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post-MI through coronary physiological
measurements based on computational fluid dynamics

Wen Zheng,1,4 Qian Guo,1,4 Ruifeng Guo,1 Yingying Guo,1 Hui Wang,2 Lei Xu,2 Yunlong Huo,3 Hui Ai,1 Bin Que,1

Xiao Wang,1,5,* and Shaoping Nie1,*
SUMMARY

Early detection of left ventricular remodeling (LVR) is crucial. While cardiac magnetic resonance
(CMR) provides valuable information, it has limitations. Coronary angiography-derived fractional
flow reserve (caFFR) and index of microcirculatory resistance (caIMR) offer viable alternatives.
157 patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percuta-
neous coronary intervention were prospectively included. 23.6% of patients showed LVR. Machine
learning algorithms constructed three LVR prediction models: Model 1 incorporated clinical and
procedural parameters, Model 2 added CMR parameters, and Model 3 included echocardiographic
and functional parameters (caFFR and caIMR) with Model 1. The random forest algorithm showed
robust performance, achieving AUC of 0.77, 0.84, and 0.85 for Models 1, 2, and 3. SHAP analysis
identified top features in Model 2 (infarct size, microvascular obstruction, admission hemoglobin)
and Model 3 (current smoking, caFFR, admission hemoglobin). Findings indicate coronary physi-
ology and echocardiographic parameters effectively predict LVR in patients with STEMI, suggesting
their potential to replace CMR.

INTRODUCTION

Left ventricular remodeling (LVR) refers to the changes in left ventricular size, shape, structure, and function that occur in response to injury,

such as myocardial infarction (MI). It is an important prognostic factor that continues to affect nearly half of the patients with ST-elevated

myocardial infarction (STEMI), despite advancements such as percutaneous coronary intervention (PCI) and optimal medical therapy.1–3

LVR following MI can lead to hypertrophy, heart failure, arrhythmias, and sudden cardiac death. Therefore, the early identification of LVR

is crucial due to its association with heart failure and cardiac mortality.2,4,5

Traditionally, relying on clinical factors for the risk stratification of LVR has limitations. However, cardiac magnetic resonance (CMR) imag-

ing has provided valuable insights into the cardiac structure and function related to MI. Several imaging modalities have shown predictive

capabilities for ventricular remodeling.6,7 Myocardial strain has proven more sensitive than left ventricular ejection fraction (LVEF) as a marker

of LVR-related cardiac dysfunction.8,9 Infarct size (% LV mass with late gadolinium enhancement [LGE]) indicates the extent of irreversibly

damaged myocardium and predicts remodeling risk.10,11 Microvascular obstruction (MVO) and intramyocardial hemorrhage (IMH) signify

ischemia-reperfusion injury to the cardiac microvasculature independently predicting adverse remodeling.12 Despite their value in CMRmo-

dalities also have limitations, including long processing times, high costs, and contraindications. Coronary microvascular dysfunction (CMD),

caused by factors such as oxidative stress and inflammation can lead to myocardial ischemia affecting the cardiac function prognosis in pa-

tients with STEMI.

CMD, caused by factors such as oxidative stress and inflammation can lead tomyocardial ischemia affecting the cardiac function prognosis

in patients with STEMI.13 Both fractional flow reserve (FFR) and the index of microcirculatory resistance (IMR) provide insights into coronary

stenosis andmicrovascular function. However, measuring them during primary PCI in patients with STEMI can be challenging.14 Non-invasive

alternatives such as coronary angiography-derived FFR (caFFR) and IMR (caIMR) help overcome these challenges. caFFR and caIMR utilize

computer algorithms that analyze coronary angiography images to facilitate the assessment of coronary lesions and microcirculatory

function.15,16
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Figure 1. The study flow diagram

Abbreviations: CMR, cardiac magnetic resonance; LVR, left ventricular remodeling; PPCI, primary percutaneous coronary intervention; STEMI, ST-elevation

myocardial infarction.
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Recent advancements in artificial intelligence and machine learning (ML) have shown potential for early disease detection and risk predic-

tion.17 ML enables the recognition of complex patterns in data to predict outcomes without being limited by established risk factors. By

applying ML models to traditional indices as well as emerging indices derived from coronary angiography, this study aims to overcome

CMR challenges in patients with STEMI for the early and practical prediction of LVR risk.
RESULTS

Baseline characteristics

From the 322 patients initially included in our STEMI cohort, 157 for whom we could cross-match our clinical, CMR, and clinical data were

finally included in our study (Figure 1). Of those 157 patients, 37 (23.6%) had LVR at three months. The study population’s clinical, procedural,

and coronary hemodynamic parameters and CMR characteristics are shown in Tables 1 and 2.
Feature selection

In the feature selection process, we used the LASSO regularization and BORUTA to help eliminate features with insufficient information. This

process iteratively employed these two feature selection algorithms to reduce the feature number by eliminating features not selected at each

iteration by any algorithm. Some stable features from clinical, PCI, echocardiographic parameters, and CMRparameters were finally selected,

including sex, age, current cigarette smoking, hemoglobin, HbA1c, treatment with MRA and ACEI or ARB or ARNI, TIMI flow grade post-PCI,

the number of stents, caIMR, caFFR, LVEDVi, infarct size, presence of MVO and GLS, and two echocardiographic parameters (LVEF and

LVEDD).
Model development and evaluation

The derivation cohort was divided into a 70% training dataset and a 30% testing dataset (the former referred to as the training dataset, the

latter as the internal validation or evaluation dataset). The former used fourML algorithms to train and adjust themodel parameters. The latter

tested the developed model on unseen data (a typical process in ML to verify the model’s generalization ability, i.e., the model’s ability to

correctly classify unseen data).

Three predictionmodels were constructed to evaluate the incremental discrimination and reclassification performance of clinical, PCI, and

CMRparameters in predicting LVR.Model 1 was based on clinical parameters including sex, age, current smoking, hemoglobin, HbA1c,MRA,

ACEI, or ARB, or ARNI therapy, and PCI variables such as the number of stents and TIMI flowgrade post-PCI.Model 2 addedCMRparameters

(infarct size, MVO, LVEDVi, and GLS) to Model 1, and Model 3 combined echocardiographic (LVEF and LVEDD) and functional parameters

(caIMR and caFFR) with Model 1. The performance of four ML algorithms, XGBoost, KNN, LR, and RF, in constructing LVR prediction models

was compared.

The RF algorithmperformedwell in all threemodels, with the area under the receiver operating characteristic curve (AUC) values of 0.77 for

model 1, 0.84 for model 2, and 0.85 for model 3. The AUCof othermodels is shown in Figures 2 and S1. Accuracy, sensitivity, and specificity for

each model are reported in Table S1. Based on these findings, we chose the RF algorithm as the final prediction model because of its consis-

tently excellent performance in predicting LVR after MI. There were significant differences in AUC between model 1 and model 2 or model 3
2 iScience 27, 109513, April 19, 2024



Table 1. Baseline characteristics of the study population

Overall (n = 157) No remodeling (n = 120) Remodeling (n = 37) p value

Demographics

Age, year 57.4 G 10.9 57.7 G 11.2 56.6 G 10.2 0.602

Male 131 (83.4%) 101 (84.2%) 30 (81.1%) 0.659

BMI, kg/m2 25.9 G 3.5 25.9 G 3.5 25.8 G 3.3 0.892

Current smoker 78 (50.0%) 63 (52.5%) 15 (41.7%) 0.447

Systolic blood pressure, mmHg 122.9 G 14.5 123.6 G 14.9 120.5 G 13.0 0.259

Diastolic blood pressure, mmHg 77.3 G 9.7 77.1 G 9.7 78.0 G 9.9 0.635

Heart rate, beats/min 79.8 G 12.1 80.1 G 12.0 79.0 G 12.6 0.630

Location anterior 97 (61.8%) 68 (56.7%) 29 (78.4%) 0.017

Killip class 0.200

I 104 (66.2%) 78 (65.0%) 26 (70.3%)

II 47 (29.9%) 39 (32.5%) 8 (21.6%)

III 2 (1.3%) 1 (0.8%) 1 (2.7%)

IV 4 (5.4%) 2 (1.7%) 2 (5.4%)

Blood results

Peak hs-TnI, ng/mL 26.5 (20.0, 28.5) 26.5 (19.7, 29.2) 27.9 (21.9, 28.0) 0.438

Peak CKMB, ng/mL 196.5 (107.3, 255.0) 194.1 (101.6, 251.8) 211.0 (107.3, 289.2) 0.485

Peak BNP, pg/mL 257.0 (122.5, 436.5) 245.0 (116.8, 429.5) 275.0 (132.0, 497.0) 0.459

Hemoglobin, g/L 150.5 G 14.2 151.5 G 14.2 147.2 G 14.0 0.108

Neutrophil ratio, % 81.2 (70.5, 86.0) 81.0 (70.4, 85.4) 82.4 (71.1, 87.6) 0.222

Fasting blood glucose, mmol/L 7.2 (5.9, 10.0) 6.8 (5.8, 10.6) 7.4 (6.2, 9.6) 0.373

Glycated hemoglobin, % 6.0 (5.5, 7.4) 6.0 (5.5, 7.5) 6.0 (5.6, 7.0) 0.617

eGFR, mL/min/1.73 m2 108.3 (87.5, 120.6) 108.7 (85.9, 130.0) 108.3 (90.0, 128.8) 0.679

hs-CRP, mg/L 3.2 (1.5, 6.1) 3.3 (1.5, 6.1) 6.5 (2.3, 9.9) 0.027

Angiographic findings

Total ischemic time, min 285.0 (199.5, 497.5) 286.0 (195.5, 498.8) 285.0 (204.5, 462.5) 0.960

Procedures

Culprit lesion 0.122

LAD 96 (61.1%) 68 (70.8%) 28 (75.7%)

RCA 45 (28.7%) 38 (31.7%) 7 (18.9%)

LCX 16 (10.2%) 14 (11.7%) 2 (5.4%)

Reperfusion therapy

Aspiration thrombectomy 74 (47.1%) 55 (45.8%) 19 (51.4%) 0.557

Balloon angioplasty only 10 (6.4%) 6 (5.0%) 4 (10.8%) 0.247

PCI with stent implantation 143 (91.1%) 111 (92.5%) 32 (86.5%) 0.321

Number of stents 0.584

0 14 (8.9%) 9 (7.5%) 5 (13.5%)

1 112 (71.3%) 88 (73.3%) 24 (64.9%)

2 26 (16.6%) 19 (15.8%) 7 (18.9%)

3 5 (3.2%) 4 (3.3%) 1 (2.7%)

TIMI flow grade pre-PCI 0.921

0 104 (66.2%) 79 (65.8%) 25 (67.6%)

1 6 (3.8%) 4 (3.3%) 2 (5.4%)

2 15 (9.6%) 12 (10.0%) 3 (8.1%)

3 32 (20.4%) 25 (20.8%) 7 (18.9%)

(Continued on next page)
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Table 1. Continued

Overall (n = 157) No remodeling (n = 120) Remodeling (n = 37) p value

TIMI flow grade post-PCI 0.573

0/1 0 (0.0%) 0 (0.0%) 0 (0.0%)

2 4 (2.5%) 4 (3.3%) 0 (0.0%)

3 153 (97.5%) 116 (96.7%) 37 (100.0%)

GP IIb/IIIa inhibitor 105 (66.9%) 35 (29.2%) 17 (45.9%) 0.058

Medications at discharge

b blockers 127 (80.9%) 94 (78.3%) 33 (89.2%) 0.142

ACEI/ARB/ARNI 116 (73.9%) 84 (70.0%) 32 (86.5%) 0.046

Diuretic agent 15 (9.6%) 11 (9.2%) 4 (10.8%) 0.766

MRA 28 (17.8%) 20 (16.7%) 8 (21.6%) 0.491

Angiography-derived physiologic indices

caIMR 26.7 (19.1, 42.6) 26.3 (19.2, 42.5) 28.5 (17.3, 42.9) 0.980

caFFR 0.93 (0.90, 0.95) 0.93 (0.91, 0.95) 0.92 (0.88, 0.96) 0.229

Echocardiographic parameters

LVEF, % 51.0 G 7.6 51.3 G 7.3 50.1 G 8.4 0.412

LVEDD, mm 47.8 G 4.7 47.7 G 4.7 48.4 G 4.9 0.428

Values are median (IQR), n (%), or mean G SD.

Abbreviations: ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor/neprilysin inhibitor; BMI, body

mass index; BNP, brain natriuretic peptide; caFFR, coronary angiography-derived fractional flow reserve; caIMR, coronary angiography-derived index of micro-

circulatory resistance; eGFR, estimated glomerular filtration rate; hs-CRP, high-sensitivity C-reactive protein; IQR, inter-quartile range; LAD, left anterior descend-

ing; LCX, left circumflex artery; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction;MRA,mineralocorticoid receptor antagonist;

PCI, percutaneous coronary intervention; RCA, right coronary artery; SD, standard deviation; TIMI, thrombolysis in myocardial infarction.
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(p = 0.0408 and 0.0472, respectively), indicating that incorporating CMR or functional parameters into the clinical model can significantly

improve the prediction ability of LVR. There was no significant difference between model 2 and model 3 (p = 0.7401).
Feature importance

To identify important features in Model 2 and Model 3, we performed a feature importance plot using SHAP values and listed the fea-

tures in descending order. The top three important features in Model 2 were infarct size, MVO, and hemoglobin at admission, which

contributed to higher predictive powers than the bottom features (Figure 3A), and that a higher infarct size and the presence of MVO

indicate a greater likelihood of LVR. Similarly, the top three important features in Model 3 were current smoking, caFFR, and hemoglo-

bin at admission, contributing to higher predictive powers than the bottom features (Figure 3B), and a lower caFFR indicates a greater

likelihood of LVR.
DISCUSSION

In this study, we aimed to develop and evaluate machine learning models for predicting LVR in patients with STEMI undergoing primary

PCI. The results demonstrated that incorporating CMR or coronary functional parameters into the clinical model significantly improved

the ability to predict LVR, with no significant difference between the two models. This suggests that functional parameters, such as

caFFR and caIMR, can effectively replace CMR parameters in predicting LVR, overcoming the limitations of CMR application in patients

with STEMI.

The study identified several important factors associated with LVR, such as infarct size, MVO, and hemoglobin levels at admission. Our

findings are consistent with previous studies that reported that larger infarct sizes and the presence of MVO were associated with a higher

risk of LVR.18,19 Hemoglobin levels at admission have been reported to be associated with cardiovascular outcomes in patients with ST-seg-

ment elevation myocardial infarction (STEMI), with lower levels associated with an increased risk of adverse events, including LVR.20,21 Our

study further supports the importance of these factors in predicting LVR, which may help clinicians identify high-risk patients and optimize

their management.

Identifying high-risk individuals allows the prompt initiation of pharmacological agents, such as angiotensin receptor neprilysin inhibitors

(ARNI) and sodium-glucose cotransporter-2 inhibitors (SGLT2i), to mitigate LVR.22,23 They emphasize the need for intensified clinical surveil-

lance of identified high-risk patients and advocate regular follow-up according to evidence-based practices for individuals at increased risk of

adverse prognosis. In addition, the study demonstrated that functional parameters such as caFFR and caIMR could effectively replace CMR
4 iScience 27, 109513, April 19, 2024



Table 2. Cardiac magnetic resonance characteristics of the study population

Overall (n = 157) No remodeling (n = 120) Remodeling (n = 37) p value

CMR findings at index admission

Intervals, day 3.6 (2.7, 4.6) 3.7 (2.8, 4.6) 3.5 (2.6, 4.4) 0.234

LVEF, % 50.1 G 11.5 51.4 G 11.3 46.2 G 11.2 0.016

LVEDVi, mL/m2 68.6 G 14.1 69.8 G 13.4 64.8 G 15.8 0.061

LVESVi, mL/m2 34.5 G 11.7 34.3 G 11.6 35.2 G 12.2 0.671

GLS, % �8.7 G 3.2 �9.0 G 3.1 �7.4 G 3.2 0.007

The area at risk, % LV mass 63.3 (54.9, 69.7) 62.4 (54.6, 67.7) 65.8 (55.7, 71.8) 0.191

Presence of IMH 54 (36.0%) 36 (31.3%) 18 (51.4%) 0.030

Infarct size, % LV mass 36.2 (28.6, 43.0) 34.78 (25.9, 38.8) 41.5 (32.9, 49.5) 0.001

Presence of MVO 84 (53.4%) 59 (49.2%) 25 (67.6%) 0.050

CMR findings at follow-up

Intervals, day 106.0 (92.0, 135.0) 106.0 (90.5, 141.3) 106.0 (92.5, 121.0) 0.352

LVEF, % 55.1 G 10.3 56.6 G 9.5 50.2 G 11.1 0.001

LVEDVi, mL/m2 73.1 G 16.7 69.2 G 13.6 85.4 G 19.7 <0.001

LVESVi, mL/m2 33.8 G 14.1 30.7 G 11.1 43.8 G 17.9 <0.001

GLS, % �10.1 G 3.2 �10.6 G 2.9 �8.8 G 3.8 0.004

Infarct size, % LV mass 25.5 (18.0, 33.9) 23.6 (17.0, 32.4) 32.6 (23.6, 40.1) 0.002

Values are median (IQR), n (%), or mean G SD.

Abbreviations: GLS, global longitudinal strain; IMH, intra-myocardial hemorrhage; IQR, inter-quartile range; LVEDVi, left ventricular end-diastolic volume index;

LVEF, left ventricular ejection fraction; LVESVi, left ventricular end-systolic volume index; MVO, microvascular obstruction; SD, standard deviation.
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parameters for LVR prediction. In the context of predicting adverse remodeling in patients with STEMI, previous investigations have relied

heavily on CMR imaging features such as myocardial strain, MVO, and infarct size.9,24–26 However, the widespread use of CMR is hampered

by the need for contrast agents and the presence of contraindications. Coronary angiography is essential for patients with STEMI undergoing

PPCI and plays a crucial role in guiding interventions and assessing coronary artery involvement, as highlighted in the guidelines for the man-

agement of acute coronary syndromes.27 These angiography-derived coronary functional indices can potentially provide a more convenient

and accessible way to assess coronary lesions andmicrocirculatory function, reducing the risks and complexities associatedwith invasivemea-

surements. Furthermore, both coronary angiography and echocardiographic parameters are widely recognized for their widespread use and

clinical applicability in routine practice. Our study addresses these limitations by pioneering a paradigm shift, replacing traditional CMR in-

dicators with coronary angiography and echocardiographic parameters. This strategic change not only maintained comparable predictive

value, but also introduced a more clinically feasible and accessible approach. Furthermore, the existing literature firmly establishes a signif-

icant correlation between caIMR and pathological evolution after acute myocardial infarction.28 This foundational relationship fortifies the

theoretical underpinning of our study, substantiating the strategic use of caIMR in predicting LVR. This fundamental relationship strengthens

the theoretical underpinning of our study and supports the strategic use of caIMR in predicting LVR. This finding is particularly relevant in the

context of patients with STEMI for whom CMRmay be difficult or contraindicated. The use of caFFR and caIMR may help to identify high-risk

patients and guide therapeutic decisions.

Our study used machine learning algorithms to develop prediction models for LVR, which have several advantages over traditional statis-

tical methods. ML models can handle complex interactions and nonlinear relationships between variables and are less influenced by estab-

lished parameters.29 This allows for the discovery of innovative predictors and the identification of important features that may have been

missed in previous studies.30 In addition, ML models can be continuously updated and improved as new data becomes available, potentially

increasing their predictive accuracy over time. These features make ML models a promising tool for clinical risk prediction and decision mak-

ing in cardiovascular medicine.

As we consider the future trajectory of this research, several promising avenues emerge. First and foremost, the validation of our

models with larger and more diverse sample sizes will be instrumental in strengthening the reliability and applicability of our predictive

frameworks. In addition, extending the follow-up period in subsequent studies is imperative to assess the long-term predictive accuracy

and stability of our models. Furthermore, given the dynamic nature of medical research, the exploration of additional variables or param-

eters beyond those included in the current study may help refine and expand the predictive capabilities of our models. Future research

efforts will benefit from a comprehensive investigation of these aspects, paving the way for a deeper understanding of the predictive fac-

tors associated with our proposed models. In summary, the evolution of this research will involve a concerted effort toward validation,

long-term evaluation, and the exploration of innovative variables that will collectively contribute to the advancement of predictive

modeling in our field.
iScience 27, 109513, April 19, 2024 5



Figure 2. Comparison of the predictive ability of the models

Four machine learning algorithms, including Extreme Gradient Boosting (XGBoost, Figure 2A), K-nearest neighbors (KNN, Figure 2B), logistic regression (LR,

Figure 2C), and random forest (RF, Figure 2D), were conducted to construct the predictive model for 3-month LVR and performance was evaluated by area

under the receiver operating characteristic curve (AUC).
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Our study results suggest that the combination of CMR-based ischemia- and deformation-related indices or coronary physiological

measurements with echocardiographic parameters can both effectively predict LVR at 3 months in patients with STEMI undergoing

PPCI. Coronary physiological parameters such as caFFR and caIMR have the potential to replace CMR parameters and provide more

convenient and reliable methods to assess LVR. These results have important implications for identifying patients with high-risk heart fail-

ure and optimizing their management. Further studies with larger sample sizes and longer follow-up are needed to validate and extend

our findings.
Limitations of the study

Our study has several limitations. First, the sample size was relatively small, which may have limited the power to detect significant as-

sociations and differences between models. Future studies with larger sample sizes are warranted to validate our findings. Second,

although our investigation was conducted at a single center, the use of a prospective consecutive enrollment strategy helped to miti-

gate selection bias. However, we recognize the inherent limitations of generalizing findings from a single center. To address this, future

research will include multicenter studies to validate and extend our findings to diverse patient populations. Finally, we only evaluated

the performance of the models at 3 months, and the predictive accuracy of the models for longer-term outcomes remains to be

evaluated.
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Figure 3. SHAP Analysis of Important Features in the Random Forest Model

The SHAP summary plot (Figure 3) integrates feature importance and individual feature values. Each point represents a sample, with the y axis indicating the

feature and the x axis representing the corresponding SHAP value. Redder hues indicate larger feature values, while bluer tones represent smaller values. In

Model 2 (Figure 3A), the top three important features were infarct size, MVO (microvascular obstruction), and hemoglobin at admission, associated with a

higher likelihood of LVR. In Model 3 (Figure 3B), the top three important features were current smoking, caFFR (coronary artery fractional flow reserve),

and hemoglobin at admission, with a lower caFFR indicating a higher likelihood of LVR. The SHAP analysis provides insights into the relationship

between features and LVR predictions. Abbreviations: ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI,

angiotensin receptor/neprilysin inhibitor; caFFR, coronary angiography-derived fractional flow reserve; caIMR, coronary angiography-derived index of

microcirculatory resistance; GLS, global longitudinal strain; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction;

MRA, mineralocorticoid receptor antagonist; MVO, microvascular obstruction; PCI, percutaneous coronary intervention; TIMI, thrombolysis in myocardial

infarction.
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Python (version 3.7) Python Software Foundation https://www.python.org
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R (version 4.1.2) R software http://www.R-project.org
RESOURCE AVAILABILITY
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Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, XiaoWang (e-mail: xwang@mail.

ccmu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� All data reported in this paper will be shared by the lead contact upon request.
� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study population

Patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI)

admitted to Beijing Anzhen Hospital, Capital Medical University, were prospectively enrolled between October 2019 and August 2021.

Inclusion criteria involved patients who underwent cardiac magnetic resonance (CMR) at index admission (3–7 days after PPCI) and

follow-up (3 months). STEMI was defined according to the fourth universal definition of myocardial infarction.31 Exclusion criteria encom-

passed contraindications to CMR, clinical instability, claustrophobia, reinfarction or death before follow-up CMR, and incomplete CMR

studies or poor image quality. Left ventricular remodeling (LVR) was defined as left ventricular end-diastolic volume (LVEDV) equal to

or greater than 20% between baseline CMR and the 3-month follow-up.3 The demographic and clinical characteristics of the participants

were shown in Table 1. Information related to patient sex and age can be found in Table 1. Information related to ancestry, race, or ethnicity

were not recorded in this study.

Standard protocol approvals, registrations, and patient consents

All subjects providedwritten informed consent before enrollment, and the institutional reviewboard of BeijingAnzhenHospital approved this

study.

METHOD DETAILS

CMR analysis

CMR was performed on a 3.0-Tesla system (Ingenia CX, Philips Healthcare, Best, The Netherlands, or MR750W, General Electric Healthcare,

Waukesha, Wisconsin, USA) using a cine sequence, black blood fat-suppressed T2-weighted (T2w), and late gadolinium enhancement (LGE)

imaging protocol. Two professional operators (QG and RG) with three years of experience in CMR image interpretation analyzed all CMR

images blindly, and a professional CMR radiologist (HW) reviewed them. CMR data were analyzed using CVI42 software version 5.13 (Circle

Cardiovascular Imaging, Calgary, AB, Canada). Borders of the endocardium and epicardium were delineated on contiguous short-axis slices,

with cardiac structural and functional indexes quantified from cine images. Myocardial strain analyses involved outlining the endocardial and

epicardial borders of the LV at end-diastole in short-axis, two-chamber, three-chamber, and four-chamber tissue, with anterior and inferior

insertion points drawn manually. Global longitudinal strain (GLS) was calculated as the software’s mean of the respective 16-segment

peak values. In LGE images, infarcted tissue was defined as five standard deviations (SDs) above the mean signal intensity of the remote

normal myocardium. Hypo-enhancement area within infarcted myocardium represented microvascular obstruction (MVO). Area at risk
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(AAR), was identified as enhancement within the myocardium of signal intensity >2 SDs of the mean signal in remote healthy myocardium.

Intramyocardial hemorrhage (IMH) was defined as hypo-enhancement within AAR. Infarct size, MVO, and IMH were presented as a percent-

age of LV end-diastolic mass (%LV mass).
Coronary physiological measurements

Coronary angiography was performed from multiple views and recorded at a frame rate of 15 frames per second. For both angiography-

derived fractional flow reserve (caFFR) and index of microcirculatory resistance (caIMR) calculations, at least two angiographic projections

were obtained, ensuring avoidance of vessel overlap and having a separation angle of R30�. Simultaneously, aortic pressure was recorded

using a specialized pressure transducer connected to the guiding catheter. The recorded aortic pressure waveforms and the Digital Imaging

and Communications in Medicine (DICOM) images were input into the FlashAngio console, enabling the generation of a three-dimensional

(3D) mesh reconstruction of the coronary arteries.

For the calculation of caFFR,16 resting flow velocities were determined using the Thrombolysis InMyocardial Infarction (TIMI) Frame Count

method. Flow velocity data and mean arterial pressure (MAP) obtained from the FlashAngio software were then utilized by a proprietary

computational fluid dynamics (CFD) method to compute the pressure drop along the generated mesh of the coronary artery, thereby

enabling the calculation of caFFR.

caFFR =
Pd

Pa

Where Pd represents the pressure at the distal end of the coronary artery, Pa is the aortic pressure, which is typically the pressure at the

entrance of the coronary artery. The pressures Pa and Pd are obtained from the CFD analysis based on the angiographic data and aortic pres-

sure waveform. The CFD method uses resting flow velocities (determined by the TIMI Frame Count method) to compute the pressure drop

along the coronary artery mesh, which then helps in determining Pd .

In the case of caIMR,32 diastolic flow velocity (Vdiastole) was determined using the TIMI Frame Count method. The maximal hyperemic flow

velocity (Vhyp) was assumed to be 2.1 times the Vdiastole. The CFDmethodwith an inlet velocity of Vhyp was employed to compute the pressure

drop and calculate caIMR.

caIMR =
ðPdÞhyp 3 L

K 3Vdiastole

Where ðPdÞhyp is the estimated hyperemic coronary artery pressure, L is a constant representing the length from the inlet to the distal po-

sition, K is the constant for flow velocity adjustment (z2.1), Vdiastole and is the diastolic flow velocity determined using the TIMI Frame

Count method.

Both caIMR and caFFR calculations were performed in a blindedmanner, without access to the information of the hospital operators. Off-

line analyses were conducted by an independent core laboratory at Suzhou RainMed Medical Technology Co., Ltd.
Feature selection

The structured dataset included 35 variables, which encompassed 14 clinical variables (age, gender, body mass index [BMI], current smoking,

systolic blood pressure at admission, anterior myocardial infarction, HbA1c, neutrophil percentage [NE%], high-sensitivity C-reactive protein,

hemoglobin, estimated glomerular filtration rate [eGFR]); three medication variables (treatment with mineralocorticoid-receptor antagonist

[MRA], beta-blocker, angiotensin-converting-enzyme inhibitor [ACEI], angiotensin-receptor antagonist [ARB], or angiotensin-receptor nepri-

lysin inhibitor [ARNI]); four angiographic variables (total ischemic time, culprit vessel, TIMI flow grade pre/post-PCI for culprit vessel); two pro-

cedural variables (thrombus aspiration and number of stents); two coronary functional indices (caIMR and caFFR); seven CMR features

(LVEDVi, LVESVi, left ventricular ejection fraction (LVEF), infarct size, MVO, IMH, and GLS); and two echocardiographic parameters (LVEF

and left ventricular end-diastolic diameter [LVEDD]). Missing values were imputed using appropriate imputation methods. LASSO33 and

BORUTA34 were applied in combination for feature selection, involving the integration of these methods to identify relevant features, fol-

lowed by an assessment of the clinical significance of each selected feature.
QUANTIFICATION AND STATISTICAL ANALYSIS

Machine learning algorithm and statistical analysis

Continuous variables are presented as median (interquartile range) and categorical variables as number (percentage). Despite the prospec-

tive nature of this study, the very low rate of missing data underscores meticulous data collection procedures and stringent quality control,

ensuring dataset robustness and reliability. In the preprocessing phase, missing values were initially imputed using the k-nearest neighbor

(KNN) algorithm to maximize dataset completeness for machine learning applications. Additionally, a script addressed missing values across

continuous, unordered categorical, and ordered categorical variable types via tailored strategies including mean, mode, and median impu-

tation respectively. This comprehensive framework integrated KNN-based imputation of clinical variables with type-specific handling, opti-

mizing the final dataset. To address the imbalanced dataset, we applied the Synthetic Minority Over-sampling Technique (SMOTE) to

generate synthetic samples for the minority class, effectively balancing classes. Using the original feature matrix (X) and labels (y), SMOTE
iScience 27, 109513, April 19, 2024 11
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produced new feature (X_resampled) and label (y_resampled) arrays encompassing both real and synthetic samples. This proved instrumental

in enabling high-performance models. The full dataset was then randomly divided into 70% training and 30% validation subsets. Machine

learning methods employed were XGBoost, logistic regression (LR), KNN, and random forest (RF). Model performance was evaluated via

area under receiver operating characteristic curve (AUC) and precision-recall curves using the Delong test for comparisons. SHapley Additive

exPlanations (SHAP) provided accurate feature attribution values. Analysis was conducted in Python 3.7, R 4.1.2 and SPSS 26.0, with two-tailed

p < 0.05 indicating significance.
12 iScience 27, 109513, April 19, 2024
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