulus (FS) and (2) pattern-

reversal stimulus (PRS) (Bieger et al., 2010; Zhu et al., 2010). FS

is the visual stimulus that modulates the color or luminance of

the stimulus at a specific frequency. Flickering single graphics in

the form of squares or circles rendered on an LCDmonitor is the

representative FS used to elicit the SSVEPs. PRS evokes SSVEP

responses by alternating the patterns of the visual stimuli (e.g.,

checkerboard or line boxes) at a constant frequency. Based on

these visual stimuli, a number of studies have been conducted

to improve the performance of SSVEP-based BCIs, examples

of which include optimization of stimulus parameters such

as spatial frequency of PRS, stimulation frequencies, colors,

and waveform of FS (Bieger et al., 2010; Teng et al., 2011;

Duszyk et al., 2014; Jukiewicz and Cysewska-Sobusiak, 2016;

Chen et al., 2019). Recently, Choi et al. (2019b) and Park

et al. (2019) proposed a novel type of visual stimulus called

grow/shrink stimulus (GSS) to improve the performance of

SSVEP-based BCI in AR and VR environments, respectively.

GSS was implemented by incorporating a periodic motion into

FS to concurrently evoke SSVEP and steady-state motion visual

evoked potential (SSMVEP), inspired by previous studies that

reported that the periodic motion-based visual stimuli could

elicit SSMVEP (Xie et al., 2012; Yan et al., 2017). GSS has

shown a higher BCI performance compared to the conventional

PRS or FS in both VR and AR environments. However, no

study has been conducted on the performance of GSS-like

visual stimuli for SSVEP-based BCI when the LCD monitor

is used as a rendering device. Furthermore, the effect of the

motion parameters (i.e., the waveform of the temporal motion

dynamics) on the BCI performances has not been investigated.

Indeed, the investigation of the performance of various GSS-

like visual stimuli with the LCD monitor environment is

important because most SSVEP-based BCI studies employ the
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LCD monitor to present the visual stimuli (Ge et al., 2019;

Chen et al., 2021; Xu et al., 2021). In addition, to the best of

our knowledge, hybrid visual stimuli that consolidate PRS with

periodic motions have never been proposed in previous studies.

In this study, we proposed novel hybrid visual stimuli that

consolidate the conventional PRS with periodic motions and

further investigated the effect of waveforms of the periodic

motions for hybrid visual stimuli based on either FS or

PRS on the performance of SSVEP-based BCIs. As for the

periodic motions, the stimulus size was changed according

to four different waveforms: none (no change in the size),

square (changing size in a binary manner), triangular (linearly

increasing and decreasing size), and sine (changing size with

a sinusoidal waveform), resulting in a total of eight different

hybrid visual stimuli (i.e., FS and PRS each with four periodic

motions). We evaluated two crucial factors for the practical

use of SSVEP-based BCIs: (1) BCI performances and (2) visual

fatigue, for each visual stimulus, with 20 healthy participants. A

filter bank canonical correlation analysis (FBCCA) algorithm,

which is a state-of-the-art training-free algorithm for SSVEP-

based BCIs was employed to evaluate the performances

of SSVEP-based BCIs in terms of classification accuracy

and information transfer rate (ITR). Moreover, an extended

version of FBCCA, named subharmonic-FBCCA (sFBCCA) was

developed for the SSVEP-based BCIs with PRS-based hybrid

visual stimuli.

Methods

Participants

A total of 20 healthy adults (10 males, aged 23.7 ± 3.5

years) with normal or corrected-to-normal vision participated

in the experiments. None of the reported any serious history

of neurological, psychiatric, or other severe diseases that could

otherwise influence the experimental results. All participants

were informed of the detailed experimental procedure and

provided written consent before the experiment. This study and

the experimental paradigm were approved by the Institutional

Review Board Committee of Hanyang University, Republic

of Korea (IRB No. HYU-202006-004-03) according to the

Declaration of Helsinki.

Visual stimuli

The visual stimuli were developed with the Unity 3D engine

(Unity Technologies ApS, San Francisco, CA, USA). Based on

previous GSS studies (Choi et al., 2019b; Park et al., 2019),

all stimuli were designed in a star shape, with a base size of

7 cm (5.7◦) to increase the visibility of periodic motions. The

background color was set to gray. Both FS and PRS changed the

color or reversed the patterns with the periodic square waveform

according to the results of previous studies that reported

that square-wave FS exhibited significantly higher classification

accuracy than FS of other waveforms (Teng et al., 2011; Chen

et al., 2019). The periodic motions were implemented by varying

the size of visual stimuli according to four different types of

waveforms: none (no change in the size), square (changing

size in a binary manner), triangular (linearly increasing and

decreasing size), and sine (changing size with a sinusoidal

waveform) waveforms with amodulation ratio of 33% compared

to the base size (i.e., the radius of each stimulus was changed

from 0.67 to 1.33 when the radius of the base stimulus was

assumed to be one). The conventional visual stimuli of FS and

PRS were combined with four periodic motions, resulting in

eight hybrid visual stimuli. Hereinafter, none, square, triangular,

and sine waveforms are referred to as None, Square, Triangular,

and Sine, respectively, and each hybrid visual stimuli are referred

to as FS-None, FS-Square, FS-Triangular, FS-Sine, PRS-None,

PRS-Square, PRS-Triangular, and PRS-Sine. Note that FS-None

and PRS-None were the same as the conventional FS and

PRS with the base size. Figure 1 illustrates the examples of the

hybrid visual stimuli when the stimulation frequency was set

to 6Hz. Blue circles indicate the stimulus size presented to the

participants considering the refresh rate of the LCD monitor

(= 60Hz). It is worthwhile noting that the most important

difference between FS and PRS is that FS elicits SSVEP responses

at the number of full cycles (i.e., two reversals) per second,

whereas PRS evokes SSVEP responses at the number of reversals

per second (Zhu et al., 2010). Therefore, the stimulation

frequencies of periodic motions for PRS were set to be half of

those for FS, which were considered as subharmonics of the

stimulation frequencies in the further analysis.

Experimental paradigm

The participants sat 70 cm away from a 27-inch LCD

monitor with a resolution of 1920 x 1080 pixels and the

60Hz refresh rate. The experiment consisted of eight sessions

corresponding to each hybrid visual stimuli and the order of

the sessions was randomized for each participant. Each session

was composed of 20 trials (5 trials × 4 stimuli), each of which

consisted of the visual cue of 3 s and the stimulation time of

5 s. The red bar was presented under the target stimulus during

visual cue period in a randomized order. The timing sequence of

a single trial is shown in Figure 2. The stimulation frequencies

of four stimuli were determined as 6, 6.67, 7.5, and 10Hz

considering the refresh rate of the LCD monitor. In each trial,

the participants were instructed to focus their attention on the

target stimulus among four simultaneously flickering stimuli

without eye blinks and body movements during the stimulation

time. At the end of each session, the participants evaluated the

Frontiers inNeuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2022.997068
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Kwon et al. 10.3389/fninf.2022.997068

FIGURE 1

Examples of (A) FS-based hybrid visual stimuli and (B) PRS-based hybrid visual stimuli when the stimulation frequency was 6Hz. Blue circles

indicate the stimulus size presented to participants considering the refresh rate of the LCD monitor.

FIGURE 2

The timing sequence of a single trial. Each trial consisted of the

visual cue of 3 s and the stimulation time of 5 s.

visual fatigue score for each hybrid visual stimulus in the range

of 1–10 (1, low fatigue; 10, high fatigue).

Data recording and pre-processing

EEG data were recorded from eight scalp electrodes (O1,

Oz, O2, PO7, PO3, POz, PO4, and PO8) using a commercial

EEG system (BioSemi Active Two; Biosemi, Amsterdam, The

Netherlands) at a sampling rate of 2,048Hz. A CMS active

electrode and a DRL passive electrode were used to form a

feedback loop for the amplifier reference (Park et al., 2019).

MATLAB 2020b (Mathworks; Natick, MA) was used to analyze

the EEG data, and the functions implemented in the BBCI

toolbox (https://github.com/bbci/bbci_public) were employed.

The raw EEG data were down-sampled to 256Hz to reduce the

computational cost and then bandpass-filtered using a sixth-

order zero-phase Butterworth filter with cutoff frequencies of 2

and 54Hz. Considering a latency delay in the visual pathway, the

EEG data were segmented into epochs from 0.135 to 0.135+w s

with respect to the task onset time (0 s), where w indicates the

window size used for SSVEP detection (Rabiul Islam et al., 2017).

Classification methods

Canonical correlation analysis

CCA is a multivariate statistical method used to measure

the underlying correlation between two sets of multidimensional

variables, X ∈ Rdx×Ns and Y ∈ Rdy×Ns where, Ns is the number

of sample points and dx and dy indicate the dimension of X

and Y , respectively (Nakanishi et al., 2015). Considering their

linear combinations x = XTWX and y = YTWY , CCA

finds a pair of weight vectors WX ∈ Rdx×1 and WY ∈ Rdy×1

that maximize Pearson’s correlation coefficients between x and y

using the following equation:

max
Wx ,Wy

ρ
(

x, y
)

=

E
[

WT
XXY

TWY

]

√

E
[

WT
XXX

TWX

]

E
[

WT
YYY

TWY

]

. (1)

Here, T denotes the transpose operation. The maximum

correlation coefficient with respect to WX and WY is called the

“CCA coefficient.”

For SSVEP detection, the CCA coefficients, ρf , between

multichannel EEG signals, X ∈ RNc×Ns , and the reference

signals for each stimulus frequency, Yf ∈ R2Nh×Ns , were

evaluated and the frequency with the largest CCA coefficient was

classified as the target frequency, as follows:

ftarget = max
f

ρf , f = f1, f2, . . . , fK . (2)
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Here, K is the number of stimulus frequencies presented to

the participants.

The reference signal for each stimulus frequency (Yf ) was

set as

Yf =

















sin
(

2π fn
)

cos
(

2π fn
)

...

sin
(

2πNhfn
)

cos
(

2πNhfn
)

















, n =
1

fs
,
2

fs
, . . . ,

Ns

fs
, (3)

where, f is the stimulus frequency. In this study, Nc and fs

denote the number of channels and sampling frequency, which

were set to 8 and 256, respectively. Nh represents the number

of harmonics, which was set to 5 according to previous studies

(Chen et al., 2015).

Filter bank CCA

FBCCA combines CCA with filter bank analysis to extract

the discriminative information in the harmonic components

(Chen et al., 2015). The filter bank is applied to decompose

EEG data into multiple sub-band data, and CCA coefficients

are evaluated for each sub-band. The weighted sums of the

squared sub-band CCA coefficients for each stimulus frequency

are calculated using the following equations:

ρf =

Nm
∑

m=1

w (m) ·

(

ρmf

)2
, (4)

w (m) = m−a
+ b , (5)

where, Nm is the number of subbands, m is the index of the

subbands, and ρm
f

denotes the CCA coefficient of sub-band m.

The target frequency is determined in the same manner as in

CCA. According to previous studies (Chen et al., 2015; Zhao

et al., 2020), the following parameters were set: a = 1.25,

b = 0.25, and Nm = 5. The filter bank for five sub-bands was

designed with lower and upper cutoff frequencies of 4–52, 8–

52, 12–52, 16–52, and 20–52Hz, respectively (Chen et al., 2015).

In this study, FBCCA was employed to identify SSVEPs because

it is generally regarded as the best available algorithm, yielding

the highest classification accuracy without the need for training

sessions (Zerafa et al., 2018; Liu et al., 2020).

Subharmonic FBCCA (sFBCCA)

In this study, we proposed an extended version of

FBCCA, named subharmonic-FBCCA (sFBCCA), to utilize the

information in the subharmonic component, elicited by periodic

motions for PRS. In sFBCCA, the reference signal was expanded

to include the subharmonic component as follows:

Yf =
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(
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, n =
1

fs
,
2

fs
, . . . ,

Ns

fs
. (6)

In addition, the equation for the weighted sums of the

squared sub-band CCA coefficients is extended as the

following equations:

ρf =

Nm
∑

m=1

w (m) ·

(

ρmf

)2
+ wsub ·

(

ρfsub

)2
, (7)

w (m) = m−a
+ b, (8)

wsub = msub
−a

+ b, (9)

where, msub represents the index of the subharmonic, set to

0.5, in this study. The bandpass filter for the subharmonic

component was designed with lower and upper cutoff

frequencies of 1–52Hz. sFBCCA was employed to classify

SSVEPs for hybrid visual stimuli of PRS-Square, PRS-Triangular,

and PRS-Sine.

Information transfer rate

In addition to the classification accuracy, ITR (bits per

minute) has been widely employed as a metric to assess the

performance of the BCI system (Wolpaw et al., 2002). The ITR

was evaluated using the following equation:

ITR =
60

T

{

logp2N + plogp2p+
(

1− p
)

logp2

(

1− p

N − 1

)}

,

(10)

Where, T denotes the window size (in seconds), N indicates

the number of classes, and p represents the classification

accuracy. In the present study, the N value was 4.

Statistical analysis

Statistical analyses were also performed using MATLAB

2020b (MathWorks; Natick, MA, USA). The non-parametric

method was employed because the normality criterion was not

satisfied owing to the small sample size. Friedman test was

conducted to verify if there were significant differences among

the BCI performances. Wilcoxon signed-rank test with the false

discovery rates (FDRs) correction for multiple comparisons was

performed for post-hoc analyses.
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FIGURE 3

SSVEP amplitudes of the averaged EEG signals across all the participants at the Oz electrode for FS-based hybrid visual stimuli. Red circles

indicate the stimulation frequencies and their harmonics, and black circles represent the subharmonic frequencies.

Results

FS-based hybrid visual stimuli

Figure 3 illustrates the grand mean amplitude spectra

of SSVEPs averaged across all participants with respect to

waveforms of periodic motions. The amplitudes of SSVEPs

were obtained from the EEG signals of 5-s long recorded at

the Oz electrode. Here, the first five harmonic components

of the stimulation frequencies, which were used for the

classification, and the subharmonic components were presented

in the figure. The red circles indicate the fundamentals

and harmonics of stimulation frequencies, and the black

circles represent the subharmonics. For FS-based hybrid

visual stimuli, clear SSVEP peaks were mainly evoked at the

fundamental and second harmonic frequencies. No SSVEP

peaks were observed at the subharmonic frequency. The grand

average amplitudes of each SSVEP component are listed in

Supplementary Table 1.

The grandmean amplitudes of SSVEP components averaged

over all stimulation frequencies across all the participants

are illustrated in Figure 4 as a function of waveforms of

periodic motions, where the error bars represent the standard

errors. The statistical analyses were performed to compare

the differences in the amplitude of SSVEP components at the

subharmonic, fundamental, and second harmonic frequencies

among FS-based hybrid visual stimuli. Four SSVEP amplitudes

at each harmonic frequency were calculated from the EEG

signals averaged over each stimulation frequency recorded

at the Oz electrode for each participant. Consequently, a

total of 80 SSVEP amplitudes (4 stimulation frequencies ×

20 participants) were statistically compared. The Friedman

test indicated significant differences in the amplitudes at

fundamental and second harmonic frequencies (subharmonic

frequency: χ2 = 0.05, p = 0.998, fundamental frequency: χ2

= 28.26, p < 0.001, second harmonic frequency: χ2 = 32.81,

p < 0.001). At the fundamental frequency, SSVEP amplitude

elicited by FS-Sine and FS-Triangular was significantly higher

than that elicited by FS-None and FS-Square (FDRs-corrected

p < 0.05 between FS-Square vs FS-Triangular, and FDRs-

corrected p < 0.001 for the others, Wilcoxon signed-rank

test). For the second harmonic frequency, SSVEP amplitude

evoked by FS-Sine was significantly higher than that evoked

by FS with other waveforms (p < 0.005 for FS-None and p

< 0.001 for the others, Wilcoxon signed-rank test with FDRs

correction). Additionally, FS-Square elicited significantly lower
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FIGURE 4

Grand mean SSVEP amplitudes for FS-based hybrid visual stimuli averaged across all the participants at (A) the subharmonic frequency, (B) the

fundamental frequency, and (C) the second harmonic frequency. Error bars represent the standard errors. Here, the asterisks of *, ***, and ****

represent FDRs-corrected p < 0.05, p < 0.005, and p < 0.001, respectively (Wilcoxon signed-rank test).

FIGURE 5

The average performance of FS-based hybrid visual stimuli in terms of (A) classification accuracies and (B) ITRs as a function of waveforms with

di�erent window sizes. Error bars represent the standard errors. Here, •p < 0.1 and *p < 0.05 are the FDRs-corrected p-values from Wilcoxon

signed-rank test.

SSVEP amplitude than that elicited by the other waveforms

(FDRs-corrected p < 0.005 for FS-None and FS-Triangular,

and FDRs-corrected p < 0.001 for FS-Sine, Wilcoxon signed-

rank test).

The average classification accuracies and ITRs for FS-based

hybrid visual stimuli with respect to different window sizes

are depicted in Figures 5A,B, respectively. The Friedman test

indicated statistically significant differences for all window sizes

except for 1.5 and 3.5 s (1 s, χ2 = 8.10, p < 0.5; 1.5 s, χ2 = 6.20,

p = 0.102; 2 s, χ2 = 9.50, p < 0.05; 2.5 s, χ2 = 11.38, p < 0.001;

3 s, χ2 = 9.88, p < 0.05; 3.5 s, χ2 = 7.47, p = 0.058, identical to

both the classification accuracy and ITR). TheWilcoxon signed-

rank test with FDRs correction showed statistically significant

differences in both classification accuracy and ITR between FS-

None and FS-Sine for window sizes of 1, 2, and 2.5 s (p < 0.5

for both classification accuracies and ITRs). Additionally, the

performances of FS-Sine were significantly higher than those

of FS-Square for the window size of 2 s (p < 0.5, Wilcoxon

signed-rank test with FDRs correction). As illustrated in the

figure, the performances of SSVEP-based BCI could be improved

by incorporating triangular- and sine-wave periodic motions

into the conventional FS for all window sizes. For FS, FS-Sine

exhibited the highest average performances for every window

size except for 3 s, especially for short window sizes.

Figure 6A illustrates the fatigue scores of FS-based hybrid

stimuli as a function of periodic motion waveforms. The gray

bars represent the interquartile ranges from the first quartile to

the third quartile and white circles indicate the median values.

The averaged fatigue scores were 4.8 ± 1.82, 4.6 ± 1.90, 5.4 ±

2.01, and 5.3± 2.05 for FS-None, FS-Square, FS-Triangular, and

FS-Sine, respectively. A statistically significant difference was not

observed in the Friedman test (χ2 = 2.55, p= 0.467).
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FIGURE 6

Fatigue scores for (A) FS-based hybrid visual stimuli and (B) PRS-based hybrid visual stimuli as a function of waveforms. Gray bars represent the

interquartile range from 25 to 75% and white circles indicate median values.

PRS-based hybrid visual stimuli

The grand mean amplitude spectra of SSVEPs averaged

across all participants are illustrated in Figure 7 as a function of

waveforms of PRS-based hybrid visual stimuli. The red circles

indicate the fundamental and harmonic frequencies, and the

black circles represent the subharmonic frequencies. Unlike the

FS-based hybrid visual stimuli, clear SSVEP peaks were observed

at the subharmonic frequency for PRS-Square, PRS-Triangular,

and PRS-Sine, as expected. The grand mean amplitudes of each

SSVEP component are listed in Supplementary Table 2.

The grand mean amplitudes of SSVEP components at the

subharmonic, fundamental, and second harmonic frequencies

averaged over all stimulation frequencies across all the

participants are illustrated in Figure 8 with respect to the

periodic motion waveforms incorporated with PRS. The error

bars represent the standard errors. The Friedman test indicated

significant differences in amplitudes at all harmonic frequencies

(χ2 = 110.53, p < 0.001; χ2 = 10.69, p < 0.05; χ2

= 32.81, p < 0.05). PRS-None evoked the lowest SSVEP

amplitudes at the subharmonic frequency (p < 0.001 for PRS-

Square, PRS-Triangular, and PRS-Sine, Wilcoxon signed-rank

test with FDRs correction). In addition, the SSVEP amplitude

induced by PRS-Triangular was significantly lower than that

induced by PRS-Square and Sine (FDRs-corrected p < 0.001,

Wilcoxon signed-rank test). For the fundamental frequency,

PRS-Triangular induced significantly lower SSVEP amplitudes

compared to other PRS-based hybrid visual stimuli and even

conventional PRS (p < 0.05, Wilcoxon signed-rank test with

FDRs correction). The SSVEP amplitudes elicited by PRS-None

and PRS-Square were significantly higher than those elicited by

PRS-Triangular and PRS-Sine at the second harmonic frequency

(p< 0.001 between PRS-None and PRS-Triangular, and p< 0.05

for the others, Wilcoxon signed-rank test, FDRs-corrected).

Figures 9A,B depict the average classification accuracies and

ITRs, respectively, for PRS-based hybrid visual stimuli with

respect to different window sizes. Here, all the performances

of SSVEP-based BCIs were evaluated using FBCCA for PRS-

None and sFBCCA for PRS-Square, PRS-Triangular, and PRS-

Sine cases. The Friedman test indicated statistically significant

differences for window sizes of 1.5 and 2 s (1 s, χ2 = 5.59,

p < 0.133; 1.5 s, χ2 = 9.30, p < 0.05; 2 s, χ2 = 8.06, p

< 0.05; 2.5 s, χ2 = 6.38, p < 0.1; 3 s, χ2 = 7.12, p < 0.1;

3.5 s, χ2 = 4.63, p = 0.201, identical to both the classification

accuracy and ITR). For all window sizes, PRS-Square showed

the highest performance in terms of both classification accuracy

and ITR, although statistically significant differences were

not observed.

To investigate the effect of sFBCCA, the SSVEP-based BCI

performances for PRS-Square were evaluated using FBCCA and

sFBCCA with respect to different window sizes. In Figure 10,

the white and gray bars indicate the averaged classification

accuracies and ITRs evaluated using FBCCA and sFBCCA,

respectively. The error bars represent standard errors. The

SSVEP-based BCI performances evaluated using sFBCCA were

significantly improved compared to those evaluated using

FBCCA for every window size except 3.5 s (Wilcoxon signed-

rank test). The result demonstrated that the proposed sFBCCA

could significantly improve the performance of SSVEP-based

BCIs when PRS-based hybrid visual stimuli are employed.
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FIGURE 7

SSVEP amplitudes of averaged EEG signals over all participants for PRS-based hybrid visual stimuli at the Oz electrode. Red circles indicate the

stimulation frequencies and their harmonics, and black circles represent the subharmonic frequencies.

FIGURE 8

Grand mean SSVEP amplitudes for PRS-based hybrid visual stimuli averaged across all the participants at (A) the subharmonic frequency, (B) the

fundamental frequency, and (C) the second harmonic frequency. Error bars represent the standard errors. Asterisks of * and **** represent

FDRs-corrected p < 0.05 and p < 0.001, respectively (Wilcoxon signed-rank test).

The fatigue scores for PRS-based hybrid visual stimuli

are illustrated in Figure 6B as a function of periodic motion

waveforms. The gray bars represent the interquartile ranges

from 25 to 75% and white circles indicate the median values.

For PRS-None, PRS-Square, PRS-Triangular, and PRS-Sine, the

averaged fatigue scores were reported as 3.85± 1.63, 4.05± 1.28,

4.55± 1.43, and 4.8± 1.51, respectively.

Comparison between FS-sine and
PRS-square

The average classification accuracies and ITRs for FS-Sine

and PRS-Square, which exhibited the highest performances

among FS- and PRS-based hybrid visual stimuli, are shown

in Figures 11A,B, respectively. The differences in the average
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FIGURE 9

The average performance of PRS-based hybrid visual stimuli in terms of (A) classification accuracies and (B) ITRs as a function of waveforms with

di�erent window sizes. Error bars represent the standard errors. Here, •p < 0.1 is the FDRs-corrected p-value from Wilcoxon signed-rank test.

FIGURE 10

(A) Classification accuracies and (B) ITRs of SSVEP-based BCI for PRS-Square evaluated using FBCCA and sFBCCA with di�erent window sizes.

Error bars represent the standard errors. Here, *, ***, and **** represent p < 0.05, p < 0.005, and p < 0.001, respectively (Wilcoxon signed-rank

test).

classification accuracies were reported to be 5.5, 2.5, 0.75, 0.25,

0.00, and 0.75%p for window sizes of 1, 1.5, 2, 2.5, 3, and 3.5 s,

respectively. As for the ITRs, the differences were 12.93, 5.35,

1.60, 0.56, 0.00, 0.94 bits/min for the 1-, 1.5-, 2-, 2.5-, 3-, and

3.5-s window sizes. Statistically significant differences were not

observed (Wilcoxon signed-rank test).

The violin plot in Figure 12 illustrates the fatigue scores

for FS-Sine and PRS-Square. The distributions of fatigue scores

from the first quartile to the third quartile are presented as gray

bars and the median values are indicated as white circles. The

average fatigue scores were reported to be 5.3 ± 2.05 and 4.05

± 1.28 for FS-Sine and PRS-Square, respectively. A statistically

significant difference in the fatigue score was observed between

the FS-Sine and PRS-Square conditions (p < 0.005, Wilcoxon

signed-rank test), implying that PRS-Square is more visually

comfortable to the users than FS-Sine.

Discussion

In this study, we proposed novel types of hybrid visual

stimuli that incorporate periodic motions into conventional

SSVEP visual stimuli. Periodic motions were realized by

changing the size of the visual stimulus according to four

different types of waveforms. We then investigated the effect

of periodic motion waveforms for the hybrid visual stimuli on

the performances of SSVP-based BCIs, for the first time. Our

results demonstrated that the conventional SSVEP visual stimuli

combined with appropriate periodic motions could increase the

SSVEP amplitudes significantly, resulting in the enhancement

of SSVEP-based BCI performances. For FS, the hybrid

stimulus of FS-Sine elicited the highest SSVEP amplitudes at

the fundamental and second harmonic frequencies, thereby

resulting in the highest average performances in terms of
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FIGURE 11

(A) Classification accuracies and (B) ITRs for PRS-Square and FS-Sine with di�erent window sizes. Error bars represent the standard errors.

FIGURE 12

Average fatigue scores for FS-Sine and PRS-Square. Gray bars

represent the interquartile range from 25 to 75% and white

circles indicate the median values. Here, the asterisk of ***

represents p < 0.005 (Wilcoxon signed-rank test).

classification accuracies and ITRs for every window size except

for 3 s. As for PRS, PRS-Square evoked the highest SSVEP

components, thereby exhibiting the highest performances for

all window sizes. No statistically significant difference in the

performances between FS-Sine and PRS-Square was observed;

however, the visual fatigue score of PRS-Square was significantly

lower than that of FS-Sine. Visual fatigue is one of the main

obstacles to implementing practical SSVEP-based BCIs because

visual fatigue generally decreases SSVEP amplitudes, yielding

degradation of overall SSVEP BCI performances (Makri et al.,

2015; Ajami et al., 2018). Therefore, our results suggest that

the proposed PRS-Square is the most appropriate stimulus

that could improve the SSVEP-based BCI performance without

inducing high visual fatigue. It is believed that the use of PRS-

Square stimuli has a great potential to improve the practicality

of SSVEP-based BCIs, particularly for long-term use.

We hypothesized that the performances of SSVEP-based

BCIs with any kind of hybrid visual stimuli could outperform

those with conventional SSVEP visual stimuli because the hybrid

visual stimuli could induce both SSVEP and SSMVEP. However,

unlike our expectation, FS-Square and PRS-Triangular exhibited

lower average classification accuracies and ITRs than the

conventional visual stimuli for some window sizes. In addition,

the periodic motion of the same waveform showed different

effects on FS and PRS. For example, contrary to FS-Square,

PRS-Square achieved the highest classification accuracies and

ITRs for every window size, suggesting that it is important to

combine conventional visual stimuli with periodic motions with

appropriate waveforms for implementing high-performance

SSVEP-based BCIs. We believe that these results might originate

from different mechanisms of FS and PRS to evoke SSVEP.

However, imaging modalities with higher spatial resolution

such as fMRI would be necessary to further investigate the

mechanisms of FS and PRS to evoke SSVEP. On the other hand,

the luminance or pattern of FS and PRS was changed according

to the square waveform because previous studies (Teng et al.,

2011; Chen et al., 2019) demonstrated that square-wave FS

achieved significantly higher classification performances than

other waveform stimuli. However, as there is a possibility

that the hybrid visual stimuli combining FS or PRS of

other waveforms with periodic motions might improve the

performance of SSVEP-based BCI, further investigations would

be necessary for the future.

In contrast to the FS-based hybrid visual stimuli, the PRS-

based hybrid visual stimuli were implemented by incorporating

periodic motions whose stimulation frequency was half of

PRS frequency. Although not mentioned in this manuscript,

we also tested PRS-based hybrid visual stimuli with periodic

motions of which the stimulation frequency was the same as
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FIGURE 13

Average classification accuracies for PRS-Square as a function of

msub in sFBCCA with di�erent window sizes.

that of PRS in our preliminary tests. For PRS with periodic

motions of twice the frequency, most participants complained

of severe visual fatigue and discomfort due to the rapid change

in the stimulus size although almost the same classification

accuracy as the PRS-based hybrid visual stimuli employed

in this study was reported. As a result, the stimulation

frequency of periodic motions was determined as half of PRS

frequency. Since the use of the reduced stimulation frequency

for periodic motions evoked subharmonic component, we

extended the conventional FBCCA and proposed sFBCCA to

fully exploit useful information contained in SSVEP evoked

by the proposed PRS-based hybrid visual stimuli. The use of

sFBCCA significantly enhanced the classification performances,

compared to the results of FBCCA applied to PRS-Square, as

shown in Figure 10. In the sFBCCA, the index of subharmonic,

msub, was set to 0.5, which showed the highest classification

accuracies for all window sizes except 1 s, as shown in Figure 13.

However, there is still a possibility of further improvement

of SSVEP-based BCI performances by optimizing sFBCCA

parameters. Additionally, PRS-based hybrid visual stimulus has

a promising possibility of increasing the number of commands

limited by the refresh rate of the LCD monitor (Li et al.,

2021), thanks to its characteristics of dual main stimulation

frequencies induced by SSVEP and SSMVEP. This would be one

of the promising topics we would like to further investigate in

our future studies for implementing high-performance SSVEP-

based BCIs.
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