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Abstract

Reactive oxygen species (ROS) are signalling molecules whose study in intact organisms

has been hampered by their potential toxicity. This has prevented a full understanding of

their role in organismal processes such as development, aging and disease. In Caenorhab-

ditis elegans, the development of the vulva is regulated by a signalling cascade that includes

LET-60ras (homologue of mammalian Ras), MPK-1 (ERK1/2) and LIN-1 (an ETS transcrip-

tion factor). We show that both mitochondrial and cytoplasmic ROS act on a gain-of-function

(gf) mutant of the LET-60ras protein through a redox-sensitive cysteine (C118) previously

identified in mammals. We show that the prooxidant paraquat as well as isp-1, nuo-6 and

sod-2 mutants, which increase mitochondrial ROS, inhibit the activity of LET-60rasgf on vul-

val development. In contrast, the antioxidant NAC and loss of sod-1, both of which decrease

cytoplasmic H202, enhance the activity of LET-60rasgf. CRISPR replacement of C118 with

a non-oxidizable serine (C118S) stimulates LET-60rasgf activity, whereas replacement of

C118 with aspartate (C118D), which mimics a strongly oxidised cysteine, inhibits LET-

60rasgf. These data strongly suggest that C118 is oxidized by cytoplasmic H202 generated

from dismutation of mitochondrial and/or cytoplasmic superoxide, and that this oxidation

inhibits LET-60ras. This contrasts with results in cultured mammalian cells where it is mostly

nitric oxide, which is not found in worms, that oxidizes C118 and activates Ras. Interestingly,

PQ, NAC and the C118S mutation do not act on the phosphorylation of MPK-1, suggesting

that oxidation of LET-60ras acts on an as yet uncharacterized MPK-1-independent pathway.

We also show that elevated cytoplasmic superoxide promotes vulva formation indepen-

dently of C118 of LET-60ras and downstream of LIN-1. Finally, we uncover a role for the

NADPH oxidases (BLI-3 and DUOX-2) and their redox-sensitive activator CED-10rac in

stimulating vulva development. Thus, there are at least three genetically separable path-

ways by which ROS regulates vulval development.

Author summary

Reactive oxygen species (ROS) are signalling molecules whose study in intact organisms

has been hampered by their potential toxicity. In Caenorhabditis elegans, the development

of the vulva is regulated by a signal transduction cascade that includes LET-60ras (the
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worm homologue of mammalian RAS), MPK-1 (the worm homologue of ERK1/2), and

LIN-1 (an ETS transcription factor). Here, using C. elegans vulva development as a model,

we show that both mitochondrial and cytoplasmic ROS act on the worm homologue of

RAS (LET-60ras) through a redox-sensitive cysteine (C118). However, in contrast to what

is observed in cultured mammalian cells, we find that C118 is oxidized by hydrogen per-

oxide, rather than by superoxide or nitric oxide, and that its oxidation inhibits rather than

activates the pathway. Furthermore, we find that the regulation of LET-60ras by oxidation

does not act through MPK-1 to affect vulva development. We also identify two additional

ROS signalling pathways that promote vulva development. Elevated cytoplasmic superox-

ide promotes vulva formation independently of C118 of LET-60ras and downstream of

LIN-1, whereas the NADPH oxidases (BLI-3 and DUOX-2) and their redox-sensitive acti-

vator CED-10rac act in yet another parallel pathway to promote vulval formation.

Introduction

Reactive oxygen species (ROS) are signalling molecules that participate in regulating many cel-

lular processes [1–3], including in C. elegans [4–8]. Superoxide (O2
•-) is produced by a variety

of processes, including intracellularly by mitochondrial respiration [9], enzymes such as cyto-

chrome P450 and aldehyde oxidase [10, 11], as well as extracellularly by membrane-bound

NAPDH oxidases (NOXs) [12]. Hydrogen peroxide (H2O2) is produced by the action of super-

oxide dismutases, which convert superoxide to hydrogen peroxide [13], as well as directly by

enzymes like xanthine oxidase [14] and monoamine oxidase [15]. It is also produced by the

Dual Oxidases (DUOXs), a sub-class of NOX proteins that possess a peroxidase domain, and

can thus convert superoxide to hydrogen peroxide [16]. Several distinct enzymatic systems,

such as the Catalases (Ctls) [17], Glutathione peroxidases (Gpxs) [18], Thioredoxins (Trxs)

and Peroxiredoxins (Prdxs) [19] remove hydrogen peroxide, thus terminating any signal it

might carry. In C. elegans, there are five distinct superoxide dismutases (SODs), with SOD-2

the main mitochondrial matrix enzyme, SOD-1 the main cytoplasmic and mitochondrial

inter-membrane space enzyme, and SOD-4 the extracellular space enzyme [20]. There are two

NOXs of the Duox sub-class, with BLI-3 required for proper development of the cuticle via

tyrosine cross-linking [21–23], and the very similar DUOX-2 to which no function has yet be

assigned [24, 25].

One of the ways ROS can participate in signalling, is by modulating the activities of small

GTPases. For examples, the Ras signalling pathway is known to be modulated by ROS in mam-

mals [26, 27] and C. elegans [4, 28]. One of the ways the RAS pathway is affected by ROS in

mammals is by direct oxidation of a sensitive cysteine (C118) of the RAS protein itself, by

nitric oxide (NO) and superoxide [29, 30] as well as by hydrogen peroxide in the presence of

transition metals [31]. This has been mostly studied in vitro [29–33], and in cultured cells [27,

34–36] but to a much lesser extent in vivo [37]. Redox-sensitive cysteines have also been stud-

ied in other small GTPases, such as Rac, where the C18 cysteine has been identified as redox-

sensitive [38] as well as Rho, where it’s the C20 cysteine that is sensitive [39]. Studies with Ras

and Rac have generally concluded that oxidation of these cysteines (C118 and C18, respec-

tively) leads to the activation of the protein by stimulating guanine nucleotide release. In con-

trast, oxidation of C20 generally inhibits Rho proteins because of the presence of an additional

cysteine, C16. Oxidation of C20 promotes guanine nucleotide release but subsequent disulfide

bridge formation between C16 and C20 prevents guanine nucleotide binding, thus inactivating

the protein [39]. A powerful tool to study the roles of these sensitive cysteines in vitro and in
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vivo is by replacement of the cysteine by a serine that cannot be oxidized [6, 33, 38] or by an

aspartic acid to mimic oxidation [38, 40].

In C. elegans the Ras pathway has been particularly well characterized for its role in the

development of the C. elegans vulva, the egg-laying organ [41, 42](Fig 1A). let-60ras encodes

the C. elegans orthologue of mammalian Ras and is most similar to K-Ras [43]. Severe loss-of-

function mutants of let-60ras cannot survive, but a gain-of-function mutation (n1046gf),
resulting in a G13E substitution, is viable [44] (below we denote this mutation as let-60rasgf).
Such oncogenic mutations at G13 (Fig 1B and S1 Fig) favor the active GTP-bound state [45,

46]. In C. elegans, this mutation induces the formation of multiple vulvas instead of only a

Fig 1. The multivulva phenotype of let-60rasgf is sensitive to ROS. let-60ras(n1046gf) is denoted in the figure as let-60gf. A The

genetic pathway by which LET-60ras promotes vulval development. C. elegans gene names are in lowercase italics, and the

corresponding mammalian protein homologues are in uppercase. The pathway depicts the genetic epistatic relationships between

the genes rather than the biochemical interactions of the proteins. Gain-of-function mutations that activate LET-60ras or loss-of-

function mutations in lin-1 lead to the development of multiple vulvas. B Space-filling model of human K-Ras bound to GTP,

showing the residue (G13) that is mutated in let-60rasgf, and the redox-sensitive cysteine (C118). The structure (PDB ID: 3GFT)

was derived using Pymol. C Sample images from mutants scored in D (asterisks denote the vulvas and arrowheads the

pseudovulvas). The scale bar represents 50 μm. D Number of vulvas of the wild type and the let-60rasgf mutant after treatment

with PQ and NAC. ���P = 0.0001 compared to let-60rasgf.

https://doi.org/10.1371/journal.pgen.1008838.g001
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single one: the multiple vulva phenotype (Muv) (Fig 1C). An important relay downstream of

LET-60ras is MPK-1, the sole C. elegans homologue of the extracellular-signal regulated kinase

(ERK1/2), whose level of phosphorylation at two sites is one of the molecular readouts of LET-

60ras activation [47](Fig 1A). LIN-1, an ETS-domain transcription factor, acts downstream of

MPK-1 to inhibit vulval cell fates [47, 48]. Whereas it is gain-of-function mutations in let-
60ras that produce the Muv phenotype, it is loss-of-function mutations that do so in lin-1.

Here we use C. elegans vulva formation in the sensitized let-60rasgf gain-of-function back-

ground to dissect aspects of ROS signalling in a fully in vivo situation. We do this with genetic

and pharmacological manipulations that are in the physiological range, with no impact on the

organism’s health. We monitor real developmental outcomes (vulva formation) and, by con-

trolling sources, sinks, and especially targets, we could identify genetically distinct ROS signal-

ling pathways, despite that fact that they act in parallel and use the same enzymes and the same

active molecules (superoxide and peroxide). We also provide strong evidence that it is hydro-

gen peroxide, rather than any other ROS species, that is responsible for cysteine oxidation and

that in C. elegans, in vivo, oxidation inhibits, rather than activates LET-60ras and CED-10rac.

Results

RAS signalling is sensitive to ROS

The let-60rasgf mutant provides a sensitized background to score changes in RAS signalling,

and allowed for extensive characterization of the pathway by identifying suppressors and

enhancers [42]. We used the same logic to identify and characterize mechanisms of ROS sig-

nalling acting on the RAS pathway and on vulva formation in general. We treated let-60rasgf
mutants with the prooxidant paraquat (PQ). PQ can potentially generate superoxide at many

cellular sites [49], but its main site of superoxide production is believed to be in the mitochon-

drial matrix [50, 51]. We used a very low concentration of PQ (0.1–0.2 mM) that has been

shown to increased mitochondrial superoxide [6, 52, 53] but without toxicity [52]. Such a low

concentration might provide for alteration of ROS signals within the physiological range. In

the presence of mitochondrial and cytoplasmic SODs, increased superoxide generation by PQ

is expected to lead to increased hydrogen peroxide generation. N-acetyl cysteine (NAC) is a

precursor of glutathione and thus functions as an antioxidant by facilitating the removal of

peroxides, including hydrogen peroxide [54]. We used NAC at 9 mM, a concentration that has

been shown to lower ROS [55] but has no effect on wild type viability [52]. Like other studies

using prooxidants on let-60rasgf mutants [28], we found that although PQ had no effect on

vulva formation in the wild type, it partially suppressed the Muv phenotype of let-60rasgf (Fig

1D). Conversely, we found that NAC treatment had no effect on the wild type but enhanced

the Muv phenotype of let-60rasgf (Fig 1D). We tested two additional alleles of let-60 in addi-

tion to the canonical n1046gf allele (S2 Fig). The n1700 allele leads to the same amino acid

change as n1046 (G13E), but was independently isolated and is thus in a different background.

It leads to a slightly more severe Muv phenotype. The effects of PQ and NAC on this allele

were qualitatively the same, suppression and enhancement, respectively. However, the sup-

pression was relatively greater and the enhancement relatively less, likely due to the more

severe baseline Muv phenotype. We also tested ga89, a weaker temperature-sensitive allele

[56]. However, the allele is so weak, even at the restrictive temperature (26˚C), that only the

suppressing effect of PQ could be reasonably inferred (S2 Fig). At this stage we could infer that

oxidation inhibits a target that could be either LET-60ras itself or another activator of the RAS

pathway. All numerical values for all Muv data shown in bar graphs in all figures are given in

S1 Table. We report the total number of vulvas (which includes both the main vulva and the
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ectopic pseudovulvas) and the controls shown are always scored in parallel for every

experiment.

Cysteine C118 of LET-60ras is the target of oxidation by PQ

As described in the introduction, cysteine C118 of mammalian RAS is a known potential target

of oxidation by NO and superoxide, with oxidation resulting in activation of the protein.

Nitrosylation is not relevant in C. elegans, which lacks nitric oxide synthases [57]. We tested

whether C118 was involved in the PQ and NAC sensitivity that we observed (although we

observed inhibition rather than activation by PQ, and activation by an antioxidant, NAC). We

used CRISPR to replace C118 with a serine (C118S). Serine has a similar structure to cysteine

but cannot be oxidized by cellular ROS [58](Fig 2A and 2B). We produced C118S alleles,

qm226 and qm225, in the wild type and let-60rasgf backgrounds, respectively. Below we also

describe alleles in which C118 is replaced by aspartic acid (C118D). For clarity, we use the fol-

lowing formalism when new alleles that affect C118 are involved: we denotate the wild type let-
60 allele as let-60(+) and we use let-60ras(+)-C118S (or C118D) and let-60rasgf-C118S (or

C118D) to denotate single and double mutants in which C118 has been replaced by another

amino acid.

The C118S replacement had no effect on vulva formation in the wild type, but strongly

enhanced vulval induction in let-60rasgf mutants (Fig 2C and S3 Fig). We scored both the

Muv phenotype by counting visible pseudovulvas in adults (Fig 2C and 2D) as well as invagi-

nations in L4-stage larvae (S3 Fig). The C118S replacement fully suppressed all effects by PQ

or NAC (Fig 2D). The degree of enhancement produced by C118S was very similar to that

produced by NAC (Fig 2D). We conclude that in the let-60rasgf background, PQ acts on the

Muv phenotype by increasing hydrogen peroxide levels, leading to increased oxidation of

C118, and NAC acts by preventing oxidation of C118 by lowering hydrogen peroxide levels.

When C118 is replaced by a serine that cannot be oxidized, neither compound has any effect.

The fact that the C118S replacement leads to increased vulva formation indicates that C118 is

normally partially oxidized. The picture of RAS oxidation by ROS is thus very different in liv-

ing intact C. elegans from that in vertebrate cells: both the mechanism of oxidation (by hydro-

gen peroxide rather than by superoxide or nitric oxide) and the consequence of oxidation

(inhibition rather than activation) are different.

Mimicking constitutive oxidation of C118 fully suppresses the oncogenic

let-60rasgf allele

Oxidation of cysteine produces cysteine sulfenic acid, which can be further oxidised to form

sulfinic acid and then sulfonic acid [59](Fig 2B). The molecular shape and charges of cysteine

sulfinic acid is mimicked by aspartic acid (D) [40](Fig 2A and 2B). We used CRISPR to

replace C118 with aspartic acid (C118D), creating two alleles, qm227 and qm228, in the let-
60rasgf and in the wild-type backgrounds, respectively. This should mimic an intermediate but

permanent degree of oxidization of C118 (Fig 2B). Strikingly, both let-60ras(+)-C118D and

let-60rasgf-C118D mutants have only a single vulva and, like the wild type, are completely

insensitive to PQ and NAC (Fig 2C and 2E). This is consistent with our interpretation of the

effects of PQ and NAC treatment on let-60rasgf and let-60rasgf-C118S: oxidation at C118

inhibits Ras signalling. Note that the down-regulation produced by the C118D substitution

doesn’t prevent the formation of a vulva, whereas loss-of-function mutations in let-60ras are

vulvaless [44]. Thus, one possibility for the complete suppression of the multi-vulva phenotype

of the let-60rasgf oncogenic gain-of-function mutation (G13E) by C118D is that the mode of

action of oncogenic mutations at G13 might be by interference with the normal regulation by
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oxidation at C118 (Fig 1B). In other words, the C118D mutation could be specifically counter-

acting the effects of the gain-of-function mutation rather than simply down-regulating LET-

60rasgf activity. However, our findings of the level of expression of the LET-60rasgf-C118D

protein suggest that there may be other possible reasons for the complete suppression of the

Muv phenotype in these double mutations (see below).

Fig 2. The activity of LET-60ras is inhibited by oxidation of C118. let-60ras(n1046gf) is denoted in the figure as let-60gf. A Serine mimics a non-

oxidizable Cysteine, whereas Aspartic acid mimics Sulfinic acid, a doubly oxidised form of Cysteine. B Oxidative modifications of Cysteine. C Sample

images from mutants scored in D and E (asterisks denote the vulvas and arrowheads the pseudovulvas). Scale bar represents 50 μm. D, E ���P = 0.0001

compared to let-60rasgf or as indicated. D C118S denotes a CRISPR modification which changed a TGT codon to a TCT thus resulting in a Cysteine to

Serine substitution at amino acid position 118 (C118S). Number of vulvas of let-60ras(+)-C118S, let-60rasgf, and let-60rasgf-C118S mutants in combination

with PQ and NAC treatments. E C118D denotes a CRISPR modification which changed a TGT codon to a GAT thus resulting in a Cysteine to Aspartic

Acid substitution at amino acid position 118 (C118D). Number of vulvas of let-60ras(+)-C118D, let-60rasgf, and let-60rasgf-C118D mutants in combination

with PQ and NAC treatments.

https://doi.org/10.1371/journal.pgen.1008838.g002
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The degree of oxidation of C118 or the inhibition of oxidation by the

C118S mutation does not act on vulva formation through MPK-1

phosphorylation

Activation of the Ras pathway leads to increased phosphorylation of the downstream effector

MPK-1 in C. elegans as in other systems [47, 60] (Fig 1A). To investigate whether changes of

oxidation of LET-60rasgf by compound treatment or by mutations (C118S or C118D) counter-

acts or enhance the effects of let-60rasgf on MPK-1 phosphorylation, we used commercial anti-

bodies to quantify MPK-1 phosphorylation in vivo, by Western Blot (Fig 3A and 3B and S4

Fig). There are two isoforms of MPK-1 (a and b), with MPK-1a believed to be the relevant iso-

form to signalling events in the animal’s soma, including vulval development [61]. Using a vari-

ety of controls to ensure accurate quantification (S4 Fig and S5 Fig), we observed increased

phosphorylation of MPK-1a in let-60rasgf mutants (Fig 3A and 3B) as expected. However,

phosphorylation of MPK-1a was not affected in any way in let-60ras(+)-C118S or let-60rasgf-
C118S mutants and neither was it significantly suppressed by PQ treatment or enhanced by

NAC treatment of let-60rasgf, despite the dramatic effects of the treatments and the mutation

on the Muv phenotype (Fig 3A–3D). These findings suggest that activated Ras might impinge

on vulva formation through more than one effector and ROS levels regulate vulval development

independently of MPK-1 phosphorylation (see Discussion). However, in contrast to the lack of

effects of the treatments and of the C118S mutation, the C118D mutation was capable of sup-

pressing the increases level of MPK-1 phosphorylation that is observed in let-60rasgf mutants,

such that the level of MPK-1 phosphorylation in let-60rasgf-C118D mutants is the same as that

observed in the wild-type. See below for additional discussion of this observation.

The effects of altered oxidation and the C118S mutation are not mediated

by altered protein stability

We sought to investigate whether changes of protein stability could be the mechanism by

which oxidation affects LET-60rasgf and RAS signaling. The possibility existed because over-

expression of wild type LET-60ras can lead to the Muv phenotype [62]. We examined how the

C118S mutation, and PQ and NAC treatments affect the LET-60ras protein levels for both

LET-60ras(+) and LET-60rasgf using Ras-specific commercial antibodies (Fig 3E–3H and S6

Fig). We did not observe any effects on protein levels nor did we observe any effects on let-60
mRNA levels (S7 Fig).

The LET-60rasgf-C118D double mutation lowers protein levels

In contrast to what we observed with drug treatments and for LET-60rasgf-C118S, the protein

level of LET-60rasgf-C118D but not of LET-60ras(+)-C118D is significantly lower than that of

LET-60ras(+) (Fig 3E and 3F). Possibly therefore, the full suppression of the Muv phenotype

observed in let-60rasgf -C118D mutants could be due to the lower level of protein acting on

the MPK-1 phosphorylation pathway. Alternatively, the depth of the effect (complete suppres-

sion of Muv) could be the result of a double effect: an effect on the MPK-1 pathway via lower

LET-60rasgf protein expression and an effect on the MPK-1-independent pathway that

appears to mediate the other effects of changes to the oxidation status of C118 of LET-60ras.

C118 oxidation depends on the cytoplasmic pool of hydrogen peroxide

regulated by SOD-1

Any excess O2
•- produced by PQ treatment is expected to be converted to hydrogen peroxide

by superoxide dismutases. Although there are 5 SODs in C. elegans, cytoplasmic SOD-1 and
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Fig 3. The effects of altered oxidation by PQ and NAC and the C118S mutation are not mediated via MPK-1 or by altered protein

stability whereas the let-60rasgf-C118D double mutation affects both. A A representative Western blot for phosphorylated MPK-1a
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mitochondrial SOD-2 account for virtually all SOD activity [20, 63]. SOD-1 may also be pres-

ent in the mitochondrial inter-membrane space as is the case in other organisms [64]. To

determine the enzymatic source of the relevant hydrogen peroxide, we constructed a let-
60rasgf;sod-1 double mutant. These double mutant animals displayed an enhanced Muv phe-

notype (Fig 4A), similar to that obtained by treating let-60rasgf with NAC or replacing cysteine

C118 with serine (Fig 2D). Furthermore, the mutants’ Muv phenotype is no longer enhanced

by NAC or suppressed by PQ (Fig 4A). These observations suggest two, not mutually exclu-

sive, mechanisms concerning the origin of the hydrogen peroxide that can oxidize C118: 1)

Wherever it is produced, the superoxide produced by PQ reaches the compartment in which

SOD-1 is present, and/or 2) in the absence of SOD-1, any hydrogen peroxide produce by other

SODs from PQ-dependent superoxide cannot produce a sufficient elevation of cytoplasmic

hydrogen peroxide to affect C118 of LET-60ras. Other elements of the data presented in Fig

4A, such as the enhanced vulva formation produced by PQ and the effect of the C118S muta-

tion in the absence of SOD-1, are discussed further below.

Ras signalling is sensitive to increased mitochondrial superoxide levels in

mitochondrial mutants

Mitochondria are a site of ROS formation that has been studied extensively. Mitochondrially-

derived ROS are believed to be involved in signals that affect mitochondrial dynamics [65],

mitophagy and autophagy [66], apoptosis, responses to changes in oxygen levels particularly

hypoxia, inflammatory responses [67, 68], wound healing [6, 69] and aging [70]. We used

three mutations that have elevated mitochondrial superoxide levels. sod-2 mutants completely

lack the main mitochondrial matrix superoxide dismutase SOD-2 [71]. isp-1 and nuo-6 are

point mutants in subunits of the mitochondrial respiratory chain that lead to low electron

transport, low ATP levels but high level of superoxide generation [72, 73]. All three mutations

suppress the Muv phenotypes in double mutant combinations with let-60rasgf (Fig 4B). sod-2
suppresses by about 40% but isp-1 and nuo-6 suppresses almost completely (Fig 4B).

As described above, the loss of SOD-1 enhances the Muv phenotype (Fig 4A) while the loss

of SOD-2 suppresses it (Fig 4B). We found that suppression of the Muv phenotype by loss of

SOD-2 is partially abrogated by the loss of SOD-1 (Fig 4C) or by treatment with NAC (Fig

4D). These observations suggest that loss of mitochondrial SOD-2 suppresses let-60rasgf via a

SOD-1-dependent increase in cytoplasmic or mitochondrial inter-membrane hydrogen perox-

ide (Fig 4E). This conclusion was supported by the finding that replacement of C118 with ser-

ine in the let-60rasgf background suppresses the effect of loss of SOD-2 on the Muv phenotype

(Fig 4B). Fig 4E suggests a model of how the increased superoxide produced in the mitochon-

drial matrix in the absence of SOD-2 reaches the inter-membrane space and/or cytoplasm,

where SOD-1 is located. The model includes that in the absence of a mitochondrial matrix

SOD, superoxide can be transported out of both mitochondrial compartments into the cyto-

plasm through specialised channels [74, 75]. Thus, our results suggest that in the absence of

(pMPK-1a), total MPK-1a and Histone H3 as a loading control. Unprocessed original scans of blots and additional analyses are shown in S4

Fig. B The mean ratio of phosphorylated MPK-1a (pMPK-1a) to total MPK-1a ± SEM of three different Western blots. C A representative

Western blot for phosphorylated MPK-1a (pMPK-1a), total MPK-1a and Histone H3 as a loading control. Unprocessed original scans of

blots and additional analyses are shown in S5 Fig. D The mean ratio of phosphorylated MPK-1a (pMPK-1a) to total MPK-1a ± SEM of three

different Western blots. E A representative Western blot for LET-60 with Tubulin as a loading control. Unprocessed original scans of blots

are shown in S6A Fig. F The mean band intensity ± SEM of three different Western blots normalised to band intensities in the wild type. G A

representative Western blot for LET-60 with Histone H3 as a loading control. Unprocessed original scans of blots are shown in S6B Fig. H

The mean band intensity ± SEM of three different Western blots normalised to band intensities in the wild type. Molecular weight markers

are shown for E and G as different loading controls were used for these blots. All bars are compared to the wild-type control bar or as

indicated. ��P<0.01, ���P<0.001.

https://doi.org/10.1371/journal.pgen.1008838.g003
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Fig 4. The SOD-1-dependent pool of cytoplasmic hydrogen peroxide regulates Ras via oxidation of C118. let-60ras(n1046)gf is denoted in the figure as let-
60gf. ���P = 0.0001 compared to let-60rasgf or as indicated. A Number of vulvas of sod-1, let-60rasgf, sod-1; let-60rasgf and sod-1; let-60rasgf-C118S mutants in
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SOD-2, superoxide exits the mitochondria to raise levels of hydrogen peroxide in the inter-

membrane space and/or the cytoplasm through the action of SOD-1.

Similarly, we tested whether the Muv suppression by isp-1 and nuo-6 depended on C118 by

scoring the Muv phenotype in isp-1 let-60rasgf-C118S and nuo-6; let-60rasgf-C118S double

mutants (Fig 4B). The C118S replacement also suppressed the Muv suppression by these mito-

chondrial mutants. Since functional wild-type SOD-2 is present in isp-1 and nuo-6 mutants

the effect of their known increased superoxide generation might act through a SOD-2-depen-

dent production of hydrogen peroxide in the mitochondria. This excess mitochondrial hydro-

gen peroxide could participate to the cytoplasmic pool by exiting the mitochondria through

passive membrane diffusion or through specialized channels [76] (Fig 4E). Consistent with

what we observed for let-60ras(+)-C118S and let-60rasgf-C118S (Fig 3C and 3D), the isp-1 and

nuo-6 mutations do not affect the levels of MPK-1 phosphorylation (Fig 4F and 4G and S8

Fig). In addition, the fact that the suppression of the effect of the ETC mutants by C118S is not

complete suggests that other consequences of the mutations, such as low electron transport

and low ATP levels might also participate in suppressing the Muv phenotype.

For our observations on the effect of sod-2, isp-1, and nuo-6 on the Muv phenotype we can-

not exclude an alternative interpretation: that all the effects we observe are additive, rather

than revealing interactions. However, given the known relationships between the cytoplasmic

and mitochondrial ROS pools discussed and reviewed in the above paragraphs, this alternative

model appears less likely.

The intracellular superoxide pool affects vulva formation by a separate

pathway that is independent from hydrogen peroxide generation

As we have seen above, the C118S mutation produces an elevated Muv phenotype that is very

similar to that produced by NAC, and NAC has no additional effects on C118S mutants. In

addition, the suppression of the Muv phenotype by PQ is fully abolished by the C118S muta-

tion (Fig 2D). Thus, let-60rasgf-C118S mutants, with or without NAC or PQ treatment, have

almost the same Muv phenotype as let-60rasgf treated with NAC (Fig 2D). However, loss of

SOD-1 in the let-60rasgf background produces an increase in the Muv phenotype that is signif-

icantly greater than that produced by NAC (Fig 4A). Furthermore, in the absence of SOD-1,

PQ not only fails to suppress the Muv phenotype, it actually increases it (Fig 4A). In addition,

the Muv increasing effect of PQ in the sod-1 background is even stronger in the absence of

C118 in sod-1;let-60rasgf-C118S mutants (Fig 4A). Thus, increased superoxide formation by

PQ in the absence of SOD-1 (which would convert it to hydrogen peroxide), and in the

absence of a target for hydrogen peroxide (in the let-60rasgf-C118S background), leads to a

stimulation of the Muv phenotype. Note that the fact that PQ simulates more in the let-
60rasgf-C118S background means that there is likely residual hydrogen peroxide formation

from PQ-dependent superoxide even in the absence of SOD-1. This residual hydrogen perox-

ide can act in an inhibitory fashion on C118. This effect is eliminated in the C118S mutant

combination with PQ or NAC treatments. ###P = 0.0001 for PQ treatment compared to PQ treatment of let-60rasgf. +++P = 0.0001 for PQ treatment of sod-1;
let-60rasgf-C118S compared to PQ treatment of sod-1; let-60rasgf. B Number of vulvas of long-lived mitochondrial mutants in an otherwise wild-type

background and in combination with the let-60rasgf mutant, with and without the C118S mutation. ���P = 0.0001 compared to let-60rasgf for the first set of

bars, and compared to let-60rasgf-C118S for the second set of bars. ###P = 0.0001 compared to the mutation in the let-60rasgf background. C Number of vulvas

of sod-2 mutants in combination with sod-1 and the let-60rasgf mutation. D Number of vulvas of sod-2 mutants, in combination with the let-60rasgf mutation

and NAC treatment. E A model that suggests a path by which PQ, SOD-1, and the loss of SOD-2, all increase cytoplasmic H2O2 and thereby suppress let-
60rasgf. For simplicity SOD-1 is shown in the cytoplasm although it may also be in the mitochondrial inter-membrane space. F A representative Western blot

for phosphorylated MPK-1a (pMPK-1a), total MPK-1a and Histone H3 as a loading control. Unprocessed original scans of blots and additional analyses are

shown in S8 Fig. G The mean ratio of phosphorylated MPK-1a (pMPK-1a) to total MPK-1a ± SEM of three different Western blots. All bars are compared to

the wild-type control bar. �P<0.01.

https://doi.org/10.1371/journal.pgen.1008838.g004
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leading to even greater vulva formation under the action of PQ. Together, the observations

presented in Fig 4A indicate the existence of a distinct pathway in which superoxide stimulates

the Muv phenotype, independently of both SOD-1-dependent hydrogen peroxide formation

and oxidation of C118.

The superoxide-stimulated pathway affects vulval development by acting

downstream of LIN-1

let-60ras-dependent signalling is implemented by the ETS-transcription factor LIN-1 [48] (Fig

1A). For vulval development loss of LIN-1 is epistatic to changes in the LET-60ras-dependent

pathway. Thus, processes that act downstream of LIN-1 to affect the Muv phenotype are likely

to be at least partially epistatic to LET-60ras signalling. We observed that loss of SOD-1 has the

same effect on lin-1 mutants as on let-60rasgf mutants, that is, it enhances the Muv phenotype

(Fig 5A). However, PQ treatment has opposite effects on let-60rasgf and lin-1 mutants: while it

suppresses the Muv phenotype of let-60rasgf it enhances lin-1 (Fig 5B). The effect of PQ is also

additive to the effect of sod-1 (Fig 5B), which is the same pattern we observed for let-60rasgf in

Fig 5. The intracellular pool of superoxide affects vulva formation by a pathway that acts downstream of lin-1. let-
60rasgf is denoted in the figure as let-60gf. ���P = 0.0001 compared to control as indicated. A Number of vulvas of sod-
1 mutants in combination with the let-60rasgf and lin-1 mutations. B Number of vulvas of sod-1 mutants in

combination with the let-60rasgf and lin-1 mutations and PQ. ### P = 0.0001 for the effect of PQ treatment compared

to lin-1 with PQ treatment. C A model depicting the pathways by which cytoplasmic ROS affects vulval formation.

Hydrogen peroxide inhibits vulval development by inhibiting LET-60 via oxidation of C118; superoxide promotes

vulval development by acting downstream of LIN-1, on an unidentified target.

https://doi.org/10.1371/journal.pgen.1008838.g005
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Fig 4A. Thus, an increase in intracellular superoxide resulting from loss of SOD-1 appears to

stimulate a second pathway, independent of C118 of let-60ras and acting downstream of lin-1
(Fig 5C).

The two C. elegans NADPH oxidases, BLI-3 and DUOX-2 affect vulva

formation

NADPH oxidases (NOXs) are the main enzymatic sources of ROS in the cell. As described in

the introduction, NOXs are membrane-bound enzymes that produce superoxide. The Duox

sub-class possesses an additional peroxidase domain and can thus convert superoxide into

hydrogen peroxide. While DUOXs have well-established roles at the plasma membrane, there

is evidence that they may also have intracellular roles, such as at the ER-membrane (reviewed

in [25]). The C. elegans genome encodes for two DUOX proteins: BLI-3 and DUOX-2. BLI-3

is expressed in the hypodermis, where it is required for cross-linking of collagen to form the

cuticle. Complete loss of bli-3 is lethal while reduction-of-function mutations in bli-3 lead to a

blistered cuticle phenotype (Bli), molting defects and altered pathogen susceptibility [25, 77].

Significant expression of duox-2 has not been observed, and loss of duox-2 has not previously

been associated with any phenotype [25]. In order to test whether NOX-derived ROS partici-

pates in vulva formation, we examined how mutants of the C. elegans BLI-3 and DUOX-2

affect the let-60rasgf Muv phenotype. The bli-3 mutation we used (e767) is in the peroxidase

domain, and thus likely prevents hydrogen peroxide formation but not superoxide formation

by BLI-3 [23]. The duox-2(ok1775) mutation is likely a strong loss-of-function mutation. We

found that each of the NOX mutations leads to strong suppression of the Muv phenotype of

let-60rasgf in double mutants (Fig 6A), suggesting that the wild-type function of both NOXs

participate in stimulating the Muv phenotype. This is the first function that can be ascribed to

DUOX-2. In addition to suppressing the Muv phenotype of let-60rasgf, loss of either of the

NOXs renders the let-60rasgf mutants almost insensitive to NAC and PQ (Fig 6B and 6C).

This indicates that the effect of the NOX mutations is epistatic to the effect of hydrogen perox-

ide on LET-60rasgf. However, we have not been able to link NOX activation to the elevation of

the SOD-1-dependent intracellular superoxide pool that acts downstream on lin-1 (Fig 5) (see

below).

Evidence for the activation of the NOX pathway by ROS

The activity of NOX enzymes is stimulated by the small GTPase Rac [78]. There are three Rac-

like GTPases in C. elegans (CED-10, MIG-2, and RAC-2/3), although it is not certain that

RAC-2/3 is a functional protein [79]. CED-10 and MIG-2 regulate cytoskeletal dynamics and

function in multiple processes in the C. elegans, including phagocytosis of cell corpses, cell

migration, axon pathfinding and growth cone protrusion [79]. ced-10 and rac-2 mutants have

defects in vulval development, which can mainly be attributed to their roles in vulval cell

migrations, but they also have a weak, synthetic defect in vulval cell specification [80]. Rac

GTPases can be regulated by ROS. In particular, oxidation of cysteine C18 (S9 Fig) has been

found to lead to activation of Rac1 in vitro and in cultured mammalian cells [38]. In light of

this, we focused on the Rac1 homologue ced-10 and used CRISPR to create a C18S allele, ced-
10rac(qm229), which should be insensitive to ROS. This allele significantly enhanced the Muv

phenotype in the let-60rasgf background (Fig 6A). This was the reverse of the effect expected

from mammalian studies, as we would expect that inhibition of CED-10 would phenocopy

duox-2 and bli-3 loss-of-function mutations, but it had the opposite effect. We interpret this to

mean that oxidation of C18 of CED-10 inhibits the protein. This would be similar to what we

observed for C118 of LET-60. In both cases, we observed that the loss of the cysteine leads to
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activation rather than to inhibition of the activity. Since the C18S mutation had the opposite

effect to that of the duox-2 and bli-3 mutations, we tested whether Rac was acting through each

of the C. elegans Duoxs by creating bli-3(e767); ced-10rac(qm229) and duox-2(ok1775); ced-
10rac(qm229) double mutants. The enhancement by C18S was abolished by either of the NOX

mutations (Fig 6A), suggesting that the C18S replacement stimulates the Muv phenotype

through both of the NOXs (Fig 6D).

Next we wondered whether the increased superoxide due to loss of SOD-1, which stimu-

lates the Muv phenotype (Fig 4A), acted through CED-10rac. To test for this we constructed

Fig 6. The NADPH oxidases BLI-3 and DUOX-2 affect vulva formation in a ROS-regulated manner. let-60rasgf is denoted in the figure as

let-60gf. ����P = 0.0001 compared to let-60rasgf or control as indicated. A Number of vulvas of bli-3 and duox-2 mutants in combination with

the let-60rasgf mutation alone, and in combination with ced-10rac-C18S and sod-1 mutations. ###P = 0.0001 for ced-10-C18S let-60gf and sod-
1; let-60rasgf compared to let-60rasgf. B Number of vulvas of bli-3 mutants in combination with the let-60rasgf mutation, PQ and NAC. C

Number of vulvas of duox-2 mutants in combination with the let-60rasgf mutation, PQ and NAC. D Model illustrating how BLI-3 and DUOX-

2 promote vulval formation. ced-10rac activates the NOXs, which promote vulva formation through the production of hydrogen peroxide, and

perhaps also superoxide. These ROS targets have not been identified. ced-10rac is inhibited by ROS via C18. Neither the source nor the nature

of this ROS is known.

https://doi.org/10.1371/journal.pgen.1008838.g006
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the let-60gf; sod-1;bli-3 and let-60gf;sod-1;duox-2 triple mutants. However, the effects of loss of

SOD-1 and that of the NOX mutations were additive (Fig 6A). In any case, oxidation of C18 of

CED-10rac would be inhibitory (as revealed by the activating effect of C18S), but the loss of

SOD-1 is activating (Fig 4A). Thus, if there was a link between the effect of loss of SOD-1 and

activation of the NOXs it would need to include additional relays, which would remain to be

identified. Thus, we consider the NOXs to promote vulval formation in a ROS-regulated manner,

by acting in a pathway that is parallel to both LET-60ras and to intracellular superoxide (Fig 7).

Discussion

Our observations demonstrate that, by using molecular genetics, ROS signalling can be studied

in a fully in vivo situation with the same detail as other forms of signal transduction. Findings

Fig 7. A model depicting three ROS-signalling pathways that affect vulval formation. Cytoplasmic hydrogen

peroxide inhibits vulva development by acting directly on LET-60ras, via oxidation of C118. The state of oxidation of

C118 is affecting vulva formation independently from MPK-1 phosphorylation via an as yet uncharacterized pathway.

The source of hydrogen peroxide is SOD-1 and is either converted from cytoplasmic superoxide or superoxide that exits

the mitochondria in the absence of the mitochondrial superoxide dismutase SOD-2. SOD-2-dependent hydrogen

peroxide produced in the mitochondria can also participate in the SOD-1-dependent cytoplasmic pool. Cytoplasmic

superoxide inhibits vulval development by acting downstream of LIN-1, via an unknown target. The NADPH oxidases

BLI-3 and DUOX-2 promote vulva development by an independent pathway. This pathway is ROS-dependent as the

NADPH oxidases are activated by CED-10Rac, which is inhibited by ROS via C18, however, the source and nature of

this ROS are not known. The targets of NADPH oxidase-produced ROS have not been identified. It is also not known

whether for vulva development NADPH oxidases act at the plasma membrane and produce ROS extracellularly, or

whether they act at the ER membrane and produce ROS in the ER. All pathways are depicted as acting in the same cell

although it is possible that the different signalling pathways act in different cell types and could thereby participate in

intercellular communication during vulva development.

https://doi.org/10.1371/journal.pgen.1008838.g007
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in other systems such as yeast [81] and with other pathways such as the UPRER in C. elegans
[5], reinforce this conclusion. ROS signalling resembles signalling through cAMP in that dif-

fusible messages (ROS species) have sources and sinks. It resembles Ca++ signalling in its

clear-cut compartmentalization, and it resembles phosphorylation in reversibly targeting spe-

cific residues and thus altering protein function. This last feature is particularly powerful for

molecular genetic dissection of ROS signalling pathways and functions. There have been many

efforts to obtain fluorescent probes for visualizing ROS in living cells similar to tools that allow

to visualize calcium [82]. However, for many applications these techniques suffer from lack of

resolution and specificity. Although better tools for visualization would be highly desirable,

our findings demonstrate that detailed information about ROS signalling can be obtained

despite the lack of sufficiently powerful visualization tools.

Our findings suggest that ROS produced in mitochondria can participate in cytoplasmic

ROS signalling in multiple ways (Figs 4E and 7). In the presence of mitochondrial superoxide

dismutase (SOD-2), superoxide produced in the mitochondrial matrix is converted to hydro-

gen peroxide and can contribute to the cytoplasmic pool of this species. In the absence of

SOD-2, superoxide exits the mitochondrial matrix, where it is converted to hydrogen peroxide

by the cytoplasmic superoxide dismutase (SOD-1) and participates in ROS signalling in the

cytoplasm. At this stage we don’t know whether hydrogen peroxide directly modifies C118 as

observed with other redox sensitive cysteines [83], or whether it is required for oxidation via

additional steps.

In addition to a role for hydrogen peroxide, we also identified a specific signalling role for

superoxide (Figs 5C and 7). By elevating the cytoplasmic superoxide pool by removal of SOD-

1, with or without concomitant PQ treatment to enhance the effect, we showed that it can

affect the Muv phenotype downstream of LIN-1, by acting on an as yet unidentified target.

Interestingly, Xu and Chisholm have also demonstrated a specific role for superoxide in C. ele-
gans wound healing. They showed that mitochondrial superoxide targets the C. elegans Rho

GTPase RHO-1 [6]. Epidermal wounding causes a local increase in mitochondrial superoxide,

which inhibits RHO-1 via the redox sensitive cysteines C16 and C20, and this promotes actin-

dependent wound closure.

The NOX system is a transmembrane signalling system that can release ROS extracellularly

or intracellularly [12] including in C. elegans [5, 25] We found that the activity of the NOXs

could affect vulva formation independently of ROS regulation of LET-60rasgf via C118 (Figs

6B, 6C and 7). At this stage we don’t know if for this function the NOXs act intracellularly or

extracellularly. The NOXs appear themselves to be regulated by intracellular ROS via oxidation

of C18 of CED-10rac (Fig 6A and 6D). However, the species (e.g. superoxide or hydrogen per-

oxide) and the origin of the ROS that regulate CED-10rac, and thus the NOXs, is still

unknown. We have also yet to identify the direct targets of cytoplasmic superoxide, and the

targets of the NOX-derived ROS.

We identified two key targets of cytoplasmic ROS regulation of vulva formation as known

redox sensitive cysteines in the small GTPases LET-60ras (C118) and CED-10rac (C18). Strik-

ingly, we observed that in C. elegans, oxidation of C118 in LET-60ras and C18 in CED-10rac is

inhibitory, while in vitro and cell culture experiments in mammalian cells have suggested they

would be stimulatory by promoting guanine nucleotide dissociation. How to explain these dif-

ferences? One important difference is that C. elegans does not produce, and likely doesn’t use,

nitric oxide (NO) [57]. Thus, the cysteines that are susceptible to oxidation by NO are free to

be oxidized by different reactive species, which might result in different effects on the target

protein. It is also possible that the cellular redox conditions are different in C. elegans and

mammalian cells, including differences in the concentration of various ROS species or the

amplitude of variations in these concentrations. More generally redox conditions in vivo, in C.
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elegans and in mammals, might be very different from those in cultured cells. For example,

most mammalian cell types experience low levels of oxygen, low levels of hormonal stimula-

tion, and possibly very low or no amounts of NO. Thus, some of the findings in mammalian

cells might be only pertain to the conditions in cultured cells. In contrast, our tools to manipu-

late ROS levels are all compatible with normal or extended survival of the animals.

In addition, the cellular redox conditions (as well as the composition of the cellular milieu

in the direct vicinity of a ROS target) will contribute to determining whether a modification is

inhibitory or stimulatory. That is to say, reactive nitrogen, superoxide and hydrogen peroxide

promote Ras guanine nucleotide dissociation. But this by itself is not activating, it’s only acti-

vating under conditions that allow Ras to be competent to re-associate with GTP. Of note, in

vitro, prolonged exposure of Ras in the presence of oxidants and GTP do not result in signifi-

cant fraction of GTP-bound Ras, unless a radical scavenger is also included in the reaction

[31].

We observed that PQ and NAC treatment and the C118S mutation, as well as isp-1 and

nuo-6 mutations, have no effect on the enhanced MPK-1 phosphorylation resulting from the

n1046gf allele, suggesting that the state of oxidation of LET-60ras affects a pathway that does

not affect MPK-1 phosphorylation but that modulates vulva formation in the presence of ele-

vated MPK-1 phosphorylation. We have no information yet as to the nature of this pathway.

However, there is other evidence that such pathways may exist. For example, let-60ras mutants

have many phenotypes in addition to vulval development, that indicate that LET-60ras acts in

multiple cell types and tissues. mpk-1 mutants share most of these phenotypes, suggesting that

LET-60ras mainly signals through MPK-1 [47]. However, there are also some let-60ras pheno-

types which are either not shared by mpk-1 mutants, or for which an involvement of mpk-1
has not been examined [42, 47], suggesting that there may be other effectors of LET-60ras.

Even for vulval development, where it has been clearly established that LET-60ras acts via

MPK-1 [84], it has also recently been shown that there is also MPK-1-independent signaling.

In some VPCs LET-60ras acts through an alternative pathway, via RGL-1(RalGEF) and RAL-1

(Ral), to specify the secondary vulval cell fate [85].

The possibility that mimicking constitutive oxidation of C118 suppresses a classical gain-

of-function allele similar to oncogenic alleles in mammals is potentially of great interest. It sug-

gests that the reason why mutations in the N-terminal G12 and G13 of Ras produce a gain-of-

function could be intimately linked to events that involve the oxidation of C118. When C118

looks like it is permanently oxidized (with the C118D mutation) the G13E oncogenic mutation

is fully suppressed. On the other hand, we found that the LET-60rasgf-C118D double mutant

protein is expressed at a significantly lower level than LET-60rasgf. This lower level might be

the basis for the complete suppression of the effect of n1046gf on MPK-1. However, given that

PQ has no effect on protein levels or MPK-1 phosphorylation, we favor the model that both

effects (the mimicking of constitutive strong oxidation and low level of expression) might be

necessary for the complete suppression conferred by the C118D mutation. Identification of

the hypothetical pathway downstream of LET-60ras oxidation could help resolve this issue in

the future.

Materials and methods

General methods and strains

All animals were grown at 20˚C and cultured on NGM plates. The Bristol strain N2 was used

as the wild type. The mutations used in this study are as follows: nuo-6(qm200), sod-2(ok1030),
bli-3(e767), duox-2(ok1775) I, sod-1(tm783) II, isp-1(qm150), let-60(n1046), let-60(n1700), let-
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60(ga89) and lin-1(e1026) IV. For temperature shift experiments, let-60(ga89) adults were

switch to the restrictive temperature (26˚C) as adults and the progeny was used for the assay.

For testing the effects of Methyl viologen dichloride hydrate/Paraquat (PQ; Sigma-Aldrich

856177) and N-Acetyl-Cysteine (NAC; Sigma-Aldrich A7250), compounds were dissolved in

water and stored at 4˚C. The compounds were added to the NGM just before pouring the

plates. The final concentrations of PQ and NAC used for vulva studies were 0.1 mM and 9

mM, respectively.

CRISPR modifications of let-60 and ced-10
The LET-60 amino acid Cys118 (C118) and the CED-10 amino acid Cys18 (C18) were modi-

fied using the CRISPR/Cas9 gene editing protocol as described [58]. Briefly, http://crispr.mit.

edu was used to select crRNA sequences targeting let-60 or ced-10. The let-60 gene-specific

crRNA (5’-AGGTTCCTATGGTCTTGGTAGUUUUAGAGCUAUGCUGUUUUG-3’), the

ced-10 gene-specific crRNA (5’-CGTTTGTGGTGTAGGATATCGUUUUAGAGCUAUGCU

GUUUUG-3‘), the coCRISPR dpy-10 crRNA and the tracRNA (Dharmacon) were re-sus-

pended in 10mM Tris pH 7.4 to 8 μg/μl. The purified Cas9 protein (PNA Bio. Inc.) was recon-

stituted in water to 2 mg/ml. The repair templates for let-60-C118S (5’-TGAAATTATCAGTC

AATGGTTGAATATTTGTATTTCTTCTAGGTTCCTATGGTGTTGGTAGGCAATAAATC

TGATTTGTCATCTCGATCAGTCGACTTCCGAACAGTCAGTGAGACA-3’), let-60-
C118D (5’-TGAAATTATCAGTCAATGGTTGAATATTTGTATTTCTTCTAGGTTCCTA

TGGTGTTGGTAGGCAATAAAGATGATTTGTCATCTCGATCAGTCGACTTCCGAAC

AGTCAGTGAGACA-3’) and ced-10-C18S (5’-ATGCAAGCGATCAAATGTGTCGTCG

TTGGTGACGGAGCCGTCGGTAAAACGTCTCTACTGATCTCCTACACCACAAACGC

ATTTCCCGGAGAATATATTCCGACGGTGAGTCATTT-3’) (IDT) were resuspended in

water to 1 μg/μl and 500 ng/μl for dpy-10. The injection mix contained 6.25 μl Cas9 protein,

1.25 μl tracrRNA, 0.2 μl crRNA dpy-10, 0.275 μl ssODN dpy-10, 0.5 μl crRNA let-60 or ced-10,

1.1 μl ssODN let-60-C118S, let-60-C118D or ced-10-C18S, 0.25 μl KCl (1M) and 0.375 μl Hepes

pH 7.4 (200 mM). The mix was activated for 15 min at 37˚C and injected into distal gonads of

young adult worms. F1 roller worms were singled out and after they laid eggs, were genotyped

by single worm lysis and PCR using the primers 5’-GTGAGACATGCCTCCTCGAC-3‘ and

5‘-GGTGTCGTATTTTTGGCGCGA-3‘ for the let-60 modifications and the primers 5’-CGTC

TTGATGCCCGTTGTG-3‘ and 5‘-GCTGTATCCCAGAGCCCGA-3‘ for the ced-10 modifica-

tion. The let-60 modifications were confirmed by sequencing the PCR product, whereas the

ced-10 modification was confirmed by digesting the PCR product with EcoRV (R0195S, New

England Biolabs) since isoleucine 21 of CED-10, which is encoded by ATA codon, creates an

EcoRV cut site which is removed by successful editing. The non-roller F2 worms were

sequenced to verify successful editing.

Western blotting

200 synchronized young adult worms were harvested and washed in M9 buffer, and finally

placed into 50 μl of 1x SDS sample buffer. The samples were lysed at 95˚C for 5 min followed

by centrifugation at 13,000 rpm for 1 min. For each blot and each sample 15 μl of the superna-

tant was loaded on to a 10% SDS-PAGE gel followed by electro-transfer to nitrocellulose mem-

brane. Primary antibodies were anti-di-phosphorylated ERK-1&2 antibody (1:1000, Sigma),

anti-ERK1/2 antibody (1:1000, Cell Signalling Technology), Anti-Ras antibody [EPR3255]

(1:1000, Abcam), anti-Tubulin antibody (1:1000, Sigma), and anti-Histone H3 antibody

(1:2000, Abcam). After overnight incubation with the primary antibodies, membranes were

washed 3 times with PBS-Tween and incubated with secondary antibodies which were anti-
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rabbit or anti-mouse conjugated to HRP (1:2000, Cell Signalling Technology). Blots were visu-

alized using ECL (GE Healthcare) and film. Band intensity quantification was performed

using Image J software (http://imagej.nih.gov/ij/).

Quantitative Real-Time PCR

Synchronized worms were harvested at the young-adult stage, as for Western Blotting. RNA

was isolated using TRIzol reagent (Invitrogen) and was transcribed into cDNA using qScript

XLT cDNA SuperMix (Quanta Biosciences). Real-time PCR was performed on a CFX96 qPCR

system (Bio-Rad) with the Luna Universal Probe qPCR Master Mix (NEB) according to the

manufacturer’s instruction. The following primers are used: LET-60 forward: 5’- GTCAGTGA

GACAGCAAAGGGT-3’, reverse: 5’-CGTGACGCTCACGATGCTTG-3’; PMP-3 forward: 5’-

GTTCCCGTGTTCATCACTCAT-3’, reverse: 5’-ACACCGTCGAGAAGCTGTAGA-3’. The

gene pmp-3 was used as the normalisation control.

Multivulva phenotype scoring

Adult worms were transferred to control NGM plates or plates containing PQ or NAC for a 3-

hour limited egg-laying. Once hatched worms reached adulthood with completed vulval for-

mation, animals were scored for the presence of a normal vulva as well as the ectopic pseudo-

vulvas. We report the total number of vulvas, which includes both. The controls shown are

always scored in parallel for every experiment. All numerical data are presented in S1 Table.

Statistical analyses

For scoring of the multivulva phenotype, experimental strains were compared to the control

using one-way ANOVA followed by Dunnett’s multiple comparison test, which corrects for

multiple comparisons. P-values and samples sizes are reported in S1 Table. For comparing %

Muv, the Chi-square test was used. For Western Blot quantifications, ratios of phosphorylated

pMPK-1a to total MPK-1 or LET-60 levels normalised to the wild-type control were compared

using one-way ANOVA followed by Dunnett’s multiple comparison test. All statistical analy-

ses were carried out using Graphpad Prism 7.03.

Supporting information

S1 Fig. Alignment of RAS proteins from C. elegans and D. melanogaster with isoforms

from humans. The amino acid affected by the C. elegans n1046gf mutation (G13) is outlined

in red, and the redox-sensitive cysteine we have modified by CRISPR in this study (C118) is

outlined in blue.

(TIF)

S2 Fig. Effect of PQ and NAC on the Muv phenotype of three let-60gf alleles. Both the

n1046 and n1700 mutation harbor the G13E mutation but were isolated independently. The

ga89 mutation is an L19F substitution that is a temperature-sensitive gf mutation. A Data is

graphed as % Muv to allow for better visualisation of the effects of NAC and PQ on the weak

Muv phenotype of ga89, even at the restrictive temperature. Data for let-60(n1046) comes

from Fig 1D. B Same data as in A but graphed as Average # of Vulvas. ���P = 0.0001 and
��P = 0.005 compared to control as indicated.

(TIF)

S3 Fig. Oxidation of C118 of LET-60ras inhibits the specification of vulval cell fates. A

Quantification of invaginations at the Pn.pxx stage. B. Representative images. Asterisks
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indicate the invagination that will develop into the main vulva and arrowheads point to invagi-

nations that will lead to the development of pseudovulvas.

(TIF)

S4 Fig. Western blot analysis of MPK-1 levels in WT and let-60 mutants. A, B Relative

expression levels of total MPK-1. Values are shown as a fraction of the ratio of the indicated

proteins compared to wild-type worms. A Relative expression levels of total MPK-1a and

MPK-1b relative to the loading control Tubulin. B Relative expression levels of total MPK-1a

and MPK-1b relative to the loading control Histone. Mean and standard error of the mean

(SEM) of 3 independent experiments are indicated in the graphs. No significant differences

were detected, illustrating that the significant difference shown in Fig 3A and 3B arise from

differences in the levels of pMPK-1a not total MPK-1a. C Original scans of western blots. 1:

wild-type N2; 2:let-60(+)-C118S; 3:let-60(+)-C118D;4:let-60gf; 5:let-60gf-C118S; 6:let-60gf-
C118D. The scanned images were cropped to improve clarity and focus upon the specific pro-

teins. Molecular weight markers are indicated.

(TIF)

S5 Fig. Western blot analysis of MPK-1 levels in WT and let-60 mutants treated with PQ

and NAC. A Relative expression levels of total MPK-1a to Histone H3. Mean and standard

error of the mean (SEM) of 3 independent experiments are indicated in the graphs. No signifi-

cant differences were detected illustrating that the significant difference shown in Fig 3C and

3D arise from differences in the levels of pMPK-1a not total MPK-1a. B Relative expression

levels of total MPK-1b and pMPK-1b to Histone H3. Mean and standard error of the mean

(SEM) of 3 independent experiments are indicated in the graph. Although PQ may affect total

MPK-1b and pMPK-1b levels, due to the high degree of variability no statistically significant

differences were found. C Original scans of western blots. The scanned images were cropped

to improve clarity and focus upon the specific proteins. Molecular weight markers are indi-

cated.

(TIF)

S6 Fig. Western blot analysis of LET-60 levels in WT and let-60 mutants. A Original scans

of western blots for Fig 3E and 3F. A representative blot was shown in Fig 3E. Samples loaded

in lanes are as follows: 1: wild-type N2; 2:let-60-C118S; 3:let-60-C118D; 4:let-60gf; 5:let-60gf-
C118S; 6:let-60gf-C118D. B Original scans of western blots for Fig 3G and 3H. A representative

blot was shown in Fig 3G. Samples loaded in lanes are as follows: 1: wild-type N2; 2: WT + PQ;

3: WT + NAC; 4:let-60gf; 5:let-60gf + PQ; 6:let-60gf + NAC. The scanned images were cropped

to improve clarity and focus upon the specific proteins. Molecular weight markers are indi-

cated.

(TIF)

S7 Fig. mRNA expression levels of let-60ras in C118S and C11D mutants. Comparison of

expression levels of let-60ras gene in wild-type N2; let-60gf; let-60(+)-C118D; let-60gf-C118D;

let-60(+)-C118S; and let-60gf-C118S backgrounds. Expression levels are normalised to the

wild-type. Results represent the average of three independent biological samples, each of

which was amplified two times in triplicate.

(TIF)

S8 Fig. Western blot analysis of MPK-1 levels in isp-1 and nuo-6 mutants. A Relative

expression levels of total MPK-1a relative to the loading control histone H3. Values are shown

as a fraction of the ratio of the indicated proteins compared to wild-type worms. No significant

differences were detected, illustrating that the significant differences shown in Fig 3G and 3F
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arise from differences in the levels of pMPK-1a not total MPK-1a. B Relative expression levels

of total MPK-1b and pMPK-1b relative to the loading control histone H3. MPK-1b level was

significantly decreased in nuo-6 and nuo-6; let-60gf compared to wild-type. It also appeared to

be decreased in isp-1 and let-60gf, although these differences were not statistically significant.

The changes of dpMPK-1b levels mirrors the changes of total MPK-1b but the decrease of

dpMPK-1b levels in isp-1 and let-60gf reached statistical significance. Mean and standard error

of the mean (SEM) of 3 independent experiments are indicated in the graphs. C Original scans

of western blots. 1: wild-type N2; 2:nuo-6; 3:isp-1; 4: let-60gf; 5:nuo-6; let-60gf; 6: isp-1 et-60gf.
The scanned images were cropped to improve clarity and focus upon the specific proteins.

Molecular weight markers are indicated.

(TIF)

S9 Fig. Alignment of Rac proteins from C. elegans, D. melanogaster and humans. The

redox-sensitive cysteine we have modified by CRISPR in this study (C18) is outlined in blue.

(TIF)

S1 Table. Numerical values for Muv data shown in bar graphs in all figures.
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