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Abstract: Increasing reports on the significance of dietary patterns in reproduction have arisen
from both animal and human studies, suggesting an interactive association between nutrition and
male fertility. The aim of this study was to investigate the effects of curcumin supplementation on
low-carbohydrate-diet-induced metabolic dysfunction, testicular antioxidant capacity, apoptosis,
inflammation and spermatogenesis in male mice. Male C57BL/6 mice were fed a normal diet (AIN-
93M group, n = 12) and a low-carbohydrate diet for 12 weeks (LC group, fed with low-carbohydrate
diet, n = 48), and mice randomly chosen from the LC group were later fed their original diet (LC
group, n = 12). This diet was changed to AIN-93M feed (LC/AIN-93M group, n = 12), a ketogenic
diet (LC/KD group, n = 12), or a ketogenic diet treated with curcumin supplementation for the final
6 weeks (LC/KDCu group, n = 12). A poor sperm morphology and mean testicular biopsy score
(MTBS) were observed in the LC and LC/KD groups, but they were eliminated by the normal diet
or ketogenic diet with curcumin. The LC group exhibited a lower testicular testosterone level and a
lower 17β-HSD activity and protein expression. This also enhanced apoptosis protein expressions
in testis tissue, including Bax/BCl2, cleaved caspase 3, PARP and NF-κB. Meanwhile, we found a
statistically significant increase in lipid peroxidation and decreased superoxide dismutase (SOD),
catalase (CAT) and glutathione peroxidase levels in the LC group. Our study indicated that a
replacement of a normal diet or ketogenic diet supplemented with curcumin attenuated poor semen
quality and reduced testosterone levels by the LC diet by reducing oxidative stress.
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1. Introduction

Infertility is a health problem worldwide, affecting 15–20% of couples, i.e., about
70 million couples [1,2]. A male factor, including decreased sperm quality, is solely respon-
sible for infertility in 20–30% of infertile couples, but contributes to infertility in 50% of
couples overall [3,4]. Several studies have indicated that diet could play important roles in
modulating spermatogenesis, sperm maturation and fertilizing ability [5].

Evidence regarding the relationships between health outcomes and long-term dietary
fat intake has caused some controversy. In the past, the trend was to limit fat intake,
especially saturated fatty acids [6]; however, current dietary guidelines emphasize that the
focus should be on dietary patterns rather than particular levels of nutrients [7]. Dietary
patterns are defined as non-random combinations, proportions or types of different foods
and beverages [8]. Increasingly popular dietary patterns include the low-carbohydrate diet,
low-fat diet and the Mediterranean diet [7]. The definition of a low-carbohydrate diet is
<26% or <130 gm/day carbohydrate intake and limited refined carbohydrates [9,10].
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A cross-sectional study analyzed the relationships between dietary patterns and sperm
quality, and the results show that men who consumed a Western diet tend to have a poor
sperm concentration and an abnormal sperm morphology. Men who consumed a high-
carbohydrate diet exhibited significant decreases in total sperm motility and progressive
motility, and an abnormal sperm morphology was observed in men who consumed a
high-sodium diet. Moreover, higher intakes of high-sugar snacks and sugar-sweetened
drinks tend to cause a much lower sperm concentration [11]. Eslamian et al. reported
that high consumptions of red meat and sugar-sweetened beverages are associated with a
greater risk of asthenozoospermia, and conversely, high fruit, vegetable, poultry, skimmed
milk and seafood intake are associated with a lower risk of sperm abnormality [2,12].

The most common cause of male infertility is defective sperm function, and oxidative
stress due to increased lipid peroxidation or a lack of antioxidants in sperm is one of the
major contributing factors [13]. Sperm motility and hyperactivation require substantial
ATP produced by glycolysis and oxidative phosphorylation that mainly uses glycolysable
sugar such as glucose, mannose, and fructose [14,15]. Tanaka et al. found that testis-specific
succinyl CoA transferase (SCOT-t) may be functional in sperm for the utilization of ketone
bodies [16].

Curcumin (1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-hepadiene-3,5-dione), a pow-
dered rhizome of Curcuma longa, is considered a powerful antioxidant. The antioxidant
capacity of curcumin can be divided into the direct removal of reactive oxygen species (ROS)
and indirect activation of antioxidant enzymes activities [17,18]. The former involves the
direct scavenging of superoxide anions (O2

·) [19], hydroxyl radicals (·OH) [20], nitric oxide
(NO), and peroxyl radicals (ROO·) [21], while the latter involves the induction of superoxide
dismutase (SOD), catalase (CAT) [22], glutathione reductase (GR) [20], glutathione peroxi-
dase (GPx) and glutathione S-transferase (GST) activity [23]. These properties are related
to the chemical structure of curcumin, which includes bios-α, β-unsaturated β-diketone,
two methoxy groups, two phenolic hydroxy groups and two conjugated bonds, which
might play important roles in anti-inflammatory and antiproliferative activities [24,25]. A
randomized, double-blind, placebo-controlled clinical trial showed that curcumin supple-
mentation could increase sperm quality, including total sperm count, sperm concentration
and motility, and improved the total antioxidant capacity of plasma, malondialdehyde,
C-reactive protein and tumor necrosis factor (TNF) [26].

The low-carbohydrate diet is a fashionable strategy for weight control and exercise
performance, and we carried out this study to explore whether this diet can reduce the
impact of obesity and improve male reproductive function and, if possible, to identify the
related mechanisms. The present study aimed to investigate the effects of a ketogenic diet
and curcumin supplementation on reproductive damage induced by a low-carbohydrate
diet and its involved mechanisms, including oxidative stress, apoptosis and inflammation.

2. Results
2.1. Curcumin Does Not Affect Reproductive Organ Weight and Lipid Profiles

As shown in Figure 1, daily food intake and body weight were not statistically different
among the five groups, which may be ascribed to pair-feeding. Mice that were fed a low-
carbohydrate diet (LC) had significantly higher levels of total cholesterol, TG and HDL.
The LC that switched to the AIN-93M diet group (LC/AIN-93M) had higher AST and ALT
levels compared with the LC group. In addition, improved serum TG and HDL levels were
observed in the LC that switched to the ketogenic diet in the curcumin supplementation
group (LC/KDCu).
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Figure 1. Effects of the low carbohydrate diet and curcumin on (a) body weight, (b) food intake,
(c) serum total cholesterol (TC), (d) serum triglycerides (TG), (e) serum high density lipoprotein (HDL),
(f) serum aspartate aminotransferase (AST), (g) serum alanine aminotransferase (ALT), (h) serum
glucose in male mice. Data are expressed as means ± SD. ((a,b) n = 11–12; (c–h) n = 7–12 per group).
Bars (a, b) with different letters indicate that values are significantly different. (One-way ANOVA,
Duncan’s test, p < 0.05). AIN-93M: AIN-93M diet; LC: low carbohydrate diet; LC/AIN-93M: low
carbohydrate diet changed to AIN-93M diet; LC/KD: low carbohydrate diet changed to ketogenic
diet; LC/KDCu: low carbohydrate diet changed to ketogenic diet and curcumin.

2.2. Curcumin Ameliorates the Decrease in Testicular Spermatogenesis and Sperm Quality Caused
by a Low-Carbohydrate Diet

The results show that there were no significant differences in the weights of the testis,
epididymis or vas deferens among the five groups. In terms of sperm motility, the AIN-93M
group was significantly better than the other four groups, and regarding sperm count, there
were no significant differences among the five groups. In the case of sperm morphology,
the percentage of sperm of a normal morphology in the LC group was significantly lower
than in the other four groups (Figure 2). Figure 3 illustrates the correlation between ketone
bodies and sperm quality. Correlation results are as follows: sperm motility (p = 0.0043,
r = 0.1490), sperm count (p = 0.2037, r = 0.0292), and sperm morphology (p = 0.7551,
r = 0.0055). Figure 4 shows that there was no significant difference in the MSTD among
the five groups. The MTBS values of the LC and the LC that switched to the ketogenic
diet (LC/KD) groups were significantly lower than those of the AIN-93M and LC/KDCu
groups, and the thickness of the GE in the LC and LC/KD groups was significantly lower
than in the other three groups. To sum up, the LC/AIN-93M and the LC/KDCu groups
had better sperm production and improved spermatogenesis.
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mice. Data are expressed as means ± SD. n = 11–12 per group. Bars (a, b, c, d) with different letters 
indicate that values are significantly different. (One-way ANOVA, Duncan’s test, p < 0.05). AIN-
93M: AIN-93M diet; LC: low carbohydrate diet; LC/AIN-93M: low carbohydrate diet changed to 
AIN-93M diet; LC/KD: low carbohydrate diet changed to ketogenic diet; LC/KDCu: low carbohy-
drate diet changed to ketogenic diet and curcumin. 
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son’s test, p < 0.05). r: spearman correlation coefficient. 

Figure 2. Effects of the low carbohydrate diet and curcumin on (a) testis, (b) epididymis, (c) vas
deferens, (d) sperm motility, (e) sperm counts, (f) percentage of normal sperm morphology in male
mice. Data are expressed as means ± SD. n = 11–12 per group. Bars (a, b, c, d) with different letters
indicate that values are significantly different. (One-way ANOVA, Duncan’s test, p < 0.05). AIN-93M:
AIN-93M diet; LC: low carbohydrate diet; LC/AIN-93M: low carbohydrate diet changed to AIN-93M
diet; LC/KD: low carbohydrate diet changed to ketogenic diet; LC/KDCu: low carbohydrate diet
changed to ketogenic diet and curcumin.
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Figure 3. Correlation between ketone bodies and sperm quality parameters; (a) sperm motility,
(b) sperm counts, (c) percentage of normal sperm morphology in male mice. n = 11–12 per group.
(Pearson’s test, p < 0.05). r: spearman correlation coefficient.
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different letters indicate that values are significantly different. (One-way ANOVA, Duncan’s test, p 
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Figure 4. Effects of the low carbohydrate diet and curcumin on (a) testicular histology, (b) MTBS,
(c) MSTD, (d) thickness of GE in male mice. Data are expressed as means ± SD. n = 5 per group.
MTBS: mean testicular biopsy score; MSTD: mean seminiferous tubule diameter. Bars (a, b, c) with
different letters indicate that values are significantly different. (One-way ANOVA, Duncan’s test,
p < 0.05). AIN-93M: AIN-93M diet; LC: low carbohydrate diet; LC/AIN-93M: low carbohydrate diet
changed to AIN-93M diet; LC/KD: low carbohydrate diet changed to ketogenic diet; LC/KDCu: low
carbohydrate diet changed to ketogenic diet and curcumin.

2.3. Curcumin Increases the Testosterone Level through Upregulating 17β-HSD Expression

The testicular testosterone, 3β-HSD and 17β-HSD levels were measured by ELISA.
The results show that the LC and LC/KD groups had significantly lower testosterone
concentrations than the AIN-93M group. Additionally, the LC group had a lower 17β-HSD
level than the other groups. In contrast, the LC/KDCu group had an increased testosterone
concentration and 17β-HSD level (Figure 5). The protein expressions of enzymes involved
in the testosterone biosynthesis pathway are shown in Figure 6, and there were no statistical
differences in the expressions of StAR, CYP11A1, 3β-HSD or CYP17A1. The LC group
had a significantly lower 17β-HSD expression than the AIN-93M group, whereas the
LC/AIN-93M and LC/KDCu groups had significantly increased expressions.
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Figure 5. Effects of the low carbohydrate diet and curcumin on testicular (a) testosterone, (b) 3β-HSD,
(c) 17β-HSD levels in male mice. Data are expressed as means ± SD. n = 5 per group. Bars (a, b, c)
with different letters indicate that values are significantly different. (One-way ANOVA, Duncan’s
test, p < 0.05). AIN-93M: AIN-93M diet; LC: low carbohydrate diet; LC/AIN-93M: low carbohydrate
diet changed to AIN-93M diet; LC/KD: low carbohydrate diet changed to ketogenic diet; LC/KDCu:
low carbohydrate diet changed to ketogenic diet and curcumin.
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(a) protein expressions in each group, (b) StAR, (c) CYP11A1, (d) 3β-HSD, (e) CYP17A1, (f) 17 β-HSD
relative density analysis of the protein bands in male mice. Data are expressed as means ± SD. n = 6–9
per group. Bars (a, b, c) with different letters indicate that values are significantly different. (One-way
ANOVA, Duncan’s test, p < 0.05). AIN-93M: AIN-93M diet; LC: low carbohydrate diet; LC/AIN-93M:
low carbohydrate diet changed to AIN-93M diet; LC/KD: low carbohydrate diet changed to ketogenic
diet; LC/KDCu: low carbohydrate diet changed to ketogenic diet and curcumin.
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2.4. Curcumin Activates Antioxidant Capacity and Suppresses Lipid Peroxidation, Apoptosis and
Inflammation in the Testis

As shown in Figure 7, the levels of SOD, GPx and CAT in the LC group were sig-
nificantly lower than in the other groups. In terms of lipid peroxidation, the MDA con-
centration in the LC group was significantly higher than in the other four groups. A low-
carbohydrate diet resulted in higher protein expressions of the ratio of the pro-apoptotic
factor Bax to the anti-apoptotic factor Bcl-xl (Bax:Bcl-xl), cleaved caspase 8, caspase 3 and
PARP, while these changes were attenuated following a change in the diets of the AIN-93M
and LC/KDCu groups (Figures 8 and 9). The examination of inflammation-related factors
showed an increasing NF-κB protein expression in the LC and LC/KD groups and a notably
lower NF-κB expression in the LC/KDCu group (Figure 10).
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Figure 7. Effects of the low carbohydrate diet and curcumin on (a) SOD activity, (b) CAT activity,
(c) GPx activity, (d) MDA content in male mice. Data are expressed as means ± SD. n = 6–9 per group.
Bars (a, b, c) with different letters indicate that values are significantly different. (One-way ANOVA,
Duncan’s test, p < 0.05). AIN-93M: AIN-93M diet; LC: low carbohydrate diet; LC/AIN-93M: low
carbohydrate diet changed to AIN-93M diet; LC/KD: low carbohydrate diet changed to ketogenic
diet; LC/KDCu: low carbohydrate diet changed to ketogenic diet and curcumin.
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Figure 8. Effects of the low carbohydrate diet and curcumin on testicular intrinsic apoptosis pathway
regulators (a) protein expressions in each group (b) Bax:Bcl-xl, (c) caspase 9, (d) caspase 3, (e) cleaved-
caspase 3, (f) PARP, (g) cleaved-PARP in male mice. Data are expressed as means ± SD. n = 6–9 per
group. Bars (a, b, c) with different letters indicate that values are significantly different. (One-way
ANOVA, Duncan’s test, p < 0.05). AIN-93M: AIN-93M diet; LC: low carbohydrate diet; LC/AIN-93M:
low carbohydrate diet changed to AIN-93M diet; LC/KD: low carbohydrate diet changed to ketogenic
diet; LC/KDCu: low carbohydrate diet changed to ketogenic diet and curcumin.
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3. Discussion

The relationship between diet and infertility is a major clinical and public health
problem. In order to investigate the effects of different dietary patterns on male fertility, the
present study used pair-feeding to ensure that food intake in the control group was matched
to that in the experimental groups, so that the impacts of treatments were determined
independently of food intake [27]. Li et al. performed a pair-feeding experiment, and no
statistical differences in the initial body weight, final body weight or body weight gain
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among groups fed a liquid diet, high-carbohydrate liquid diet and high-fat liquid diet were
found [28].

The results (Figure 1) show that low-carbohydrate diet administration significantly
increased the serum levels of TC, TG and HDL, and decreased the AST and ALT levels, in
comparison with the AIN-93M group. Volek et al. explained the lipoprotein metabolism
when consuming a low-carbohydrate diet, which initially increases circulating TAG-rich
chylomicrons, which are then cleared by lipoprotein lipase (LPL). A low-carbohydrate
diet also decreases glucose and insulin levels, and then decreases LPL, and increases TG
hydrolysis and fatty acid production. Then, circulating fatty acids are diverted away to TG
and towards mitochondrial oxidation to acetyl CoA. Excessive mitochondrial oxidation
eventually boosts the formation of ketone bodies. Unesterified cholesterol, phospholipid,
and apolipoprotein are transferred from VLDL and form mature HDL-C [29].

In this study, we demonstrated that curcumin could ameliorate poor spermatogenesis
and sperm function, and reverse oxidative stress, inhibit inflammation and inhibit apopto-
sis in the testes of low-carbohydrate-diet-fed mice. A prior study explored the mechanisms
of male infertility and focused on sperm parameters or reproductive hormones. Sperm
mainly use sugars as an energy source, including glucose, mannose, and fructose [14].
Attaman et al. found that a high intake of total fat was negatively related to sperm count
and concentration [30]. Curcumin, a phenolic compound extracted from the Curcuma longa
rhizome, has antioxidant, anti-inflammatory, and anti-mutative properties [31]. The present
study shows that curcumin improved the percentage of morphologically normal sperm
(Figure 2) and testicular morphology, and increased the thickness of the GE and the MTBS
(Figure 4). Alizadeh et al. showed that curcumin could improve sperm count, concentration
and motility in patients with asthenoteratospermia. Significant improvements in plasma
levels of total antioxidant capacity, malondialdehyde and TNF were also observed [26]. It
is speculated that curcumin, with a conjugated structure and an enol form, could scavenge
free radicals and increase the activity of antioxidant enzymes, thereby improving sperm
quality [19,32]. The study shows that oral curcumin (80 mg/kg) can lower lipid accumula-
tion in liver and adipose tissue and improve the insulin sensitivity of male C57BL/6 mice
with a 60% high-fat diet by regulating the SREBP pathway [33]. Prophylactic oral adminis-
tration of curcumin (80 mg/kg) in Sprague Dawley rats with a 60% high-fat diet feeding
showed anti-hyperglycemic, anti-lipolytic and anti-inflammatory effects by attenuating
TNF-α levels [34]. In ICR mice with spermatogenic disorders induced by scrotal heat stress,
administrating curcumin (80 mg/kg) by intragastric intubation, also had antioxidative,
anti-apoptotic and androgen synthesis effects [35]. In our study, the low-carbohydrate diet
and ketogenic diet contained 69.9% and 83.2% fat, respectively. To mimic the fashionable
dietary patterns for weight control, we aimed to illustrate the effects of different dietary
patterns and fat contents with or without curcumin on testicular antioxidant capacity,
apoptosis, inflammation and spermatogenesis. Our results show that a low-carbohydrate
diet caused a lower sperm quality and a damaged testicular histology (Figures 2 and 4).
Administrating curcumin (80 mg/kg) could partially reverse this condition.

The limiting factors of curcumin, such as a low solubility and oral bioavailability,
restrict its application as a therapeutic agent [36,37] to develop oral delivery systems for
curcumin to enhance solubility and oral bioavailability, such as nanoparticles [38]. The
study shows that curcumin nanomicelle supplement (80 mg per day) to asthenoteratosper-
mia [38] or oligozoospermia [26] patients could improve semen quality. In the present
study, a low-carbohydrate diet impaired sperm motility, morphology, MTBS and GE, and
the ketogenic diet with curcumin improved morphology, MTBS and GE but not including
motility. Bioavailability of curcumin could be improved by nano-curcumin formulations.
Therefore, future investigation is suggested in this regard.

The concentration of testosterone plays an important role in spermatogenesis [39].
In this study, we measured the level of testosterone and protein expressions of markers
involved in the testosterone biosynthesis pathway. The data show that the testosterone
concentration in the LC group was significantly lower than that in the AIN-93M group
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and increased in the LC/AIN-93M and LC/KDCu groups (Figure 5). Moreover, our
results show that the LC group had a lower protein expression of 17β-hydroxysteroid
dehydrogenase than the AIN-93M group, and this was increased in the LC/AIN-93M,
LC/KD and LC/KDCu groups (Figures 5 and 6). Sharma et al. established a rat model
of exposure to insecticides/xenobiotics in which the animals received supplementation
with curcumin and quercetin. It was demonstrated that curcumin and quercetin could
protect against insecticides and xenobiotic-induced sperm count, testosterone concentration,
activities of 3β-HSD and 17β-HSD, and oxidative damage [40], and the increases in lipid
peroxidation and oxidative stress may have contributed to the decreases in sperm count
and the concentration of testosterone. On the other hand, it is possible that hypothalamic–
pituitary–gonadal axis negative feedback inhibition may partly be responsible for the
reduced testosterone level.

The most common mechanisms of infertility include oxidative stress, inflammation,
and apoptosis [41,42]. As shown in the present study, a low-carbohydrate diet decreased
SOD, catalase and GPx activities, while the LC/AIN-93M, LC/KD and LC/KDCu groups
exhibited increased antioxidant activities (Figure 7). Mu et al. showed that a high-fat diet
increased oxidative stress and MDA content, and curcumin supplementation decreased
the ROS level and lipid peroxidation production [43]. The Leydig cell is the main source
of testosterone secretion and sperm production. Excessive oxidative stress is harmful to
sperm survival, damaging the sperm cell membrane, breaking the double-stranded DNA of
genetic material, and activating apoptotic mediators, cytochrome c, caspase 9 and caspase
3 [44]. In our study, the LC group exhibited increased protein expressions of the Bax:Bcl-xl
ratio, cleaved caspase 8, cleaved caspase 3 and cleaved PARP, and these were improved
in the LC/AIN-93M and LC/KDCu groups (Figures 8 and 9). Mu et al. showed that
curcumin reversed high-fat-diet-induced decreased expressions of Fas, Bax and cleaved
caspase 3, and increased the expression of Bcl-xl [45]. Inflammation is a physiological
defense mechanism that increases oxidative stress. Inflammation may induce monocytes to
differentiate into macrophages and produce proinflammatory cytokines, including IL-1,
IL-6, and TNF-α [46]. In our study, the LC and LC/KD groups exhibited increased NF-
κB expression, while the expression was decreased in the LC/AIN-93M and LC/KDCu
groups (Figure 10). Rosenbaum et al. also showed that a ketogenic diet could increase the
C-reactive protein level [47].

4. Materials and Methods
4.1. Animals

All experimental procedures were approved by the Institutional Animal Care and Use
Committee (IACUC; ethical code number: LAC-2010-0050) of Taipei Medical University
(Taipei City, Taiwan). Male C57BL/6 mice (6-week-old, weighing 22–24 g) were obtained
from the National Laboratory Animal Center (Taipei City, Taiwan) and were housed in
standard cages (room temperature: 20–26◦C; humidity: 55 ± 5%; 12 h light–dark cycle).
The mice were pair-fed a liquid diet containing maltose and dextrin.

4.2. Study Design

In the present study, after 1 week of acclimatization, the male C57BL/6 mice were
randomly divided into two groups as follows: the AIN-93M group (n = 12) and the LC
group (n = 48). After 12 weeks, the AIN-93M group was maintained on the AIN-93M diet,
and the LC group was randomly divided into four groups: one was maintained on the
original diet (LC, n = 12), the second was changed to the AIN-93M diet (LC/AIN-93M,
n = 12), the third changed to a ketogenic diet (LC/KD, n = 12), and the final group changed
to a ketogenic diet with curcumin supplementation (LC/KDCu, n = 12) for 6 weeks. The
curcumin powder was dissolved in the soybean oil and mixed in the liquid diet. The
ingredients of each diet are shown in Table 1.
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Table 1. Feed ingredients and energy composition of each diet.

Ingredient (g/L) AIN-93M LC KD KDCu

Casein 28.00 28.00 28.00 28.00

Methionine 0.30 0.30 0.30 0.30

L-cystine 0.50 0.50 0.50 0.50

Dextrin 192.00 22.00 12.00 12.00

Sucrose - 23.00 - -

Soybean oil 10.00 75.00 90.00 90.00

Cellulose 10.00 10.00 10.00 10.00

Xanthan gum 3.00 3.00 3.00 3.00

Mineral 15.00 15.00 15.00 15.00

Vitamin 5.00 5.00 5.00 5.00

Choline 0.53 0.53 0.53 0.53

Curcumin - - - 80 mg/kg

Energy
(% of kcal) AIN-93M LC KD KDCu

Carbohydrate 79.2 18.6 4.9 4.9

Fat 9.3 69.6 83.2 83.2

Protein 11.9 11.9 11.8 11.8

4.3. Histological Analysis

Formalin-fixed testis tissues were prepared and analyzed at the Department of Pathol-
ogy of Cardinal Tien Hospital (New Taipei City, Taiwan), being embedded, cut and stained
with hematoxylin and eosin (H and E) following standard protocols. The samples were
observed and captured under a DM1000 microscope (Leica, Wetzlar, Germany). The thick-
ness of the testicular germinal epithelium (GE) and the mean seminiferous tubule diameter
(MSTD) were calculated across axes using Image J software (1.50, National Institutes of
Health, Bethesda, MD, USA). The GE size was measured using the average length of a
lumen and the length of a seminiferous tubule, and at least 10 sections were calculated in
each mouse. Johnsen’s score was used to evaluate testicular spermatogenesis. The degree
of testicular damages was tested using a 1–10-point scale ranging from the highest score of
10, standing for complete spermatogenesis, to 1, indicating no seminiferous epithelium.

4.4. Serum Analysis

After anaesthetization, blood from the heart sat for 20–30 min at room temperature
before being centrifuged for 15 min at 3000 rpm and separated the resulting supernatant.
Total cholesterol (TC, mg/dL), triglyceride (TG, mg/dL), high-density lipoprotein (HDL,
mg/dL), aspartate aminotransferase (AST, U/L), and alanine aminotransferase (ALT, U/L)
levels were measured using a chemistry analyzer (Modular P800, Roche, Basel, Switzer-
land). Serum ketone (mmol/L) and glucose (mg/dL) levels were measured using a GLU-
COSURE POC system (ApexBio AB-302G, Hsinchu, Taipei, Taiwan). The serum insulin
level (pmol/L) was determined by enzyme-linked immunosorbent assay (ELISA) using
a commercial ELISA kit according to the manufacturer’s instructions (Mercodia Mouse
Insulin ELISA, 10-1247-01, Uppsala, Sweden).

4.5. Sperm Quality Analysis

Sperm quality was assessed according to sperm motility, sperm count and morphologi-
cal abnormality. Sperm motility was expressed as the percentage of motile sperm evaluated
microscopically under a magnification of 40× in four random microscopic fields, and at
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least 200 sperm cells were counted. The sperm count was measured using an automated
cell counter (TC20, Bio-Rad, Hercules, CA, USA).

For sperm morphology, sperm slides were fixed with methanol (Honeywell, Morris
Plains, NJ, USA) and stained with an eosin Y (E4009, Sigma-Aldrich, Saint Louis, MO,
USA) and ethanol (Bioman, Taipei City, Taiwan) mixture. Then, the slides were rinsed with
75% ethanol (Bioman) and dried. Finally, the percentage of morphologically normal sperm
within at least 100 sperm cells was calculated.

4.6. Testicular Hormone, Antioxidants and Marker of Lipid Peroxidation Analysis

Testis tissues were homogenized in ice-cold RIPA lysis buffer (Thermo Fisher Sci-
entific, Waltham, MA, USA) containing protease inhibitors and phosphatase inhibitors
and centrifuged at 14,000× g (4 ◦C) for 20 min. The testicular concentrations of testos-
terone (Cayman, Item No. 582701, Ann Arbor, MI, USA), 3β-HSD (MyBioSource, #3806055,
San Diego, CA, USA) and 17β-HSD (MyBioSource, #3806056) were measured using an
ELISA kit according to the manufacturer’s instructions. The antioxidants and marker
of lipid peroxidation, including superoxide dismutase (SOD, U/mL; Cayman, Item No.
706002), catalase (CAT, µM; Cayman, Item No. 707002), glutathione peroxidase (GPx,
nmol/min/mL; Cayman, Item No. 703102) and malondialdehyde (MDA, µM; Cayman,
Item No. 10009055) were also evaluated using ELISA kits.

4.7. Western Blotting Analysis

Total protein was extracted from testis tissues using RIPA lysis buffer, and the concen-
trations determined using a detergent-compatible protein assay (Bio-Rad). Equal quan-
tities of protein were resolved using sodium dodecyl sulfate (SDS)-polyacrylamide gels
(Bioman) and then transferred onto polyvinylidene difluoride (PVDF) membranes (GE
Healthcare, Freiburg, Germany). The PVDF membranes were blocked with 5% (w/v) dried
milk with 0.1% Tween 20 in Tris-buffered saline (TBST) for 1 h and incubated overnight
with the following primary antibodies: StAR (1:1000; sc-25806, Santa Cruz Biotechnology,
Dallas, TX, USA), 3β-HSD (1:500; sc-28206, Santa Cruz Biotechnology), 17β-HSD (1:250;
sc-135044, Santa Cruz Biotechnology), CYP11A1 (1:1000; sc-202456, Santa Cruz Biotech-
nology), CYP17A1 (1:1000; sc-66850, Santa Cruz Biotechnology), caspase 8 (1:1000; 59607,
GeneTex, San Antonio, TX, USA), Bax (1:1000; 2772, Cell Signaling Technology, Danvers,
MA, USA), caspase 9 (1:1000; 9508, Cell Signaling Technology), caspase 3 (1:500; 9662, Cell
Signaling Technology), cleaved caspase 3 (1:250; 9664, Cell Signaling Technology), poly
(ADP-ribose) polymerase (PARP;1:1000; 3542, Cell Signaling Technology), Bcl-xl (1:1000;
ab32370, Abcam, Cambridge, MA, USA), peroxisome proliferator-activated receptor
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5. Conclusions

In summary, the results of our study confirmed that a low-carbohydrate diet led to a
lower sperm quality and damaged testicular histology. Supplementation with curcumin
may improve the impaired sperm and testis function via decreasing oxidative stress,
inflammation and apoptosis.
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