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Viral proteins are known to be methylated by host protein
arginine methyltransferases (PRMTs) necessary for the viral life
cycle, but it remains unknown whether severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) proteins are methyl-
ated. Herein, we show that PRMT1 methylates SARS-CoV-2
nucleocapsid (N) protein at residues R95 and R177 within
RGG/RG motifs, preferred PRMT target sequences. We
confirmed arginine methylation of N protein by immunoblot-
ting viral proteins extracted from SARS-CoV-2 virions isolated
from cell culture. Type I PRMT inhibitor (MS023) or substi-
tution of R95 or R177 with lysine inhibited interaction of N
protein with the 5’-UTR of SARS-CoV-2 genomic RNA, a
property required for viral packaging. We also defined the N
protein interactome in HEK293 cells, which identified PRMT1
and many of its RGG/RG substrates, including the known
interacting protein G3BP1 as well as other components of
stress granules (SGs), which are part of the host antiviral
response. Methylation of R95 regulated the ability of N protein
to suppress the formation of SGs, as R95K substitution or
MS023 treatment blocked N-mediated suppression of SGs.
Also, the coexpression of methylarginine reader Tudor
domain-containing protein 3 quenched N protein–mediated
suppression of SGs in a dose-dependent manner. Finally, pre-
treatment of VeroE6 cells with MS023 significantly reduced
SARS-CoV-2 replication. Because type I PRMT inhibitors are
already undergoing clinical trials for cancer treatment, inhib-
iting arginine methylation to target the later stages of the viral
life cycle such as viral genome packaging and assembly of vi-
rions may represent an additional therapeutic application of
these drugs.

The COVID-19 pandemic is caused by severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), a virus that
belongs to the family Coronaviridae of genus Betacoronavirus
and has a positive-sense strand RNA genome of �30 kb (1). It
contains two large overlapping ORFs (ORF1a and ORF1b) and
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encodes four structural proteins, namely spike (S), envelope,
membrane, and nucleocapsid (N) proteins as well as nine
accessory proteins (1). ORF1a and ORF1b are further pro-
cessed to generate 16 nonstructural proteins (Nsp1–16).
Among the viral proteins, N protein is the most abundant in
the virions and is expressed at the highest levels in infected
cells (2). Thus, its abundance, essential roles during infection,
and immunogenic nature make the SARS-CoV-2 N protein a
valuable target for developing new strategies to combat the
COVID-19 pandemic (3–5).

N protein regulates different steps of the coronavirus life
cycle (2). The primary role of betacoronavirus N protein is the
packaging of the viral genome into helical ribonucleoprotein
complexes (6). It is also involved in RNA synthesis with
components of the replicase at early stages of infection (7, 8).
Betacoronavirus N protein has two conserved and indepen-
dently folded structural domains, called the N-terminal RNA-
binding domain (NTD) and C-terminal dimerization domain
(CTD) (4, 9, 10), separated by flexible intrinsically disordered
regions at the N terminus, central serine/arginine-rich (SR)
linker region, and C-terminal tail, respectively. The crystal
structure of the SARS-CoV-2 NTD RNA-binding domain
depicts a U-shaped β-platform containing five short β-strands
and an extended hairpin, forming a palm and finger-like
structure with a highly positively charged cleft (4, 11).

After viral infection, host cells generate stress granules (SGs)
as an antiviral response to inhibit protein synthesis and induce
innate immune signaling (12, 13). SARS-CoV N protein plays
an important role in host–virus interaction and localizes to
cytoplasmic SGs (14). The SG nucleating factor G3BP1 (15, 16)
and other SG components were identified in the SARS-CoV-2
N protein interactome (5, 17), suggesting SARS-CoV-2 like
SARS-CoV regulates SGs mainly through N protein. The
SARS-CoV-2 N protein is able to form condensates with RNA
in vitro (18–25), in the cytoplasm of cells (20, 24) and partially
colocalizes within arsenite-induced SGs (26). Several studies
have shown that N protein sequesters G3BP1 and disassembles
SGs (21, 26–28), likely as a means to suppress the host im-
mune response to favor virus replication. Recent studies show
that intrinsically disordered region 1 and NTD regulate N
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PRMT1 methylates SARS-CoV-2 N protein
protein condensates affecting nucleic acid annealing and
potentially implicated in viral packaging and assembly (20, 21,
24). The SR linker region is phosphorylated by SRSF protein
kinase (SRPK) (29), glycogen synthase kinase 3 (GSK-3) (30),
and cyclin-dependent kinase 1–GSK3 (18), influencing N
protein condensates (18, 21). Besides phosphorylation, post-
translational modifications that regulate N function are not
known.

We identify that SARS-CoV-2 N protein contains five un-
defined and uncharacterized RGG/RG motifs. RGG/RG motifs
are prevalent in RNA binding proteins (RBPs) and play key
roles in mediating protein–protein and protein–RNA in-
teractions (31, 32). The arginine residues located within the
RGG/RG motifs are the preferred sites of methylation by
protein arginine methyltransferases (PRMTs) (33). In mam-
mals, there are nine PRMTs (PRMT1–9) that are classified
into three types based on the methyl marks they produce: NG-
monomethylarginine, asymmetric NG, NG-dimethylarginine,
and symmetric NG, N’G dimethylarginine (33). Methylarginines
are bound by Tudor domains that are methylarginine readers
(34). Arginine methylation regulates protein–protein in-
teractions and protein–nucleic acid interactions to influence
basic cellular processes, including transcription, RNA pro-
cessing including pre-mRNA splicing, mRNA export, and
mRNA translation, signaling transduction, and liquid–liquid
phase separation (35, 36). Unlike lysine demethylation, dedi-
cated arginine demethylases have not been identified (36).
Many specific small-molecule inhibitors of PRMTs have been
generated for cancer therapeutics (37–42), and a few have
entered clinical trials (for review, see (36)).

Arginine methylation is known to methylate host and viral
proteins necessary for viral replication. For example, the arginine
methylation of HIV Tat protein decreases its transactivation
function (43). The inhibition of PRMT5 prevents host hetero-
geneous nuclear ribonucleoprotein A1 (hnRNPA1) RGG/RG
motif methylation and inhibits HIV-1 and human T-cell lym-
photropic virus type-1 internal ribosome entry sites function
(44). Moreover, PRMT5 methylates hepatitis B virus core protein
within its C-terminal arginine-rich domain to regulate its cellular
localization (45). Arginine methylation of prototype foamy virus
Gag in its glycine–arginine–rich box by PRMT1 regulates its
nucleolar localization during replication (46).

In the present study, we report that PRMT1 methylates
SARS-CoV-2 N protein within its RGG/RG motifs to regulate
the RNA-binding activity of the N protein toward its 5’-UTR
genomic RNA. Moreover, arginine methylation modulates the
role of N protein to inhibit SG formation. Our findings show
for the first time that inhibition of type I PRMTs decreased
SARS-CoV N methylation within virions and that arginine
methylation is required for viral production.

Results

SARS-CoV-2 N protein is methylated by PRMT1

We noted that the SARS-CoV-2 N protein harbors two
RGG (Fig. 1A) and three RG motifs like SARS-CoV, but unlike
Middle East respiratory syndrome coronavirus (MERS-CoV).
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As RGG/RG motifs are preferred sites of PRMT1, PRMT5,
and PRMT6 (31), we tested whether they could be methylated.
We first expressed and purified glutathione S-transferase
(GST)-fusion proteins of the SARS-CoV-2 N protein frag-
ments (GST-N 1–150, GST-N 150–262, and GST-N 263–419,
Fig. 1A) and performed in vitro arginine methylation assays.
Both the N-terminal fragment (amino acid residues 1–150)
and the central region (amino acid residues 150–262) were
arginine-methylated by PRMT1 (Fig. 1B). By contrast, the N
protein fragments were not methylated by PRMT5 or PRMT6
(Fig. 1, C and D). We then substituted arginines in the RGG/
RG motifs to lysines to identify the methylated sites and
maintain the charge. Mutation of arginine 68 (R68K) in the N-
terminal fragment had no significant effect on arginine
methylation, whereas mutation of arginine 95 (R95K)
completely abolished PRMT1 methylation (Fig. 1E), suggesting
that R95 was the methylated residue in the GST-N 1 to 150
fragment. Similarly, mutation analysis identified R177 as the
methylated residue in the central fragment (Fig. 1F). Taken
together, R95 and R177 within the RGG/RG motifs of the
SARS-CoV-2 N were methylated in vitro by PRMT1.

We then determined whether the SARS-CoV-2 N protein
was methylated in cells. HEK293 cells were transfected with a
plasmid expressing Flag-epitope N protein (Flag-N). The cells
were lysed, and the N protein was immunoprecipitated with
anti-Flag antibodies and its methylation detected by Western
blotting using the ASYM26 antibody, which specifically rec-
ognizes asymmetrically dimethylated arginine residues within
RGG/RG motifs. Importantly, the asymmetrical dimethylargi-
nine methylation of the Flag-N (N-me2) was significantly
reduced by treatment of the cells with the type I PRMT in-
hibitor MS023 (Fig. 1G) and transfection with siPRMT1
(Fig. 1H).

We next monitored patient data to identify modulation of
PRMT1 expression during SARS-CoV-2 infection. Single-cell
RNA sequencing analysis of nasopharyngeal and bronchial
samples from 19 clinically well-characterized SARS-CoV-2
patients and five healthy controls was performed (47).
Importantly, analysis of their data showed that PRMT1 was
significantly upregulated in infected patients (Fig. S1). These
data suggest PRMT1 may play a role during the SARS-CoV-2
life cycle.

The SARS-CoV-2 N interactome defines a complex of RGG/RG
proteins and PRMT1

We then performed MS analysis to identify SARS-CoV-2 N-
interacting proteins in the absence or presence of MS023.
Flag-tagged SARS-CoV-2 N protein was expressed in
HEK293 cells and a pull-down performed using anti-Flag af-
finity resin. Co-purified cellular proteins were subsequently
analyzed by affinity-purification (AP) LC-MS/MS. We identi-
fied 119 cellular proteins interacting with SARS-CoV-2 N
protein (peptide count >2, fold change >2 between Flag-N
and empty vector transfected, 0.1% false discovery rate,
Fig. 2, A and B, Supplementary Dataset 1). Importantly, we
identified several protein components of SGs such as G3BP1
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Figure 1. R95 and R177 within SARS-CoV-2 N RGG/RG motifs are methylated by PRMT1. A, schematic diagram of N protein with its N-terminal domain
(NTD) and C-terminal domain (CTD) and its NIDR and CIDR for N- and C-terminal intrinsic disordered regions and finally the linker region between NTD and
CTD known for its SR-rich sequences. Note R95GG and R177GG are conserved in SARS-CoV and SARS-CoV-2, but not MERS-CoV. B–D, recombinant GST–N
protein fragments were subjected to in vitro methylation assays with recombinant (B) GST–PRMT1, (C) PRMT5/MEP50, and (D) GST–PRMT6. Coomassie Blue
staining and fluorography images are presented. GST alone and GST–RGG were used as negative and positive controls, respectively. Blue arrowheads
indicate the migration of the GST–N protein fragments. The migration of GST–PRMT1, PRMT5, and GST–PRMT6 is shown on the right with a black arrow. The
molecular mass markers are shown in kDa on the left. E and F, GST–N protein fragments with arginine to lysine substitution were subjected to in vitro
methylation assays. Coomassie Blue staining and fluorography images are presented. G, HEK293 cells were transfected with control (-) or Flag-N (+)

PRMT1 methylates SARS-CoV-2 N protein
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Figure 2. N protein interactome with and without MS023: association with many RGG/RG proteins and PRMT1. HEK293 cells were transfected with
control or Flag-N, and the next day, Flag-N-transfected cells were subsequently treated with or without 1 μM MS023 for 24 h. Cell lysates were subjected to
immunoprecipitation using anti-Flag-M2 beads. The bound proteins were identified by MS (A–C). A, interactors were ranked by fold change of unique
peptides detected from Flag-N-transfected cells and control plasmid-transfected cells (Flag-N + 1)/(empty vector + 1). Proteins with FC >4 are highlighted in
red. Immunoprecipitated proteins known to be localized in stress granule are listed. B, correlation analysis between MS023 and DMSO-treated N protein
interactome is shown. Proteins with a significant fold change (>3 or <3−1) after MS023 treatment are highlighted in red. C, the pie chart represents the
number of RGG/RG motif containing proteins among N protein interactors. D, HEK293 cells were transfected with control (-) or Flag-N (+) and sub-
sequentially treated with or without (NT) 1 μM MS023 for 24 h. Cell lysates were immunoprecipitated with anti-Flag antibodies, and the associated proteins
separated by SDS-PAGE and immunoblotted with anti-PRMT1, anti-G3BP1, and anti-SARS-CoV-2 N antibodies. The asterisk denotes nonspecific recognition
of a molecular mass marker protein. DMSO, dimethylsulfoxide; PRMTs, protein arginine methyltransferases; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2.

PRMT1 methylates SARS-CoV-2 N protein
and G3BP2 (Ras-GTPase–activating protein SH3 domain-
binding protein 1 and 2) (48), and CAPRIN1 (Fig. 2A), in
line with previous published AP-MS/MS studies (5, 17).
Moreover, our MS analysis identified SRPK1 and GSK-3,
known to phosphorylate N protein and regulate its localiza-
tion to SGs (18, 21, 29). We also identified TRIM25 as a top hit
in the N protein interactome. As a K63-linked ubiquitin ligase,
TRIM25 mediates retinoic acid–inducible gene 1 ubiquitina-
tion and activates TLR/RLR signaling pathway in response to
RNA virus infection. It is known that SARS-CoV N protein
interacts with TRIM25 and inhibits TRIM25/retinoic acid–
inducible gene 1 association (49), suggesting that SARS-
expression vectors for 24 h and incubated with or without (NT) 1 μM MS023 fo
anti-Flag-M2 beads and immunoblotting with anti-asymmetrical dimethylargin
(lower panels). The band of the asymmetrically dimethylated N protein (N-me2)
shown in kDa on the left. H, HEK293 cells were transfected with siRNA targetin
with Flag-N vector for another 24 h. The cell lysates were subjected to immun
SARS-CoV-2 N protein and anti-ASYM26 antibodies. The migration of the me
Middle East respiratory syndrome coronavirus; N, nucleocapsid; PRMTs, protein
coronavirus 2.
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CoV-2 N protein may play a similar role in antagonizing the
host immune response.

We then performed biological process (Gene Ontology)
analysis using the identified interaction partners to assess
major cellular pathways. The top ten pathways enriched con-
sisted of RNA metabolic processes (Fig. S2). Interestingly,
many SARS-CoV-2 N-interacting proteins (27 of 119, Fig. 2B)
contained multiple RGG/RG motifs including DEAD/DExH
family of RNA helicases DDX21, DDX54, DHX30, DHX57,
and hnRNPA1, A3, D, DL, G (RBMX), R, U, UL1, and UL2
(Table 1). Many of these N-interacting proteins, such as
G3BP1 (50), FAM98A (51), FXR1 (52), hnRNPA1 (53),
r another 24 h. The cell lysates were subjected to immunoprecipitation with
ine antibody ASYM26 (upper panels) and anti-SARS-CoV-2 N protein antibody
is marked by a black arrowhead on the right. The molecular mass markers are
g firefly luciferase (siCTL) or siPRMT1 for 24 h and subsequently transfected
oprecipitation with anti-Flag-M2 beads and then immunoblotting with anti-
thylated N protein is indicated. Flag-N, Flag-epitope N protein; MERS-CoV,
arginine methyltransferases; SARS-CoV-2, severe acute respiratory syndrome



Table 1
RGG/RG motif containing proteins within SARS-CoV-2 N interactome

ID Name RNA binding

Q14444 CAPRIN1 Yes
Q8TDD1 DDX54 Yes
Q6P158 DHX57 Yes
Q08211 DHX9 Yes
Q01844 EWSR1 Yes
Q9NZB2 FAM120A Yes
Q8NCA5 FAM98A Yes
P22087 FBL Yes
P51114 FXR1 Yes
Q13283 G3BP1 Yes
Q9UN86 G3BP2 Yes
O14979 HNRNPDL Yes
Q9BUJ2 HNRNPUL1 Yes
Q1KMD3 HNRNPUL2 Yes
Q14103 HNRNPD Yes
O60506 SYNCRIP Yes
O43390 HNRNPR Yes
Q00839 HNRNPU Yes
Q9NZI8 IGF2BP1 Yes
Q12905 ILF2 Yes
Q12906 ILF3 Yes
Q8NC51 SERBP1 Yes
Q99575 POP1 Yes
P38159 RBMX Yes
P09651 HNRNPA1 Yes
P51991 HNRNPA3 Yes
P46783 RPS10 Yes

PRMT1 methylates SARS-CoV-2 N protein
hnRNPUL1 (54), SYNCRIP (55), ILF3 (56), and SERBP1 (57)
are known PRMT1 substrates.

N protein interactome changed significantly by two proteins
with MS023 treatment. Interaction between N protein and
HMGB2 was lost, and interaction with PRMT1 was gained
with MS023 treatment (Fig. 2C). HMGB2 is a paralog of
HMBG1 shown to play a critical role in SARS-CoV-2 repli-
cation (58). Interestingly, the AP-MS/MS analysis identified 11
PRMT1 peptides covering 30% of the protein sequence in the
Flag-N immunoprecipitation from MS023-treated cells and
none in nontreated cells (Fig. 2C). These data are consistent
with MS023 being noncompetitive with type I PRMT sub-
strates (37). To confirm these interactions, HEK293 cells were
transfected with Flag-N and treated with dimethylsulfoxide
(DMSO) control or MS023. Cell extracts were prepared and
immunoprecipitations performed with anti-Flag antibodies
followed by SDS-PAGE and immunoblotted with anti-PRMT1,
anti-G3BP1, or anti-SARS-CoV2 N protein antibodies. Indeed,
Flag-N immunoprecipitations showed increased PRMT1 as-
sociation with MS023 treatment and G3BP1 was observed in
immunoprecipitations from treated and nontreated cells
(Fig. 2D, compare lanes 5 and 6). These data confirm in-
teractions between the N protein and G3BP1 and PRMT1.

SARS-CoV-2 N prevents SG formation in an arginine
methylation–dependent manner

SGs are frequently observed upon infection with DNA or
RNA viruses, serving an antiviral function (12, 13). Recent
studies reveal that SARS-CoV-2 N protein is associated with
SGs and regulates their dynamics (21, 26–28). To investigate
whether arginine methylation regulates the property of SARS-
CoV-2 N protein to suppress SG formation and dynamics, we
monitored SG formation using anti-G3BP1 antibodies in the
hepatoma Huh-7, a cell line frequently used in the study of
SARS-CoV-2. Huh-7 cells transfected with an empty plasmid
(pcDNA) or a plasmid expressing Flag-N were treated with a
mild dose of oxidative stress (0.5 mM sodium arsenite for 1 h)
or a harsh dose (1 mM sodium arsenite for 2 h). At 1-μM
sodium arsenite, we observed Flag-N colocalizing with G3BP1
in SGs (open arrowheads), and in some Flag-N–expressing
cells, there was a reduction or absence of G3BP1 SGs (white
arrowheads) (Fig. 3A), as reported recently (21, 26–28). Inter-
estingly, at the mild doses of 0.5 mM sodium arsenite for 1 h,
25.89 ± 2.56% of Flag-N-transfected cells had G3BP1 SGs
compared with 70.08 ± 1.93% in the pcDNA-transfected cells
(Fig. 3B), suggesting that SARS-CoV-2 N protein suppresses
G3BP1 SG formation. As regulating SGs formation is an
important function for viral replication and host cell immune
response (13), we focused our study on how arginine methyl-
ation was implicated in N protein–mediated SG suppression.
Thus, all subsequent studies were performed with 0.5 mM
sodium arsenite for 1 h to study N protein inhibition of G3BP1
SGs. Huh-7 cells transfected with Flag-N were treated with type
I PRMT inhibitor MS023 or control DMSO before induction of
SGs with sodium arsenite. Methyltransferase inhibition using
MS023 significantly increased the presence of Flag-N–
expressing cells with G3BP1 SGs (45.48 ± 4.79% versus 30.99 ±
3.92%), while no significant change was observed in the non-
transfected cells with over >70% of the cells with SGs (Fig. 3C).
PRMT1 inhibition in HeLa cells is known to increase the
number of SGs per cell via RGG/RG motif methylation of
G3BP1 (50) and UBAP2L (59). To demonstrate the role of
arginine methylation suppression of G3BP1 SGs was due to N
protein methylation, per se, we transfected Huh-7 cells with
WT and R-K Flag-N and monitored SGs. Cells with N protein
with R95K or R95K/R177K substitution showed increased SG
formation in comparison with those transfected with Flag-N or
Flag-N R177K (Fig. 4A, R95K 35.82 ± 3.03%, R177K 26.74 ±
2.52%, R95K/R177K 36.62 ± 2.78% versus WT N 25.30 ±
2.62%). These findings show that the methylation of N protein
at R95, but not R177, is required for the SARS-CoV-2 N to
suppress G3BP1-positive SGs.

We next examined whether the ectopic expression of a
methylarginine reader could also interfere with N protein–
mediated regulation of G3BP1 SGs. The Tudor domain is a
known reader of methylated arginine residues (34). We first
examined whether Flag-N associated with ectopically
expressed Tudor domain–containing proteins survival of
motor neuron (SMN) and Tudor domain-containing protein 3
(TDRD3) by coimmunoprecipitation assays. Indeed, a strong
interaction between Flag-N and TDRD3 was observed,
whereas the interaction with SMN was weaker, as visualized by
immunoblotting (Fig. 4B). Next, we tested whether TDRD3
influenced N protein–mediated SG regulation, as it is known
that TDRD3 localizes to SGs (60, 61). We cotransfected
increasing amounts of expression plasmid encoding TDRD3
together with Flag-N and visualized the presence of arsenite-
induced G3BP1 SGs. We observed an increase in G3BP1
SGs with increased expression of TDRD3 with N protein
(Fig. 4C). These findings suggest that increasing the methyl
J. Biol. Chem. (2021) 297(1) 100821 5
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PRMT1 methylates SARS-CoV-2 N protein
reader TDRD3 expression could be a means to quench the
effects of N protein on SG regulation.

Arginine methylation of R95 and R177 is required for N
protein binding to the SARS-CoV-2 5’-UTR RNA

N is an RNA-binding protein that binds the 5’-UTR of its viral
genomic RNA for viral ribonucleoprotein (vRNP) formation
and packaging into virions (62, 63). The SARS-CoV-2 N protein
R95 and R177 are located in the NTD and at NTD–SR linker
boundary, respectively. Actually, R95 and R177 are within the
RNA-binding site of the NTD with R177 being predicted to be
implicated in N protein RNA binding (4, 11, 64). Therefore, we
reasoned that these arginines and their methylation were likely
6 J. Biol. Chem. (2021) 297(1) 100821
involved in the RNA-binding activity of N protein. HEK293 cells
were cotransfected with Flag-N and an expression vector tran-
scribing�400 bp of the 5’-UTR RNA sequence of SARS-CoV-2
(p5’-UTR:CoV-2; Fig. 5A). Initially, we performed RNA
immunoprecipitation (RIP) to monitor N protein RNA-binding
activity. We observed a >5-fold enrichment with anti-Flag an-
tibodies in the DMSO-treated cells versus MS023-treated cells
(Fig. 5A). These data suggest that inhibition of type I PRMTs
prevents the binding of Flag-N to the 5’-UTR of SARS-CoV-2
RNA. Next, we wished to confirm that this N protein/RNA
interaction was direct by performing a photoactivatable
ribonucleoside–enhanced crosslinking and immunoprecipita-
tion (PAR-CLIP) assay (65). Cells transfected with Flag-N or
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PRMT1 methylates SARS-CoV-2 N protein
Flag-N harboring R95K, R177K, R95K/R177K, and p5’-UTR:-
CoV-2 were labeled with 4-thiouridine and UV cross-linked.
The cells were lysed and immunoprecipitated with anti-Flag
antibodies after a ‘clipping’ step with RNase A. RNA was puri-
fied and analyzed by RT-qPCR with two sets of primers against
the 5’-UTR of the SARS-CoV-2 RNA (positions #1 and #2).
Using this strategy, we showed that Flag-N directly binds to the
5’-UTR of SARS-CoV-2 RNA (Fig. 5B). Importantly, both the
single R95K and R177K or the double R95K/R177K substitution
of N protein abolished RNA-binding activity (Fig. 5B). Immu-
noblotting was performed to confirm an equal expression of
WTN protein and the R-K proteins immunoprecipitated of the
four replicates (Fig. 5C). Taken together, these results suggest
that argininemethylation of both R95 and R177 of the N protein
is a requirement for association with its viral RNA in cellulo.

Methylation of N protein is required for SARS-CoV-2
production

We then studied the effect of type I PRMT inhibitor
MS0233 on SARS-CoV-2 replication. First, we performed
MS023 toxicity assays with VeroE6 cells, a cell line highly
susceptible to SARS-CoV-2 infection. We confirmed that cell
proliferation was not affected at concentrations of MS023 up
to 30 μM in complete medium (Fig. 6A). Next, in a certified
SARS-CoV-2 BL3 laboratory, we then treated VeroE6 cells
with 10 μM or 20 μM MS023, versus DMSO control, for 24 h
and proceeded with SARS-CoV-2 infection at a low
8 J. Biol. Chem. (2021) 297(1) 100821
multiplicity of infection (0.1). The infected cells were kept in
MS023-containing medium for another 2 days. Supernatant
from each, infected well was collected, and the virus inacti-
vated with TRIzol to assay SARS-CoV-2 titer by TaqMan real-
time PCR assay. We observed a significant reduction of viral
titer when the cells were incubated with 20 μM MS023, and an
intermediate viral titer was observed with 10 μM MS023
(Fig. 6B).

From the TRIzol organic phase, we extracted the viral
proteins and separated them by SDS-PAGE followed by
immunoblotting with anti-SARS-CoV-2 S, and N protein or
anti-methylarginine ASYM26 antibodies. We observed a slight
decrease (�20–30%) in the total amounts of S and N proteins
with MS023 treatment (Fig. 6C), consistent with overall
decrease in virions (Fig. 6B). Notably, the anti-ASYM26 anti-
bodies revealed a �50% reduction in N protein arginine
methylation, when normalized to N protein levels (Fig. 6C,
middle panel). In contrast, we could not detect methylation of
S with ASYM26 antibody (Fig. 6C), likely because of the lack of
RGG/RG motifs in S protein sequence. These findings show
that the SARS-CoV-2 production is reduced in the presence of
type I PRMT inhibitors and that the SARS-CoV-2 N protein is
arginine-methylated within the virions.

Discussion

In the present article, we identify SARS-CoV-2 N protein
to be arginine-methylated within virions. We show that
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PRMT1 methylates SARS-CoV-2 N protein
methylation of the N protein is mediated by PRMT1 at R95
within the NTD and R177 at the NTD/SR linker boundary.
Both residues are within RGG/RG motifs conserved be-
tween SARS-CoV and SARS-CoV-2. Amino acid sub-
stitutions R95K or R177K inhibited N protein RNA binding
in cellulo to SARS-CoV-2 5’-UTR genomic RNA using a
CLIP assay in HEK293 cells. The ectopic expression of N
protein in Huh-7 cells was localized to cytoplasmic granules
and inhibition of G3BP1 SG formation was observed.
Notably, arginine methylation of N protein at R95 by
PRMT1 was necessary for this function. The N protein
interactome was defined to contain many known PRMT1
substrates with RGG/RG motifs. Treatment with the type I
PRMT inhibitor MS023 did not influence the overall N
interactome, but PRMT1 was identified as a new interactor,
consistent with a substrate–enzyme interaction in the
presence of the noncompetitive inhibitor MS023 (37).
Importantly, inhibition of arginine methylation with MS023
significantly reduced SARS-CoV-2 replication in VeroE6
cells. Our findings define arginine methylation as new mode
of interfering with N protein regulation of SGs and define
PRMT1 as a requirement for the SARS-CoV-2 life cycle. As
type I PRMT inhibitors are in clinical trials for cancer
treatment (41), these compounds may also be useful to
target SARS-CoV-2 replication.

Host proteins and enzymes are needed for the replication of
SARS-CoV-2, and many of these were identified using CRISPR
screens (58, 66–69). Factors required for early viral entry and
fusion, and components of the endosome and cholesterol
pathways were identified (66–68). Few components, however,
were identified that target the later phases of the viral life cycle,
such as vRNP formation, phase separation for genome pack-
aging, encapsidation, and assembly of virions. A recent study
identified �50 host RBPs binding SARS-CoV-2 genomic RNA
and the knockdown of some of these RBPs inhibited viral
replication (70). As SARS-CoV-2 N protein and cellular RBPs
are substrates of PRMT1 (31), our findings suggest that type I
PRMT inhibitors or increasing methylarginine readers may
regulate N function in vRNP packaging and assembly into
virions. Notably, the increased expression of PRMT1 in
nasopharyngeal and bronchial samples of SARS-CoV-2-
infected patients (71) is consistent with PRMT1 being a host
factor required for the virus.

SARS-CoV-2 viral protein extracts immunoblotted with
ASYM26 revealed the arginine methylation of the N protein.
It is known that the N protein is highly immunogenic and
anti-N antibodies are among the first to appear in infected
individuals (72). It is likely that SARS-CoV-2 N protein is
fully methylated in infected cells, thus epitopes from the
methylated RGG/RG peptides of N protein likely contribute
to its elevated immunogenicity. Notably, R95- and R177-
derived SARS-CoV-2 N peptides are predicted to be B cell
epitopes (73, 74). Moreover, R95 and R177 peptides from the
N protein were used to design SARS-CoV-2 vaccines in India
(73), and we propose that the incorporation of asymmetrical
dimethylarginines would increase their immunogenicity.
J. Biol. Chem. (2021) 297(1) 100821 9



PRMT1 methylates SARS-CoV-2 N protein
Although our MS significantly covered 74% of the N protein,
the R95 was not covered and R177 was covered, but the
peptides were unmethylated. Interestingly, the only variant
in N protein is R203K;G204R in the B.1.17 strain and T205I
in B.1.351 strain, suggesting the RGT sequence is an
important regulatory site. The absence of methylation of the
S protein observed using anti-ASYM26 is likely due to the
lack of RGG/RG motifs. However, the S protein harbors an
RRXR sequence within its furin cleavage site, a potential
methylation sequence for PRMT7 (75). Thus, MS analysis
and various anti-methylarginine antibodies targeting NG-
monomethylarginine and symmetric NG, N’G dimethylargi-
nine will be needed to further define the sites of arginine
methylation within the SARS-CoV-2 viral proteins.

Coronaviruses, like other viruses, have devised strategies
to destabilize and inhibit SG formation to ensure optimal
viral replication. The infectious bronchitis coronavirus uses
endoribonuclease Nsp15 for SG interference (76). For
MERS-CoV, it is the 4a accessory protein that inhibits SG
formation (77, 78). The N protein from SARS-CoV and
SARS-CoV-2 were shown to localize to SGs (14, 21, 26–28).
Thus, targeting the N protein function in G3BP1 SG regu-
lation represents a new and valid strategy to fight COVID-19.
It is known that the SR linker region when phosphorylated
renders the N protein condensate more liquid-like, and in-
hibition of N protein phosphorylation favors its trans-
location to SGs (14, 18, 24, 29, 30, 79, 80). We now show that
arginine methylation of N protein is a post-translational
modification that tunes N protein regulation of G3BP1
SGs. Information about how SGs are formed and regulated is
emerging and represents a combination of multivalent in-
teractions of protein–protein, protein–RNA, and RNA–RNA
interactions (81). How does arginine methylation of N pro-
tein regulate SG formation? Both R95K and R177K were
defective in RNA binding to the SARS-CoV-2 5’-UTR RNA,
and yet, only R95K within the NTD was required for SG
regulation. Our observation is in agreement with a recent
report that residues 1 to 175 of N protein are sufficient to
disrupt SGs (26). Consistent with R95 and R177 being part of
the U-shaped β-platform of the RNA-binding domain (4, 11),
we show that both residues are needed to bind the 5’-UTR
where the putative viral packaging signal of the genomic
RNA resides. It is possible that N protein R177 is not needed
to associate nonspecifically with host mRNAs, and hence, its
substitution to lysine does not influence SGs. Thus, we
propose that RGG/RG motif methylation of the N protein
affects SGs by modulating interaction with methyl readers
and RNA.

The N interactome was not significantly altered in the
presence of MS023, but there was an increase in PRMT1 as-
sociation. We noted that increasing the concentration of a
methylarginine reader TDRD3 blocked N protein from sup-
pressing SG formation. Therefore, we propose that MS023
besides inhibiting the activity of PRMT1, also inactivates N
protein by increasing its interaction with PRMT1, therefore
allowing PRMT1 to become an enzyme-inactive RGG/RG
motif reader. A role for arginine methylation of the RGG/RG
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motif in RBP phase separation is known (32, 36). For example,
the RGG/RG motif protein FUS, dysregulated in ALS, un-
dergoes liquid–liquid phase separation in the absence of
PRMT1 (82, 83). Thus, arginine methylation is a key regulator
of ribonucleoprotein condensation. As type I PRMT
GSK3368715 inhibitor is in phase I clinical trials for diffuse
large B-cell lymphoma (41), our data suggest that these in-
hibitors may be an effective strategy to interfere with N protein
condensation and influence late stages of the SARS-CoV-2 life
cycle.

Arginine methylation influences nearby phosphorylation
sites often being antagonistic (36). For example, arginine
methylation of the FOXO1 transcription factor at R248 and
R250 by PRMT1 prevents AKT phosphorylation at S253,
blocking nuclear exclusion of FOXO1 (84). Arginine methyl-
ation of cytoplasmic tail of the epidermal growth factor re-
ceptor at R1175 by PRMT5 enhances its trans-
autophosphorylation at Y1173 (85). N protein RNA-binding
activity is known to be regulated by phosphorylation. In vitro
studies showed that hypophosphorylation of the N protein
facilitated interaction with RNA (21). We show that methyl-
ation of N protein R95 and R177 is needed for RNA binding.
As S176, S180, S183, and S184 are reported to be phosphor-
ylated by SRPK1 (29) and GSK3–cyclin-dependent kinase 1
(18, 30, 79), it is likely that there will be an interplay between
phosphorylation and methylation especially near R177 for
binding to the 5’-UTR of the SARS-CoV-2 RNA. It is likely
that optimal binding of N protein to the 5’-UTR of the SARS-
CoV-2 RNA will require a balance of methylarginines and
phosphoserines. This interplay may also influence interactions
with methyl readers including TDRD3 and phosphoreaders
such as 14-3-3 proteins, the latter shown to bind the N protein
(86).

In sum, our findings suggest that arginine methylation is
required for N protein function, and PRMT1 is an essential
regulator implicated in SARS-CoV2 life cycle. As PRMT in-
hibitors are in clinical trials (36), they may have applications
for COVID-19, in addition to them being promising cancer
drug candidates.
Experimental procedures

Reagents and antibodies

Immunoblotting was performed using the following anti-
bodies: mouse anti-Flag monoclonal antibody (F1804, Sigma
Aldrich, 1:2000); rabbit anti-SARS-CoV-2 N antibody (1:2000,
9103, Prosci); rabbit anti-SARS-CoV-2 S antibody (1:1000,
PA5-81795, Invitrogen); rabbit anti-TDRD3 antibody (1:1000,
Bethyl Laboratory); mouse anti-SMN antibody (1:2000,
610646, BD Biosciences); rabbit anti-G3BP1 antibody (1:1000,
1F1, Rhône-Poulenc Rorer, a kind gift from Dr Imed Gallouzi
at McGill University) (87); rabbit anti-ASYM26 (1:1000, 13-
0011, EpiCypher). Immunofluorescence was performed with
the following antibodies: mouse anti-Flag monoclonal anti-
body (F1804, Sigma Aldrich, 1:500); rabbit anti-G3BP1 anti-
body (1F1, 1:500). Alexa Fluor–conjugated goat anti-rabbit,
goat anti-mouse secondary antibodies were from Invitrogen.



PRMT1 methylates SARS-CoV-2 N protein
Protease inhibitor cocktail and protein phosphatase inhibitor
cocktail were from Roche. MS023 (SML1555), sodium arsenite
(S7400), Protein A-Sepharose (P3391), and PRMT5:MEP50
active complex (SRP0145) were purchased from Sigma
Aldrich. Protein coimmunoprecipitation was performed using
ANTI-FLAG M2 Affinity Gel (A2220, Sigma Aldrich).

Cell culture and transfection

HEK293 and VeroE6 cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10%
fetal bovine serum (FBS) and grown at 37 �C with 5% CO2.
Huh-7 cells were maintained in DMEM supplemented with
10% FBS and nonessential amino acid (Gibco) and grown at 37
�C with 5% CO2. Cells were transfected with 20 nM siRNA
oligonucleotides using Lipofectamine RNAiMAX (Invitrogen)
according to the manufacturer’s instructions. HEK293 and
Huh-7 cells were transfected with plasmid DNAs by standard
calcium phosphate precipitation and Lipofectamine 3000
(Invitrogen), respectively.

Plasmids and siRNAs

The N-terminal Flag-tagged SARS-CoV-2 N plasmid was
constructed by inserting a Flag-coding sequence into the
pcDNA3.1 (+) vector at the Hind III and Bam HI sites to
generate pcDNA3.1-Flag and then the PCR-amplified cDNA of
SARS-CoV-2 N coding region at Bam HI and Xho I sites of
pcDNA3.1-Flag vector. The PCR template DNA is a plasmid
with insertion of synthesized DNA expressing SARS-CoV-2 N
protein provided by Dr Shan Cen based on the SARS-CoV-2
Wuhan-Hu-1 isolate (GenBank: MN_908947). The plasmids
for expressing GST fusion proteins of SARS-CoV-2 N trun-
cated fragments were constructed by inserting PCR-amplified
SARS-CoV-2 N cDNA fragments in pGEX-6P1 vector at
Bam HI and Sal I sites. The GST–RGG construct was
generated by inserting a DNA fragment expressing the mouse
RBMX C-terminal RGG/RG motif in pGEX-6P1 vector at Bam
HI and Sal I sites. The mutants with replacement of the
arginine residues with lysine at the RGG/RG motif were
constructed by a two-step PCR strategy. p5’-UTR:CoV-2 was
constructed using synthesized DNA fragment with the 1 to
400 bp of 5’-UTR of SARS-CoV-2 gRNA (NC_045512), and
the DNA fragment was inserted into pcDNA3.1 vector at Bam
HI and Xba I sites. The myc-tagged SMN and TDRD3 plas-
mids were generated in previous studies (88, 89). All siRNAs
were purchased from Dharmacon. siRNA sequences are as
follows: siPRMT1, 50-CGT CAA AGC CAA CAA GTT AUU-
30. The siRNA 50-CGU ACG CGG AAU ACU UCG AdTdT-30,
targeting the firefly luciferase (GL2) was used as control.
20 nM siRNA was used for transfection.

Protein purification and in vitro methylation assay

Expression of GST fusion proteins in bacteria was induced
with 1 mM IPTG at room temperature (RT) for 16 h. All steps
of the purification after growth of bacteria were performed at 4
�C. Cells were lysed by sonication in PBS containing a mixture
of protease inhibitors. The lysate was clarified by
centrifugation, and the supernatant was incubated with
glutathione-Sepharose 4B beads for 2 h. The resin was washed
four times with PBS and then twice with 50 mM Tris HCl, pH
7.4, buffer. Protein was eluted with 10 mM reduced gluta-
thione in 50 mM Tris HCl, pH 7.4, buffer. Approximately
10 μg of each GST fusion protein was incubated with 1 μl of
(methyl-3H) S-adenosyl-L-methionine solution (15 Ci/mmol
stock solution, 0.55 μM final concentration, PerkinElmer) and
1 to 2 μg of PRMTs in methylation buffer (50 mM Tris HCl,
pH 7.4, 1 mM DTT) for 1 to 4 h at 25 �C or 37 �C. Samples
were separated by SDS-PAGE and stained with Coomassie
Blue. After destaining, the gel was then incubated for 1 h in
EN3HANCE (PerkinElmer) according to manufacturer’s in-
structions, and the reaction was visualized by fluorography.

Cell lysis, immunoprecipitation, and immunoblotting

For coimmunoprecipitation experiments, cells were lysed in
the lysis buffer (50 mM Hepes, pH 7.4, 150 mM NaCl, 1%
Triton X-100, and a cocktail of protease inhibitors and phos-
phatase inhibitors). Cell lysates were cleared with high-speed
centrifugation to remove cell debris, and then, the superna-
tant was incubated with anti-Flag M2 beads for 1.5 h at 4 �C.
Samples were washed with 1 ml of the lysis buffer for three
times and eluted with 2× SDS loading buffer for Western blot
analysis. For LC-MS/MS, the beads were further washed with
PBS twice. The beads together with the bound proteins were
subjected to LC-MS/MS.

LC-MS/MS analysis

For FLAG-N proteomic analysis, peptides were recon-
stituted in water containing 0.2% formic acid and analyzed by
nanoflow-LC-MS/MS using an Orbitrap Fusion Mass spec-
trometer (Thermo Fisher Scientific) coupled to a Proxeon
Easy-nLC 1000. Samples were injected on a 150 μm, � 20 cm
nano-LC column (Jupiter C18, 3 μm, 300 Å, Phenomenex).
The separation was performed with a linear gradient from 5 to
30% ACN and 0.2% formic acid over 56 min at 600 nl/min. Full
MS scans were acquired from m/z 350 to m/z 1200 at reso-
lution 120,000 at m/z 200, with a target automatic gain control
of 5E5 and a maximum injection time of 50 ms. MS/MS scans
were acquired in CID mode with a normalized collision energy
of 30% at the rapid scan rate using a Top 3s method, with a
target automatic gain control of 2E4 and a maximum injection
time of 35 ms. Dynamic exclusion was set at 60 s. Database
searches were performed with PEAKS X against the UniProt
human database (20,350 entries) with the virus sequence.
Precursor and fragment tolerances were set at 10 ppm and
0.01 Da, respectively. Carbamidomethylation (C) was selected
as fixed modification. Phosphorylation (STY), deamidation
(NQ), and oxidation (M) were selected as variable
modifications.

MS023 toxicity assay

Before performing viral infections, the MS023 inhibitor was
examined for toxicity to the VeroE6 cells. VeroE6 cells
(2500 cells per well) were seeded in a 96-well plate and
J. Biol. Chem. (2021) 297(1) 100821 11
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cultured at a condition similar to that in the viral infection
analysis. The type I PRMT inhibitor MS023 was dissolved in
DMSO and diluted in complete DMEM containing 10% FBS.
The medium was added to cells with a final concentration of 2
to 30 μM MS023 and 0.2% DMSO as indicated. Twenty-four
hours later, the cell culture medium was replaced with 2%
FBS/DMEM medium containing the same concentration of
MS023 and DMSO in the corresponding wells. After 48 h of
further incubation, the cell viability was analyzed using the
MTT assay kit (Abcam, ab211091) according to manufac-
turer’s instructions. Briefly, the medium was carefully
removed, and both 50 μl of serum-free medium and 50 μl of
MTT reagent were added to each well. After 3 h of incubation
at 37 �C, the MTT reagent was removed and 150 μl of MTT
solvent was added to each well and the plate was incubated at
RT on an orbital shaker for 30 min before reading absorbance
at 590 nm. The absorbance of MS023-treated wells was
divided by the absorbance of the DMSO-treated wells to
normalize cell survival.
SARS-CoV-2 infection and purification of genomic SARS CoV-2
RNA (gRNA) and proteins

Within the certified BL3 containment facility of the McGill
University Health Centre, VeroE6 cells were seeded in 24-well
plates (105/well in 0.5 ml) and incubated in complete DMEM
containing 10% FBS in the presence of PRMT1 inhibitorMS023
or DMSO control for 24 h before infection. The cells were then
infected with SARS-CoV-2 isolate RIM-1 (GenBank accession
number: MW599736) at multiplicity of infection (0.1) at 37 �C
for 2 h. The virus inoculum was removed, and the cells were
washed once with 2% FBS/DMEM and then incubated for an
additional 48 h in 1ml of 2% FBS/DMEM containing the PRMT
inhibitor at indicated concentrations or the same amount of
DMSO as control at 37 �C. After the infection was complete,
250-μl cell supernatant was lysed in 0.75 ml TRIzol LS (Invi-
trogen) and transported out of the BL3 facility. The viral RNA
was then extracted from the TRIzol using chloroform extraction
following manufacturer’s instructions. One-step RT-qPCR was
performed using TaqMan Fast Virus 1-Step Master Mix
following the manufacturer’s instructions. Viral gRNA was
detected using primers (Fw: 5’-ATG AGC TTA GTC CTG
TTG-3’, Rv: 5’-CTC CCT TTG TTG TGT TGT-3’) and probe
(5’Hex-AGA TGT CTT GTG CTG CCG GTA-BHQ-1-3’),
specifically targeting RdRp gene as described (90). In addition,
viral proteins were extracted from the organic phase of TRIzol
solution according to the manufacturer’s instruction. Briefly,
after removing the aqueous phase, 0.3 ml 100% ethanol was
added to the organic phase. Genomic RNA (gRNA) from
infected cells was pelleted by centrifugation at 2000g for 5 min.
About 0.75 ml of the supernatant was moved to a new tube and
mixed with 1.5 ml isopropanol. Proteins were collected by
centrifugation at 12,000 rpm for 15 min, followed by two times
of washing with 0.3 M guanidine hydrochloride and 95%
ethanol. Liquid was removed, and the pellet was air-dried. The
dried proteins were dissolved in 1X SDS loading buffer and
proceed with Western blot analysis.
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PAR-CLIP and RIP

PAR-CLIP was performed as previously described with
minor modification (91). p5’-UTR:CoV-2 and pFlag-N were
cotransfected to HEK293 cells with a 1:1 ratio. 24 h after
transfection, the cells were treated with 100 μM 4-thiouridine
for 16 h and cross-linked with 0.15 J/cm2 365 nm UV. Cells
were then washed twice with ice-cold PBS and resuspended in
the lysis buffer (150 mM KCl, 25 mM Tris, pH 7.4, 5 mM
EDTA, 0.5 mM DTT, 0.5% NP40, and 100 U/ml RNase in-
hibitor). After incubation for 20 min with rotation at 400 rpm
and cell debris were cleared by centrifugation. Cell lysates were
incubated with 1 U/ml RNase I at 37 �C for 3 min. For each
immunoprecipitation, 40 U RNase inhibitor and 2 μg of anti-
body was added, and the samples were incubated for 2 h at 4
�C with rotation. Protein A Sepharose beads (Sigma) were then
added and the samples were incubated at 4 �C for another
hour with rotation. The beads were pelleted by centrifugation,
resuspended, and washed in high salt wash buffer for three
times and lysis buffer once. After removing the final wash
buffer, DNA fragments were digested with 2U TURBO DNase
(Thermo fisher, AM2238) at 37 �C for 4 min. RNA was eluted
in Proteinase K buffer (50 mM Tris, pH 7.5, 75 mM NaCl,
6.5 mM EDTA, and 1% SDS) supplemented with proteinase K
and incubated at 50 �C for 30 min. RNA was recovered by
using five volumes of TRIzol LS Reagent (Thermo Fisher).
Equal volume of RNA from each sample was used for the
reverse transcription. qPCR was performed using primers
targeting gRNA 5’-UTR. Primer sequences used in the
experiment are as follows: position 1: Fw: 5’-TCG TTG ACA
GGA CAC GAG TA-3’, Rv: 5’- CCC GGA CGA AAC CTA
GAT GT-3’; position 2: Fw: 5’- CCT TGT CCC TGG TTT
CAA CG-3’, Rv: 5’- CAC GTC GCG AAC CTG TAA AA-3’.

RIP was performed as previously described with minor
modifications (92). Briefly, cells were cross-linked with a final
concentration of 1% formaldehyde, washed twice with ice-cold
PBS, and resuspended in RIP buffer (150 mM KCl, 25 mM
Tris, pH 7.4, 5 mM EDTA, 0.5 mM DTT, 0.5% NP40, and 100
U/ml RNase inhibitor). Chromatin was sheared by sonication,
and DNA fragments were digested with TURBO DNase
(Thermo fisher, AM2238) at the 37 �C for 15 min. The cell
lysate was proceeded with immunoprecipitation with the
antibody and washed with the RIP buffer. The RNA was
recovered from the precipitate as described above. qPCR was
performed using primers: Fw: 5’-TCG TCT ATC TTC TGC
AGG CT-3’, Rv: 5’-ACG TCG CGA ACC TGT AAA AC-3’.

Arsenite treatment and immunofluorescence

Cells growing on glass coverslips were treated with 0.5 mM
arsenite for 1 h and fixed for 10 min with 4% para-
formaldehyde (PFA). After three washes with PBS, the cells
were permeabilized for 5 min with 0.25% Triton X-100 in
PBS. Coverslips were incubated with the blocking buffer
containing 5% FBS for 1 h and then incubated with primary
antibodies diluted in PBS containing 5% FBS for 2 h. After
three washes, the coverslips were incubated with corre-
sponding fluorescent secondary antibodies for another hour
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in PBS containing 5% FBS. After rinsing, the coverslips were
mounted with IMMU-MOUNT (Thermo Scientific)
mounting medium containing 1 μg/ml of 40,6-diamidino-2-
phenylindole. Images were taken using a Zeiss LSM800
confocal microscope.

Statistical analysis

All data are expressed as the mean ± S.E.M. and compared
between groups using Welch’s t test. p Value <0.05 was
considered statistically significant. *p < 0.05; **p < 0.01; ***p <
0.001.

Data availability

The mass spectrometry proteomics data have been depos-
ited to the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the PRIDE part-
ner repository with the dataset identifier PXD025763.
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information (47, 93).
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