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Abstract

Background: Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the
activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become
more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and
metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the
activity of a downstream gene or a metabolite is optimized.

Methodology/Principal Findings: Based on discrete dynamical system modeling of gene regulatory networks, an integer
programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer
programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a
heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant
terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the
GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The
empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy.

Significance: Although the in silico target gene deletion problem has enormous potential applications in genetic
engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has
been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the
computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for
deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are
expected to achieve higher genetic engineering effectiveness than a trial-and-error procedure.
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Introduction

Selecting in silico, in a dynamic model of gene regulatory and

metabolic networks, the right target genes for deletion so as to

modify phenotypes can substantially expedite and lower the cost of

genetic engineering. The target genes for deletion typically play

key regulatory roles in the expression of downstream genes or

metabolites to alter a phenotype to desirable states. The

applications of genetic engineering are enormous. By genetically

engineering plants to contain high levels of cellulose and

hemicellulose [1], one may absorb the prohibitive cost of cellulose

pretreatment before biomass-to-biofuel conversion. The brain

tumor therapy using genetically engineered brain cells has

eradicated tumors completely and affects tumor regression [2].

Current in vivo genetic engineering is often by trial-and-error, and

unavoidably slow and sub-optimal. The few extant in silico genetic

engineering strategies are seriously hampered by the scarcity of

realistic dynamic models of gene regulatory and metabolic

networks. However, we anticipate a closing gap between in vivo

and in silico genetic engineering as realistic computational models

of networks are made increasingly available by powerful data-

driven network reconstruction software from high-throughput

systems biology experiments.

Recent work by Deutscher et al. [3] and Nakae et al. [4] provides

multiple gene knockout solutions to optimize the concentrations of

designated metabolites in static models of metabolic networks. Our

work extends to dynamic models, searching the target genes in silico

from any subset of genes in a gene regulatory network (GRN) for

deletion to maximize the concentration of a downstream gene. Using

the probabilistic Boolean network model, Faryabi et al. [5] pose an

integer programming problem to maximize the benefit of a cancer

patient from the treatment which intervenes the activity of a gene

over time. The problem is solved using dynamic programming in

optimizing a downstream gene by turning on or off only a single

target gene. Based on flux balance analysis, Alper et al. [6] and Jin et

al. [7] formulate a linear programming problem, to modify the

metabolic pathways in wild type E. coli. They introduce the method of

minimization of metabolic adjustment to revise the objective function
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to be quadratic for mutants. Both an exhaustive search and a greedy

algorithm have been employed to optimize the yield of lycopene

synthesis in the metabolic network by overexpressing or deleting three

genes. They show that deleting three genes improves the phenotype

of interest more effectively than deleting a single gene.

Motivated by the three-gene-deletion advantage, we study the

more general multiple gene knockout (GKO) problem. Although

we call all variables gene in our terminology, a variable can

represent the concentration of a protein, an mRNA, or a

metabolite. We use the discrete dynamical system (DDS) model to

represent GRNs [8–13]. DDS models can be reconstructed from

observed trajectories through data-driven methods [14–16], some

of which can run on parallel supercomputers such as [13]. A

nonlinear integer programming problem is formulated to define

the GKO problem. We prove the nonlinear integer programming

problem to be NP-hard. To approach efficiently the global

maximum of the nonlinear integer programming problem with a

generally non-concave objective function, we transform it to a

nonlinear programming problem with fewer decision variables.

We offer an algorithm called GKONP to solve the nonlinear

programming problem. GKONP prunes insignificant terms in

the objective function and takes advantage of the differential

evolution algorithm, a parallel global optimization method. We

use both the yeast pheromone pathway model and simulated

models to demonstrate the performance of the GKONP

algorithm.

Methods

Mathematical Formulation of the GKO Problem
We introduce the DDS model and formulate a nonlinear integer

programming problem to search the optimal regulatory target genes

for deletion. Here, we give the problem definition and notations.

The DDS Model. We use the DDS model [13] to represent

dynamical interactions in GRNs. DDS modeling is data-driven

and has been used for characterizing the cell cycle network [9].

The model assumes that the change rate of each gene at the

current time point is a linear combination of concentrations of

genes at the previous time point. Thus state transitions are

independent of each other. Let N be the number of genes. Let t be

the discrete time starting from 0. Let h denote the actual time

between two consecutive discrete time points. Let gi½t� be the

concentration of gene i at time t. Let g½t�~(g1½t�, g2½t�, . . . , gN ½t�)T

be a state vector of concentrations of all genes at time t. Then, the

1st-order linear DDS model is defined by

g½t�{g½t{1�
h

~Qg½t{1�, for all positive integer t, ð1Þ

where Q is an N|N regulation matrix, epitomizing a GRN. Q can

be estimated with experimental data from wild type under normal

and perturbed conditions. Letting A~hQzI , we have

g½t�~Ag½t{1�: ð2Þ

We call A the system matrix. Evidently the solution to the DDS

model is

g½t�~Atg½0�: ð3Þ

Let aij be the entry at row i and column j of matrix A. aij is zero if

gene j is not a parent (regulator) of gene i. Matrix A is sparse when

the number of parents of each gene is small.

Optimal Target Gene Deletion through Nonlinear Integer

Programming. Based on the DDS model, a nonlinear integer

programming is formulated to maximize a downstream gene by

searching regulatory target genes for deletion. We define the

binary knockout vector x~(x1, . . . ,xN )T . xi [f0,1g is 1 if gene xi

is intact; xi is 0 if gene i is deleted, equivalent to setting all entries

on either row i or column i in system matrix A to zero. A GRN

with knockout can be represented by a new system matrix

A(x)~ diag (x) A diag (x)

~

x1 0 � � � 0

0 x2 � � � 0

..

. ..
.

P
..
.

0 0 � � � xN

2
6666666664

3
7777777775

A

x1 0 � � � 0

0 x2 � � � 0

..

. ..
.

P
..
.

0 0 � � � xN

2
6666666664

3
7777777775
:

Thus, the knockout DDS solution is g½t�~(diag (x)A diag (x))tg½0�.
Using the DDS solution, we define the GKO problem to maximize

the objective function f (x), denoting the concentration of gene z at

time T , by knocking out a subset of genes:

Gene Knockout Problem: max
x[f0,1gN

f (x)~gz½T � ð4Þ

subject to g½T �~ diag xð ÞA diag xð Þð ÞT g½0�, ð5Þ

xz~1: ð6Þ

Let x� be an optimal solution to the GKO problem. As we want to

maximize the concentration of downstream gene z, it should not be

considered for deletion and hence the constraint xz~1.

Notations – Path, Weight, and Contribution. We define

path, weight of a path, and contribution of a path, to be used in the

rest of the paper. A path from gene i at time 0 to gene z at time T

over T time steps is a Tz1 dimensional vector, (k0,k1, . . . ,kT )T ,

where k0~i and kT~z. The path is illustrated in Fig. 1.

The weight of a path is W (k0,k1, . . . ,kT )~PT
t~1 akt,kt{1

. The

contribution of gene i to gz½T � through a path is defined by

gi½0�:W (k0,k1, . . . ,kT ). A path is negative/zero/positive if the

contribution through the path to gz½T � is negative/zero/positive,

indicating whether gene i influences gz½T � negatively or positively.

Time Complexity of the GKO Problem
We show that the GKO problem is NP-hard by reducing the

NP-complete vertex cover problem to a special case of the GKO

problem. Let G~(V ,E) be an undirected graph with a set V of n

vertices and a set E of edges. A vertex cover is a subset of V that

contains at least one end point of each edge in E. The vertex cover

problem is to find a smallest vertex cover of G. We use C to

represent the indices of vertices in a vertex cover of G.

Figure 1. A path over T time steps.
doi:10.1371/journal.pone.0009331.g001
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The Vertex Cover Problem Is a Special Case of the GKO

Problem. We construct a (2nz1)|(2nz1) matrix, A, from

graph G by

A~

An|n
1 0n|n

1 0n|1
2

Bn|n
1 0n|n

3 0n|1
4

{11|n
v 11|n

v 11|1

2
64

3
75~faijg, ð7Þ

with

aij~

3, if (vi,vj)[E

2, if i~nzj, j~1, . . . ,n

1, if i~2nz1, j~nz1, . . . ,2nz1

{1, if i~2nz1, j~1, . . . ,n

0, otherwise

8>>>>>><
>>>>>>:

ð8Þ

where A1 is an n|n symmetric matrix, the row and column of

whose non-zero entry corresponds to an edge in G, B1 is a

diagonal matrix 2In|n, {1v is a 1|n matrix whose entries are all

{1, 1v is a 1|n matrix whose entries are all 1, and 0n|n
1 , 0n|1

2 ,

0n|n
3 , and 0n|1

4 are all zero matrices.

Now, we formulate the GKO’ problem of 2nz1 genes, a special

case of the GKO problem, as

GKO’: max
x[f0,1g2nz1

g2nz1½2� ð9Þ

subject to g½2�~ diag xð Þ A diag xð Þð Þ2g½0�, ð10Þ

x2nz1~1, ð11Þ

g½0�~( 1,1, . . . ,1|fflfflfflfflffl{zfflfflfflfflffl}
n items

, 0,0, . . . ,0|fflfflfflfflffl{zfflfflfflfflffl}
nz1 items

)T : ð12Þ

The 2nz1 genes in the GKO’ problem can be separated into

three groups by their indices: f1, . . . ,ng, fnz1, . . . ,2ng, and

f2nz1g. Only paths originating from group one, shown in Fig. 2,

influence g2nz1½2�. All other paths to g2nz1½2�, not shown,

originating from either group two or three, contribute zero to

g2nz1½2�. We further define three types of paths, shown in Fig. 2,

all originating from some genes in group one, as follows:

N Type 1 path: it goes from a gene in group one at time 0, via

another gene in group one at time 1, to gene 2nz1 at time 2 with

a weight of 3:{1~{3. Both gene i and j contribute {3 through

their corresponding type 1 paths if (vi,vj) is an edge in graph G
and both gene i and j exist in the network. Therefore, the number

of type 1 paths is the number of nonzero elements in A1.

N Type 2 path: it goes from group one, via group two, to gene

2nz1 with a weight of 2:1~2. A gene in group one

contributes 2 to g2nz1½2� through its corresponding type 2

path if it exists in the network. Therefore, the number of type 2

paths is the number of existing genes in group one.

N Type 3 path: it goes from group one, via gene 2nz1, to gene

2nz1 with a weight of {1:1~{1. A gene in group one

contributes {1 to g2nz1½2� through its corresponding type 3

path if it exists in the network. Therefore, the number of type 3

paths is the number of existing genes in group one.

As the initial state is non-negative, no genes in group two should

be knocked out, because doing so would not possibly increase

g2nz1½2�, due to type 2 paths being non-negative. Thus, we

consider deleting genes from group one as only feasible solutions to

the GKO’ problem.

Evidently, it takes polynomial time O(n2) to construct the

GKO’ problem from the vertex cover problem.

The GKO’ Problem and the Vertex Cover Problem Are

Equivalent. The two problems are equivalent if and only if any

smallest vertex cover C� of the vertex cover problem translates to

an optimal solution x� to the GKO’ problem and vice versa.

Let X be the set of all feasible solutions to the GKO’ problem.

Let H be the power set of f1,2, . . . ,ng representing all subsets of

vertices in G. We define a bijective function, w, from H to X

by

x~w(h) : xi~
0, if i[h

1, if i 6[h

�
, i~1, . . . ,2nz1 ð13Þ

Function w translates any subset h[H of vertices in G to a feasible

solution x[X to the GKO’ problem with a corresponding

objective function value gh
2nz1½2�. When h~C�, the objective

function value is gC�
2nz1½2�.

Lemma 1. If C is a vertex cover of graph G, then gC
2nz1½2�~

n{DCD.
Proof. By Fig. 2, there are three types of paths influencing

gC
2nz1½2�. Since C is a vertex cover for graph G, A1 in equation (7)

of matrix A(w(C)) is a zero matrix. That means there is no

network between any two genes in group one and, then, genes

contribute nothing to g2nz1½2� through a type 1 path if we delete

all gene i for all i in C from the GKO’ problem. However, each

gene i in group one, which is not deleted, contributes two through

a type 2 path and negative one through a type 3 path.

Therefore,

gC
2nz1½2�~½2z({1)�(n{DCD)~n{DCD:

Lemma 2. If C is a vertex cover of graph G, then gC
2nz1½2�ƒ

gC�

2nz1½2�.

Figure 2. Schematic diagram for the three types of paths
influencing g2nz1½2�.
doi:10.1371/journal.pone.0009331.g002
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Proof. Since C� is the index set for a minimum cover, we have

DC�DƒDCD:

According to Lemma 1, we have.

gC
2nz1½2�~(n{DCD)ƒ(n{DC�D)~gC�

2nz1½2�:

Lemma 3. Let h be a non-vertex-cover subset of vertices. Let C be a

smallest vertex cover that subsumes h. Then gh
2nz1½2�ƒgC

2nz1½2� holds true.

Proof. According to Fig. 2, one additional type 1 path contributes

{3 to gene 2nz1 at time two while one additional type 2 path

contributes 2 to gene 2nz1 and one additional type 3 path

contributes {1 to gene 2nz1.

Since C is a vertex cover and h belongs to C, genes in group one

have several additional paths to contribute nonzero values to

g2nz1 at time two if we only delete gene i for all i in h instead of in

C. Let the difference of sets C and h be CD. One more gene

adding into the network from CD causes more than one additional

nonzero element in A1 in equation (7). We know that the number

of type 1 paths is the number of nonzero elements in A1.

Therefore, the total contribution from the additional type 1 paths

is less than

X
i[CD

{3gi½0�: ð14Þ

As the number of type 2 or 3 paths is the number of existing genes

in group one, the contribution from the additional type 2 paths is

X
i[CD

2gi½0�, ð15Þ

and that from the additional type 3 paths is

X
i[CD

{gi½0�, ð16Þ

The total contribution of those additional paths is less than

X
i[CD

{2gi½0�: ð17Þ

Since the value in equation (17) is negative, value gh
2nz1½2� is less

than gC
2nz1½2� and this lemma is proved.

Combining Lemmas 2 and 3 establishes that gh
2nz1½2�ƒgC�

2nz1½2�
for any subset h[H of vertices in G if C� is a smallest vertex cover.

Let x� be an optimal solution of GKO’ and g�2nz1½2� be its

maximal value. We have the following two propositions.

Proposition 4. If C� is a smallest vertex cover of G, then

gC�

2nz1½2�~g�2nz1½2�.
Proof. (By contrapositive) Assume gC�

2nz1½2�vg�2nz1½2�. x� can be

translated to Co by w{1
. If Co is not a smallest vertex cover,

gC�

2nz1½2�vg�2nz1½2�~gCo

2nz1½2� contradicts either Lemma 2 or 3. If

Co is a smallest vertex cover, we have DCoD~DC�D. Then gC�

2nz1½2�v
g�2nz1½2� contradicts Lemma 1. Thus, gC�

2nz1½2� g�2nz1½2�. By

definition of g�2nz1½2�, it is also impossible to have gC�

2nz1½2�w
g�2nz1½2�. Therefore, we must have g�2nz1½2�~gC�

2nz1½2�.
Proposition 5. Let Co be w{1(x�). Then, Co is a smallest vertex

cover of G.

Proof. (By contrapositive) Assume Co~w{1(x�) is not a smallest

vertex cover of G. Then one can find a smallest vertex cover C� of

G. Thus, it must follow by either Lemma 2 or 3 that

gC�

2nz1½2�wg�2nz1½2�, which contradicts the fact that g�2nz1½2� is

maximal. Therefore, Co must be a smallest vertex cover with

DCoD~DC�D.
Propositions 4 and 5 establish that the GKO’ and the vertex

cover problems are equivalent.

The GKO Problem is NP-Hard. Theorem 6. The GKO

problem is NP-hard. Proof. By Propositions 4 and 5, any solution to the

vertex cover problem translates to a solution to the GKO’ problem

and vice versa. Since the vertex cover problem is in its most general

form, any instance of the vertex cover problem is thus reducible to

the GKO’ problem. As the vertex cover problem is NP-complete

and it can be reduced in polynomial time to the GKO’ problem, a

special case of the GKO problem, the GKO problem is NP-hard.

The Approximation Algorithm of GKONP
As the number of feasible solutions to the GKO problem

increases exponentially with network size N, it is impractical to

solve it by exhaustive search when N is large. Using the concept of

paths, the GKO problem is rewritten to an equivalent nonlinear

programming problem. Combining a strategy on pruning the

insignificant terms in the objective function and a differential

evolution algorithm, we provide a heuristic algorithm to the NP-

hard GKO problem.

Nonlinear Programming for the GKO Problem. We

rewrite the nonlinear integer programming problem to an

equivalent nonlinear programming problem. Let PT (i,z) be the

collection of paths from gene i to gene z over T time steps. The

sum of contributions of various paths from gene i to z over T time

steps is

X
(k0,k1,...,kT )[PT (i,z)

W (k0,k1, . . . ,kT )|gi½0�: ð18Þ

It follows that the objective function f (x) of the GKO problem is

the sum of contributions from all genes to gene z:

f (x)~
XN

i~1

X
(k0,k1,...,kT )[PT (i,z)

( P
T

j~0
xkj

)W (k0,k1, . . . ,kT )gi½0�

0
@

1
A:ð19Þ

A path (k0,k1, . . . ,kT ) may visit a gene more than once. We

extract the unique genes on the path to form a set

fk00,k
0
1, . . . ,k

0
mg, mƒT : As each element in (xk0

,xk1
, . . . ,xkT

) is

either zero or one, we have PT
j~0 xkj

~Pm
j~0 x

k
0
j

: Then, f (x) can

be rewritten as

f (x)~
XN

i~1

X
(k0,k1,...,kT )[PT (i,z)

( P
m

j~0
x

k
0
j

)W (k0,k1, . . . ,kT )gi½0�

0
@

1
A:ð20Þ

Only a negative path, (k0,k1, . . . ,kT ), in PT (i,z) gives a

negative term, W (k0,k1, . . . ,kT )gi½0�, in equation (20). Therefore,

we shall delete genes in negative paths to maximize equation (20)

and those genes only on non-negative paths need not to be

considered for deletion. We denote the collection of genes on

negative paths to gene z by S{
T (z). Then, the size of feasible

solutions of the nonlinear integer programming problem is scaled

down from 2N to 2DS{
T

(z)D.
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Let S{
T (i,z) be the collection of genes on negative paths from

gene i to gene z. Let fk000, k
00

1, . . . , k
00

ng represent the intersection of

S{
T (i,z) and fk00, k

0

1, . . . , k
0

mg. It follows Pm
j~0 xk

0
j
~Pn

j~0 xk
00
j
: The

objective function becomes

f (x)~
XN

i~1

X
(k0,k1,...,kT )[PT (i,z)

( P
n

j~0
x

k
00
j

)W (k0,k1, . . . ,kT )gi½0�

0
@

1
A: ð21Þ

Lemma 7. If a nonlinear programming problem has objective function

f (x) (equation 21) and all decision variables xi, i[fk000,k
00

1, . . . ,k
00

ng,
bounded by ½0,1�, then there exists an optimal solution which is a vertex of the

feasible hypercube.

Proof. Assume x�, (xk�
0
,xk�

1
, . . . ,xk�

T
), is an optimal solution but

not a vertex. Therefore, there must exist an element 0vxrv1 in

the solution. Then, the value of objective function (equation 21)

with this solution is

xr

XN

i~1

X
(k0,k1, . . . ,kT )[PT (i,z)

r[(k
00
0 ,k
00
1 , . . . ,k

00
n )

x
k
00
0

x
k
00
1

. . . x
k
00
n

xr

W (k0,k1, . . . ,kT )gi½0�

0
BBBBBBB@

1
CCCCCCCA

z
XN

i~1

X
(k0,k1, . . . ,kT )[PT (i,z)

r 6[ (k
00
0 ,k
00
1 , . . . ,k

00
n )

x
k
00
0

x
k
00
1

. . . x
k
00
n

W (k0,k1, . . . ,kT )gi½0�

0
BBBBBBB@

1
CCCCCCCA
:

ð22Þ

If the value of function (equation 22) is positive at point

(xk�
0
,xk�

1
, . . . ,xk�

T
), we can increase xr to one to improve the

value. Otherwise, we decrease xr to zero. Since we can improve

the value of objective function (equation 21) by moving x� to a

vertex of the hypercube search space, this lemma is proved.

By Lemma 7, the original GKO problem becomes Nonlinear

Programming for the GKO Problem

max f (x)~
XN

i~1

X
(k0,k1,...,kT )[PT (i,z)

( P
n

j~0
x

k
00
j

)W (k0,k1, . . . ,kT )gi ½0�

0
@

1
Að23Þ

subject to 0ƒxrƒ1, for r[S{
T (z): ð24Þ

The Filter-Dynamical-Path Algorithm. We introduce the

Filter-Dynamical-Path (FDP) algorithm to approximate the

objective function f (x) in the form of equation (23). The FDP

algorithm, generating the terms of objective function f (x) step by

step backward from time T to time 0, discards insignificant terms

at each step. Since the long run behavior of most GRNs shall be

stable, At in the DDS model also has to be such when t increases.

The contributions of most paths will thus vanish and the

corresponding terms are removed by the FDP algorithm when

time t is long enough.

Let Pz(j,t,z,T) (P{(j,t,z,T)) denote the collection of those

positive (negative) paths through gene j at time t to gene z at time

T and their weights. P(j,t,z,T) represents the union of

Pz(j,t,z,T) and P{(j,t,z,T). Wz
j ½t� (W{

j ½t�) denotes the total

weight of positive (negative) paths in Pz(j,t,z,T) (P{(j,t,z,T)).
The FDP algorithm, moving backward over time, removes those

Figure 3. Algorithm 1. Filter-Dynamical-Path(A, S, z, T, s).
doi:10.1371/journal.pone.0009331.g003
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positive (negative) terms such that the total weight of the related

paths is at most s of the total weight of the remaining positive

(negative) paths. We call s the prune coefficient. Let ~ff be the

approximate value to the true objective function value f . In our

simulation study, the relative error is roughly bounded by

~ff {f

f

�����
�����ƒ s{sT{1

1zs
, if T is odd; or

~ff {f

f

�����
�����ƒ szsT{1

1zs
, if T is even:

The inequalities suggest that the smaller s is, the closer the

approximation is to the true value. For instance, when s is 0:001

and T is 10, we have 0:99f ƒ
~ff ƒ1:01f . Details of the FDP

algorithm is shown as Fig. 3.

The GKONP Algorithm. Based on the nonlinear formu-

lation, we develop a heuristic algorithm to solve the GKO

problem. We call it the GKONP algorithm, shown as Fig. 4.

It combines the FDP algorithm and a differential evolution (DE)

algorithm for nonlinear programming. The GKONP algorithm

simplifies the objective function first by the FDP algorithm and

then use the DE algorithm to obtain a final solution to the GKO

problem.

The DE algorithm [17,18] approaches a global maximum of

non-concave objective functions as in the GKO problem. The

DE algorithm is an evolutionary optimization method. The first

step is to generate an initial population of feasible solutions,

typically 2 to 50 times of the decision variables. Each individual

in the population either remains unchanged or mutates to a new

feasible solution in one iteration of evolution. The occurrence of

a mutation depends on a trial vector and a probability p. The trial

vector combines three other individuals, randomly chosen from

the population. If the trial vector is a feasible solution and

improves the value of objective function, then the individual

mutates to the trial vector with probability p. Since the evolution

of an individual is independent of others, evolutions of

individuals can progress simultaneously and hence can be done

in parallel.

Results

The GKONP algorithm is applied to improve the concentra-

tions of downstream proteins or protein complexes Fus3PP,

Fur1PP-Cdc28 (complex N) and Fur1PP-Gbc (complex M),

involved in the yeast pheromone pathways. Moreover, we evaluate

our algorithm on randomly generated DDS models to illustrate its

empirical accuracy and running time.

Optimal Deletion in the Yeast Pheromone Pathways
We demonstrate our GKONP algorithm using a realistic

Saccharomyces cerevisiae pheromone pathway model developed by

Kofahl et al. [14], shown in Fig. 5. The model is obtained after they

Figure 4. Algorithm 2. GKONP(prune coefficient s, tolerance r).
doi:10.1371/journal.pone.0009331.g004

Figure 5. The schematic diagram for the pheromone pathway
[14]. The ellipse shapes represent proteins while the rectangle shapes
represent protein complexes. The solid lines represent the intracellular
reactions while the thick dash lines represent catalysis. We note that the
decomposition from complexes E, F, G, H and L to proteins Ste20, Gbc,
Ste5, Ste11, Ste7 and the dephosphorylation of Fu3PP are not shown in
the diagram since they are less dominant than those shown in the
pheromone pathway.
doi:10.1371/journal.pone.0009331.g005
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studied cell cycle arrest, mating activity, and pheromone sensitivity.

The model is publicly available from the BioModels database [19]

in the form of a dynamical system model composed of ordinary

differential equations (ODEs). The pheromone signaling pathway

involves a series of biochemical reactions starting with the receptor

of MATa receiving pheromone a factor from haploid MATalpha.

From the cytoplasm, the pheromone signal enters the nucleus to

express downstream protein Fus3PP, protein complex N and

protein complex M, which together control pheromone sensitivity,

cell polarity and cell cycle arrest for preparation of cell fusion

between two mating haploid yeast cells, MATalpha and MATa.

Haploid MATa cannot stop cell cycle to mate with MATalpha if the

concentrations of the three protein products are low. Therefore, it is

desirable to engineer the yeast to improve these downstream protein

products to increase mating activity.

Thus, we applied the GKONP algorithm to identify upstream

knockout genes to improve the concentrations of the three

downstream protein products. By simulation using the ODE model,

we first generated continuous-time trajectories. Second, we sampled

them every 0.6 seconds from 0 to 6 seconds to obtain discrete-time

trajectories. Then we reconstructed a DDS model (Appendix S1)

from the discrete-time trajectories using a data-driven method [13]

that balances goodness-of-fit and model complexity. The DDS model

captures the transient dynamics in the pathway in which the three

protein products are actively expressed. Using the DDS model as

input, we ran the GKONP algorithm three times to search for three

optimal target gene sets in the pathway for improving the

concentrations of downstream products of Fus3PP, complex N and

complex M, respectively. A feasible solution is any subset of {Ste2,

Ste5, Ste11, Ste7, Ste20, Ste12, Fus3PP, Bar1, Far1PP, Cdc28}. The

optimal target gene sets for improving each of Fus3PP, complex N

and complex M are {Ste5, Ste7, Ste12},{Ste12} and {Ste12},

respectively. The optimal target genes obtained through GKONP

algorithm were validated in the original ODE model. By assigning

zero values to the deleted genes, we simulated the modified dynamics

of the engineered ODE model. Figure 6 presents the transient

dynamics, computed from the original ODE model as a validation, of

the concentrations of Fus3PP, complex N and complex M in the wild

type and five mutants from 0 to 6 seconds. The modified dynamics

are compared with those of wild type and three observed mutants

which have high concentrations of at least one of those three

downstream protein products. These three observed mutants include

a mutant whose Gba is overexpressed (double amount of Gba) [20], a

mutant whose Ste2 loses function (the hydrolysis of GaGTP to

GaGDP is almost stopped) [21] and a mutant that has no

phosphatase activity on Fus3PP (the concentration of Fus3PP is

strongly increased for a long time) [22]. From this figure, we

demonstrate that, by deleting optimal subsets of target genes, the

concentrations of all three desirable downstream protein products are

higher than the wild type and the trial-and-error in vivo mutants.

Accuracy and Time Efficiency
Nine randomly generated DDS models were used to test the

performance of the GKONP algorithm. The model sizes are

Figure 6. The optimal solution from the GKONP algorithm vs. the wild type and three observed mutants. The GKONP optimization (top
diamond lines) returned higher concentrations of desired downstream proteins (Left: Fus3PP, Middle: Complex M, and Right: Complex N) than both
the wild type and the in vivo trial-and-error mutants [14]. Left: the optimal target genes are Ste5, Ste7 and Ste12. Middle and right: the optimal target
gene are both Ste12. The dynamics of wild type, the mutant (Sst2 lost-of-function), and the mutant without phosphatase activity on Fus3PP overlap
in all three plots.
doi:10.1371/journal.pone.0009331.g006
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10, 20 and 30, with 3 instances for each size. As each gene is

only regulated directly by a very small portion of its network,

without loss of generality, we constrained each DDS model

such that each gene has less than three parent genes. Thus, no

more than three entries were non-zero in each row of matrix

A, whose values were between {1 to 1. Each gene had one

unit of concentration at time 0. We applied the GKONP

algorithm on the DDS models to maximize the concentration

of the first gene at time 10. Prune coefficient s was set to 10{5.

We also ran the brute force exhaustive search algorithm on the

DDS models as a reference for performance evaluation of the

GKONP.

Table 1 shows the GKONP algorithm approaches optimal

solutions accurately because all six approximations for the 10 gene

and 20 gene DDS models are identical to the optimal values, given

by the exhaustive algorithm.

The running time as a function of model sizes is shown in Fig. 7.

The exhaustive search algorithm for the 30-gene DDS models

took more than five days and we rounded the time to five days.

The speedup of the GKONP algorithm ranges from 0.09 to 1.42

in the 10-gene models, 47 to 11,388 in the 20-gene models, and

4,763 to 165,390 in the 30-gene models. Therefore, Figure 7

suggests that the GKONP algorithm is much more efficient than

the exhaustive search algorithm.

In Fig. 8 the number of paths decreases significantly after the

FDP algorithm is applied, so that the DE algorithm runs in a

reduced search space.

Since the GKONP searches negative paths of a DDS model, it

was slower with 10 genes than the exhaustive search. However, as

the number of genes increases to 20 and 30, our approach has

extraordinary speedup over the exhaustive search. With the same

model size, the running time advantage of GKONP becomes

evident when the topology of a DDS model contains either few

negative paths or very few genes in negative paths. For instance, a

20-gene DDS model had 8 genes in negative paths and the

GKONP yielded a speedup of 11,388 versus another 20-gene

model with a speedup of only 47.

This simulation study demonstrates empirically that the

GKONP algorithm has achieved good accuracy in a practical

amount of running time.

Discussion

We have established that the optimal in silico target gene

deletion problem is challenging, by showing that a nonlinear

integer programming formulation of the GKO problem based on

the DDS model is NP-hard. A nonlinear programming solution is

provided that combines heuristics based on the sparsity of typical

GRNs and a parallel differential evolution algorithm for nonlinear

programming. Multiple simultaneous gene deletion is handled in

our approach, while all existing strategies delete one gene at a

time. Our algorithm GKONP has shown its substantially reduced

running time and comparable accuracy with the optimal solutions

using exhaustive search algorithms. Demonstration of our solution

on a realistic model of yeast pheromone pathways has suggested

potential impact of our work. Hopefully, ideas presented in this

paper will bring out potentially harder but biologically more viable

computational problems for richer formulation of the target gene

deletion problem, based on more complex dynamical system

models of gene regulatory and metabolic networks with additional

constraints on side effects.

Figure 8. Average path reduction by the FDP algorithm. The red line
with circles represents the number of paths before FDP reduction while the
blue line with diamonds represents the number after FDP reduction.
doi:10.1371/journal.pone.0009331.g008

Figure 7. Average running time of the GKONP algorithm and
the exhaustive search algorithm. The GKONP algorithm is
represented by the blue line with diamonds while the exhaustive
search algorithm is by red line with circles.
doi:10.1371/journal.pone.0009331.g007

Table 1. Approximate GKONP solutions versus the optimal
solutions.

Data set # Genes Optimal value GKONP value

1 10 0.1734801 0.1734801

2 10 0.3546365 0.3546365

3 10 0.01020017 0.01020017

4 20 0 0

5 20 0.02599726 0.02599726

6 20 0.1683985 0.1683985

doi:10.1371/journal.pone.0009331.t001
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Supporting Information

Appendix S1 The DDS Model for the Pheromone Pathway

Found at: doi:10.1371/journal.pone.0009331.s001 (0.03 MB

PDF)
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