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Abstract: Breast cancer is one of the main causes of death among women worldwide. Early detection
of this disease helps reduce the number of premature deaths. This research aims to design a method
for identifying and diagnosing breast tumors based on ultrasound images. For this purpose, six
techniques have been performed to detect and segment ultrasound images. Features of images are
extracted using the fractal method. Moreover, k-nearest neighbor, support vector machine, decision
tree, and Naïve Bayes classification techniques are used to classify images. Then, the convolutional
neural network (CNN) architecture is designed to classify breast cancer based on ultrasound images
directly. The presented model obtains the accuracy of the training set to 99.8%. Regarding the test
results, this diagnosis validation is associated with 88.5% sensitivity. Based on the findings of this
study, it can be concluded that the proposed high-potential CNN algorithm can be used to diagnose
breast cancer from ultrasound images. The second presented CNN model can identify the original
location of the tumor. The results show 92% of the images in the high-performance region with an
AUC above 0.6. The proposed model can identify the tumor’s location and volume by morphological
operations as a post-processing algorithm. These findings can also be used to monitor patients and
prevent the growth of the infected area.

Keywords: breast cancer; deep learning; classification; segmentation; convolutional neural network

1. Introduction

Ultrasound is the main procedure for breast cancer detection and statistical analysis
of results during a mechanical investigation. Ultrasound monitoring shifts the patho-
physiology of breast cancer far from the most part massive lesions that are easily seen
and effectively evident and toward ever smaller and occasionally harmless tumors [1].
A breakthrough in systems’ capacity to apply machine learning (ML) approaches to tackle
a range of therapeutic scanning issues has occurred during the last decade. While straight-
forward computer-aided diagnosis (CAD) technologies have been in ultrasound for several
years, their value and effectiveness have typically been restricted. New deep learning (DL)
approaches, on the other hand, have been shown to identify cancers on standard mammo-
grams as well as, if not superior to, professional physicians. It remains a challenge; the
possibility of intelligence monitoring systems identifying autonomously in a randomized
controlled trial has not been materialized. The current emphasis is on ML systems assisting
radiologists instead of functioning as standalone diagnosticians [2]. Medical imaging, part
of the broader scope of testing, is the biggest and most prospective channel via which DL
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may be utilized in healthcare [3,4]. To get a diagnosis promptly, radiographic examinations,
despite modalities, need much interpretation by a professional clinician. There is a rising
necessity for diagnostic automating as the constraints on existing radiologists increase [5,6].
Detecting malignancy in breast cancer images has previously been described using ML
approaches. On the other hand, ML is restricted in interpreting essential information in
its raw state. The constraint arises from the requirement for industry professionals who
can manufacture information to feed a classification. On the other hand, DL, a branch of
neural networks, learns several layers of description and conceptualization autonomously,
allowing for a more in-depth analysis of breast cancer images. Artificial neural networks
have made significant advances in image processing [7]. The prevalence of false positives
is one of the issues connected with ultrasound. In Europe, women between the ages of 50
and 69 who undergo biannual screening face a 20% chance of receiving a false positive.
The statistics in the U.S. are even more worrisome, with every tested woman experienc-
ing at least one false-positive throughout her lifetime. The false-positive findings affect
women’s lives, particularly in terms of daily welfare and medicine expenses. However,
false positives are not ultrasound’s sole disadvantage [8]. Sure researchers have studied
Nucleus analysis, who have extracted nucleus characteristics that can categorize cells as
benign or malignant [9]. Likewise, grouping-based methods based on histogram equal-
ization and various measurement characteristics have been used for nuclei recognition
and classification. Nonetheless, the service’s effectiveness and efficiency suffer due to the
complexity of traditional ML approaches like filtering, separation, and edge detection.
The DL technique, which has just evolved, could solve standard ML problems. This tech-
nique can tackle picture identification and object localization problems with remarkable
dimensionality reduction. CNNs are the most common DL algorithms available in the
literature. The 2D input-image structure is used to modify the CNN architecture [10,11].
A CNN-training assignment needs a considerable amount of data in short supply in the
healthcare field, particularly in BC. Using the TL method from a natural-images database,
including ImageNet, and fine-tuning it answer problems.

In this paper, six analyses have been performed to detect and segment ultrasound
images. Features of images are selected using the fractal method. After the k-nearest
neighbor (KNN), support vector machine (SVM), decision tree (DT), and Naïve Bayes (NB)
classification techniques are used to classify images. Then, convolutional neural network
(CNN) architecture was designed to be directly classified based on ultrasound images.
Finally, a CNN model is presented to identify the location of the breast cancer lesion.

2. Literature Review

Data mining methods were utilized by Ganggayah et al. to create models for dis-
covering and displaying key prognostic markers of breast cancer survival ratio. There
were 23 predictor factors in the database and one outcome variable, which alluded to the
participants’ survival state. For performing firm using random forest, the information was
grouped based on the receptor status of women with breast cancer detected by immunohis-
tochemistry. The discovered key prediction variables impacting breast cancer survival rates,
confirmed by survival curves, are helpful and may be converted into medical diagnosis
systems [12]. To identify the Wisconsin Breast Cancer (Basic) database, Bayrak et al. em-
ployed two among the most prominent machine learning algorithms and evaluated their
recognition accuracy. The Support Vector Machine method produced the most remarkable
results with minor errors [13]. Zeebaree et al. presented a technique for extracting the
region of interest (ROI) for detecting breast cancer abnormalities. The suggested model
was developed using a local scanning technique and a classification technique. A learned
simulation was performed in the learning phase by estimating the frequency of rounds
from both ROI and environment. The background detected the ROI by monitoring the im-
age with a set size window during the testing step. The suggested solution’s functionality
was also matched to current techniques for segmenting specific inputs [14]. Using WDBC
database, Agarap compared six ML methods by assessing their diagnostic quality stan-
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dards. The hyper-parameters utilized for all the classes were control of work to construct
the neural networks. According to the statistics, all the supervised learning models scored
well on the created plan. With a test accuracy of 99.04 percent, the MLP strategy stands out
between modeling and analysis [15]. Ferroni et al. demonstrated the value of combining
an ML-based recommender system with stochastic optimization to retrieve diagnoses from
frequently gathered breast cancer survivors’ personal, clinical, and molecular data. With a
hazard ratio of 10.9, the algorithm could also screen the testing collection into people diag-
nosed with low- or high-risk advancement. Verification in revolutionary change trials was
required, as was successful planning of security issues connected to computerized e-health
data. Furthermore, the findings revealed that incorporating ML methods and models into
e-health data might aid in obtaining therapeutic targets and could change the treatment
of customized therapy [16]. Binder et al. demonstrated a machine-learning technique
for comprehensively assessing phenotypic, biochemical, and clinical characteristics from
breast cancer pathology that was easily understandable. Initially, the method enabled the
accurate detection of tumors and tissue lymphocytes in pathological images and exact heat
map representations that explained the classifier’s conclusions. Next, histology was used to
identify molecular characteristics such as DNA methylation, gene expression, copy number
changes, somatic mutations, and proteins. Eventually, using knowable AI, researchers
determined the relationship between morphological and molecular cancer characteristics.
Across a combined clinical score of histological, clinical, and molecular characteristics, the
resultant statistical multiplex-histology model can help boost fundamental biomedical
research and accuracy treatment [17]. There are metaheuristic algorithms such as Harris
hawk’s optimization [18], multi-swarm whale [19], moth–flame optimizer [20–22], grey
wolf [23,24], fruit fly [25,26], bacterial foraging optimization [27], Boosted binary Harris
hawk’s optimizer [28], ant colony [29,30], biogeography-based whale optimization [31],
and grasshopper optimization [32].

Souri et al. used ML to connect the activity of enzymes to overall survival and
categorize tumors into more or less aggressive prediction types using breast cancer tran-
scriptomics from numerous research projects. The proposed approach can categorize
cancers into better-defined prognostic groupings instead of using knowledge on tumor
volume, staging, or subtypes. The process helps increase prediction and enhance clinical
decision-making and accuracy therapies, possibly reducing under diagnosis of high-risk
cancers and reducing overtreatment of low-risk disease [33]. The efficiency of traditional
ML and DL-based techniques was tested by Boumaraf et al. They also helped categorize
breast cancer in histological images by providing a visual explanation. Using ML-based
approaches, three feature extractors are used to obtain several features, which are then
fused to create a feature representation that can train based on classical classification. They
use the transfer learning technique to the VGG-19 classifier for DL-based approaches. They
display the learned features after presenting the recognition accuracy of traditional ML
and DL techniques to understand classification performance differences better. The results
revealed that DL affected the cost ML methods [34]. To tackle the classification problem,
Saxena et al. developed a new ML model.

The suggested model used pre-trained ResNet50 and the kernelized mixed deep neural
network for CAD of breast cancer utilizing histology. The histological pictures of breast
cancer were collected from massive databases. For the categorization of both minor and
dominant class cases, the suggested approach performed relatively well. In perspective, the
experimental result improves state-of-the-art ML models applied in prior research utilizing
the identical BreakHis learning ratio [35]. Wang et al. presented a prototype transfer-
generated adversarial network that combines generative adversarial systems and proto
systems to categories a vast group of observations using a transfer learning classification
model on a limited number of labeled input databases from a comparable area. This strategy
decreased the pixel-level dispersion gap for breast histopathological images captured from
different platforms with personality and style without necessitating a large number of
labeled detection methods by generating an adversarial network, which decreased the style
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difference between the source and target. The pixel values learned by a prototype network
were then embedded into the metric space, allowing discriminative information from
the model to be extracted into the neural network. They trained an algorithm to predict
huge quantities of target data using a specific “distance” in the subspace. The suggested
approach for identifying benign and malignant tumors has an accuracy of almost 90%,
according to the empirical results using the BreakHis sample. Shashaani et al. presented a
new idea for detecting the effects of paclitaxel on normal and cancerous breast cells [36].
Nourbakhsh et al. demonstrated the effect of MDSC in autoimmune and its therapeutic
application [37]. Khayamian et al. investigated the increase in cancer cell permeability
and material absorption [38]. It demonstrates the benefit of our technique in offering a
valuable tool for breast cancer multi-classification in healthcare situations while reducing
the expense of complex annotation [39]. In addition, biological uses of computer vision are
prevalent, for instance, diagnosis of tuberculous [40], thyroid Nodules [41], Parkinson’s [42],
and paraquat-poisoned patients [43] (See Table 1).

Table 1. Summary of research for diagnosis of breast cancer based on DL approaches.

Author Year Type Network Results

Yu et al. [44] 2021 Auxiliary diagnosis Inception-v3 Breast cancer diagnosis accuracy in distant
locations has improved.

Jiang et al.
[45] 2021 Assessment of

molecular subtypes DCNN
The DL algorithm uses pretreatment ultrasound

images of breast cancer to identify molecular
subtypes with excellent diagnosis accuracy.

Bychkov
et al. [46] 2021 Identifying

morphological feature DNN

The success of adjuvant anti-ERBB2 therapy was
linked to ERBB2-associated morphology, which

might help predict treatment outcomes in
breast cancer.

Saber et al.
[47] 2021 Automatic Detection

and Classification
ResNet50, VGG-16,

Inception-V2 ResNet Overall accuracy is 98.96%

Boumaraf
et al. [34] 2021

Image Classification of
Histopathological

Breast Cancer
concerning

Magnification

VGG-19

The pathologist believes autonomous DL
techniques as a legitimate and credible support
tool for breast cancer detection can be enhanced

by the decisions.

Lee et al.
[48] 2021 Prediction of axillary

lymph node metastases CNN

The findings show that the suggested CAP
paradigm, which includes primary tumor and
peritumoral cells to determine ALN status in

women with symptomatic breast cancer, is
reliable for predicting the ALN condition.

Zhang et al.
[49] 2021 Molecular Subtype

Diagnosis Optimized DL model
Furthermore, this model’s prediction capacity for

molecular subtypes was good, which has
therapeutic implications.

Zhou et al.
[50] 2020 Lymph Node

Metastasis Prediction

Inception V3,
Inception-ResNet V2,

and ResNet-101

Using ultrasound images from patients with
initial breast cancer, DL algorithms can accurately

predict clinically negative axillary lymph
node metastases.

Sharma and
Mehra [51] 2020 Histopathology

classification
VGG16, VGG19, and

ResNet50
For all magnification variables, the benign and

malignant classes are the most complicated.

Hu et al.
[52] 2020

Multiparametric MRI is
used to diagnose

breast cancer.
CNN

The multilayer perceptron transfer learning
technique for MRI may boost prediction value in

breast imaging interpretation by lowering the
false positive rate and increasing the high

accuracy rate.
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3. Materials and Methods
3.1. Feature Extraction

Feature extraction aims to reduce the number of resources needed to depict an ex-
tensive set of data correctly. One of the most significant issues when doing complicated
data collection is the number of factors studied. A high range of factors necessitates much
memory and storage capacity, or a classifier that employs the instructive example and
adapts to new situations. Feature extraction is a broad phrase that refers to strategies for
putting together a set of variables to tackle high-precision issues. Image analysis aims to
develop a unique approach to portray the essential elements of images in a particular way.
A gray area vector was constructed in the fractal technique to produce feature vectors. The
image characteristics of the confidence interval of the detected chemicals are computed in
statistical analysis from the light intensity of the specified places relative to someone in
the image. The frequency of intensity points (pixels) in each combination affects the statis-
tics [53]. The fractal model is utilized to extract the feature in this work. Feature selection
has been used to minimize the dimensions and find other fundamental characteristics that
may sufficiently distinguish the different systems in engaging with high input data [54].

The fractal technique was used with covariance analysis to create eigenvalues from
the image and lower the dimension. The input images for the fractal method must be the
same size, and one image is referred to as a two-dimensional matrix and a single vector.
Grayscale images with a specified resolution are required. By reshaping matrices, each
image is transformed into a column vector. The photos are taken from a M× N matrix.
N represents the number of pixels in each image, and M is the number of images. To
determine the normal distribution of each original image, the average image must be
computed. The covariance matrix would then be calculated, and the covariance matrix’s
eigenvalues and eigenvector are produced. The fractal system’s method is that M represents
the number of training images, Fi is the mean of the images, and li represents each image
in Ti. There are M images at first, each of which has the N × N size. Each image may be
presented in an N-dimensional area using Equations (1) and (2) for average operations [55].

A = N × N ×M (1)

Fi =
1
M ∑m

t=1 Tt (2)

The fractal method assigns the standard deviation as a critical issue, computed using
Equation (3) and the covariance matrix in Equation (4).

Variance =
1
M ∑m

t=1 Tt (3)

Cov = AAT (4)

Such that A = bVariance1, Variance2, . . . , Variancenc and Cov = N2 ∗ N2 and A =
N2 ∗ M. Cov equals by a considerable value. Then the eigenvalues of Cov are found based
on Equation (5).

Ui = AVi (5)

Total scatter or covariance matrices are computed using Equations (6) and (7) for
scattered matrices in the subclass [55].

ST = ∑N
k=1(xk − µ)(xk − µ)T (6)

WFractal = arg max
[
WTSTW

]
=

[
w1w2 . . . w f

]
(7)

µ is the average of all data and {wi | i = 1, 2, . . . , f } is a set of eigen vector of f-
dimension of ST that is associated with the largest eigenvalue f .
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3.2. Convolutional Neural Network (CNN)

The CNN technique is explained in this section. One of the learning networks mo-
tivated by the Perceptron neural network is this sort of neural network. An input layer,
an output layer, and a hidden deep layer make up this deep network. Initially, the issue’s
images or data are classified and taught into the method. The weights of the hidden output
layer might then appear in a variety of ways. The suggested method is a classifying or
recognition approach if the algorithm’s output comprises many quantitative elements such
as a binary or score. The given process is segmentation or identification if the output layer
is a matrix as the input image as ground truth information. Convolutional neural networks
(CNNs) are composed of convolutions, resampling, and fully coupled layers. The three
head neuronal layers are convolutional, pooling layers, and fully associated layers [56].
Each layer has a different task assigned to it. Feature extractor layers are made up of
convolutions and subsampling layers [57,58].

In contrast, a related layer order that classifies current data has a place using separated
features. The components of feature maps and predictive utility are limited when a pooling
layer is assigned. Because the computations of pooling layers consider nearby pixels, these
change invariantly. The system is prepared using both forward and regressive progress.
The forward progress aims to define the information image using the current parameters
(loads and inclination) [59,60].

3.3. Performance Analysis Criteria

On a different collection of samples, called a test set, we examined the performance of
a classifier. The accuracy rate is the standard evaluation metric in DL; accuracy correctly
classifying the percent of test samples. The loss function is measured as the ratio of
incorrectly categorized test samples divided by the total number of test samples. Therefore,
records with a significant number of occurrences of one class compared to another are
inappropriate for accuracy in an imbalanced dataset. Unless the issue has an imperfect
model, a classifier that consistently identifies the majority class regardless of information
is highly accurate. We utilize classification confusion matrix-based criteria in extracted
features. The outcomes of a predictor in the training dataset are summarized in a confusion
matrix. False positives anticipate many negative tests that are surprisingly positive. In
contrast, true positives regard a quantity of positively predicted positive samples to be
positive. True and false negatives are both based on the same principles. We could construct
some important ones using the confusion matrix [60]:

sensitivity =
TP

TP + FN
(8)

Percision =
TP

TP + FP
(9)

Accuracy =
TN + TP

FP + TN + FN + TP
(10)

The anticipated positive sample ratio’s sensitivity is positive, indicating that the
expected negative sample ratio is also negative. The projected data set accuracy is positive
and was positive. High sensitivity and specificity, or high accuracy and specificity, are both
characteristics of a successful categorization. Sensitivity and specificity are desirable in
diagnosing diseases, but accuracy and sensitivity are favored in ML. The chance that a
sample is categorized as positive is the classification criteria. It strikes a balance between
sensitivity and property (or, equivalently, accuracy, and evocation): a low-threshold training
set is susceptible to classifying samples as positive, but it also has the potential to produce
a large number of false positives, so it has high sensitivity but a low feature, etc. for high
thresholds. The recall curve for an exact piece’s categorization differs from its recall as
a threshold.
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4. Results and Discussion
4.1. Data Collection

The data collected initially included breast ultrasound images of women between the
ages of 25 and 75. This data was organized in 2018. The number of patients is 400 women.
The data set contains 780 images with an average image size of 500 by 500 pixels. Images
are in PNG format [36]. Images are classified into three classes: normal, benign, and
malignant. In this research, for image classification and segmentation, the image size has
been reduced to 256 by 256 to reduce the processing complexity.

4.2. Ground Truth Images

In this paper, segmentation of images has been used to find the primary location of
the tumor. Segmentation is not one of the main steps of the convolution and DL algorithm.
It has been used to validate the results. By separating pixels with zero values as the
background, each non-zero pixel is the mass breast threshold (225). Each remaining pixel
is 127 to the normal breast tissue, as shown in Figure 1.

Ultrasound has higher images quality and does not have any marks or scan effects
on film; this allows the network to learn more specific features and segmentation. Having
many images increases the model’s accuracy by increasing your data set and training on
overlapping pieces. Eighty percent of the images are randomly assigned to the training
sets and 20% to the test set for each division.
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4.3. Feature Selection

Fractal features extracted from ultrasound images are used in model classification. In
the fractal method, the histogram of the images on the images is extracted, as shown in
Figure 2.
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Figure 2. Histogram of features extracted from the ultrasound images. Blue: Histogram of the image, Red: Modeled
histogram, Green: Gaussian Functions.

According to the diagram in Figure 2, the images are transformed to a histogram and
modeled by the fractal method. As a result, the obtained model is replaced by four graphs
of the normal distribution function. The characteristics of the obtained distributions are
obtained in the form of four numbers as features of each image. The features are stored in
a matrix and ready to be classified. Figure 2 shows the blue line of the image histogram. By
rearranging the images used for modeling, we selected four features with higher accuracy.
A red line indicates the sum of the functions. Image features are parameters of Gaussian
functions. This process is done for all data set images. Thus, the classification data set is
converted to a matrix using four features.

4.4. Classification of Ultrasound Images by Traditional Methods

In this part, the results of CNN architecture in breast cancer ultrasound images are
presented. The fractal method is one of the most potent methods and feature selection
in images, especially MRI; cancer has been diagnosed by combining these features and
famous classifications. Feature extraction output for each image is four scalars, which are
used as classification inputs. Moreover, the outer layer of all classifications was labeled
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0 for normal tissue, 1 for benign tumors, and 2 for malignant tumors. The proposed
models are designed to diagnose cancer types. The classification outputs are plotted as
confusion matrices.

According to Figure 3, green cells show true values, and red cells show the number of
images with false results. Gray cells also show sensitivity values (horizontal) and precision
(vertical). Finally, the more colorful cell in the left corner estimated the total accuracy for
the different models. According to the figure, four classical classification models have
been selected to detect the type of tumor, among the most powerful methods for diagnosis
and classification. These classifications usually give perfect results for binary detection.
However, they have many problems for multiple classifications (for example, triplets in
this case). According to the results of the decision tree method with an acceptable amount
can help diagnose cancer. Out of 133 images with normal tissue in this method, 122 images
(84.2%) were correctly diagnosed. In addition, 111 images (83.5% of patients) with benign
tumors were correctly diagnosed. In this category of education, 133 images were correctly
identified. With benign tumors, 10 images were diagnosed as healthy and 12 as malignant,
of which 22 false images were recorded. Finally, the accuracy of the decision tree method
was 81%, and the error rate was 19%. Following KNN, SVM and NB were recorded with
67.7%, 40.1%, and 44.9% accuracy, respectively. This level of accuracy could not satisfy
the classification with complete accuracy. Therefore, we need to design a model that can
diagnose the disease more accurately and sensitively. Therefore, in the next section, the
proposed model based on a convolutional neural network is presented.

4.5. Classification of Ultrasound Images Based on Presented CNN Method

In this section, the results of CNN architecture in breast cancer ultrasound images
are presented. In this classification, there are three classes: category of benign images,
malignant images, and healthy or normal tissues. The CNN architectural model is trained
using dataset images, and evaluation criteria are performed to analyze the model, which is
as follows.
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Figure 3. Confusion matrices for classifying or diagnosing tumor type and disease.

Figure 4 shows the architecture of CNN’s proposed methods for diagnosing cancerous
tumors. This network consists of 16 layers with three layers of convolution. Images
have labels for patients with a benign tumor equal to 1 malignant equal to 2 and healthy
individuals zero. In addition, 70% of the image datasets are used for network training
and 30% for model testing. The results are shown in the following section. Figure 5
shows the amount of loss and accuracy as a function of training epochs. These diagrams
are depicted during network training. The process ended after obtaining the best result
with higher accuracy and less network loss for 3000 iterations. The back points show the
cross-validation of the training process.
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Figure 5. The accuracy and loss of the CNN classification model during program execution.

The final trained model is evaluated in both training and experimental sets. Figure 6
of the confusion matrices shows this prediction. As can be seen in this figure, the model
with 306 images of benign tumors properly trained 305 items (99.7%) in the training set.
In addition, out of 147 malignant images and 93 healthy tissue images, 100 images are
accurately predictable. As a result, the accuracy of the training set is 99.8%. The results
are as follows in the experimental group, which is 30% of the original data and did not
participate in the modeling.
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Regarding the test results, out of 131 benign experimental images, 116 images were
correctly detected. In other words, this diagnosis was associated with 88.5% sensitivity.
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In addition, out of 63 malignant images, 48 images (76.2%) were correctly diagnosed, of
which 15 images (23.8%) were misdiagnosed as benign, which are called false results. This
model was associated with low sensitivity or 35% to identify healthy tissues that did not
participate in the model. In other words, the total accuracy of the model for the validation
of the proposed model is 76.1%. The results of comparing the proposed models for cancer
diagnosis are presented in Table 2 and Figure 7. According to Table 2, the model presented
by CNN diagnosed cancer with much higher accuracy, which has performed better than
other methods and provided significant improvement. According to the receiver operating
characteristic (ROC) diagram of Figure 7, the area under the ROC curve (AUC) is another
measure of the efficiency of the classification models, which achieved 96% for the proposed
model. Based on the findings of this study, it can be concluded that the proposed high-
potential CNN algorithm can be used to diagnose breast cancer from ultrasound images.
In the next section, we present a segmentation method for detecting tumor tissue.

Table 2. Comparison of different classification models.

Model AUC Error Accuracy

Presented CNN 0.96 0.20% 99.80%
DT 0.87 19% 81%

KNN 0.66 32.30% 67.70%
SVM 0.6 59.90% 40.10%
NB 0.6 55.10% 44.90%
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4.6. Segmentation of Ultrasound Images Using the Presented CNN

In this section, we present the results of the CNN segmentation algorithm. The
architecture of the detection method is shown in Figure 8. It consists of 11 layers with
three layers of convolution. Input images 256 × 256 are breast cancers, and the output
layer contains ground truth or labeled input images. The number 255 is labeled on the
tumor tissue in these images, and the other points are shown with the number zero. The
proposed network is a kind of classification network. The output image pixels are selected
as classification labels instead of the image label itself. In other words, the segmentation
monitored in this study is a kind of classification with higher dimensions to classify the
pixels and detect the infected area. Naturally, supervised segmentation is one of the most
complex image processing issues in deep learning, which requires higher processing time.
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Figure 8. Presented CNN network architecture for the cancer tumor segmentation.

In the input image in Figure 8, the gray area shows healthy human findings, with part
of the image appearing in a darker state. In classifying or segmenting images, the input
image is meaningful for the model. In other words, the presence of high dark pixels in the
model indicates that these lesions are also tumors, while the tumor part is seen as round.
Accordingly, the images should be such that they can evaluate the tumor diagnosis with
higher accuracy. Recognizing this area using computer image processing is challenging.
Due to the potential of deep learning methods for dividing areas with different colors
is more than images with almost the same color. In this study, the infected area is first
identified and labeled by a physician or automated algorithm. Therefore, ground truth
images consisting of the tumor area are located in the architectural output layer. The
algorithm has been trained with 5000 iterations, of which 70% of the data is used for model
training and 30% for testing the proposed model. The amount of accuracy and loss of CNN
model training provided in Figure 9 is shown.
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The segmentation results are shown in Figure 10. According to Figure 10, the first
and third columns of the input image show the image infected with the cancerous tumor.
Moreover, the other side of the image shows the segmentation results. Seventy percent of
the images used for network training and 30% for test results start the process. The results
of detecting the infected area are shown in the second and fourth columns of Figure 10.
The resulting images should look like ground truth images. According to the results, the
presented findings are almost similar to the model output. They have correctly identified
the location of the tumor. To better increase the output, minor points in the results should
be connected with morphological operations. Because the output points of the model
were able to identify the approximate location and size of the tumor, we relate the tumor
morphology to the original size of cancer. Figure 11 shows the approximate location
and size of the tumor after morphological surgery. The results show that the proposed
architecture can correctly identify the contaminated area.
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Figure 11. The results of CNN network cancer tumor morphology operations.

The results of the segmentation method are presented, theoretically, with performance
criteria. The segmentation criteria are almost different from the classification methods
shown in the previous section. The fusion matrices are used for classification. If drawn, a
matrix in the fusion must be drawn for all images. Accordingly, the ROC curve with a true
positive rate versus a false positive rate is the best criterion for evaluating the model. This
criterion is unique to each image in the segmentation algorithm. The high-performance
image trend is correct whether the graphs are shown with a higher true positive rate and a
lower false-positive rate. The results show that the maximum number of ROC curves below
the higher efficiency graph of the model’s high efficiency shows. According to Figure 12, to
understand the ROC curve with specific values, we present the area under the curve (AUC).
This measure shows the high performance of the model for each image. In this section,
400 images of benign breast cancer are included in the model. According to Figure 13, 92%
of the images in the high-performance region with an AUC above 0.6. According to the
graph, the high AUC shows the segmentation of the images in true mode, and the low
AUC offers the detection of pixels in false mode. The proposed model results identified the
tumor’s location and volume by morphological operations as a post-processing algorithm.
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5. Conclusions

Breast cancer is one of the leading causes of death among women worldwide. Early
detection helps reduce the number of premature deaths. This study uses medical ultra-
sound scans to examine medical images of breast cancer. Breast ultrasound datasets are
classified into three classes: normal, benign, and malignant. When combined with ML,
breast ultrasound images can have great results in classifying, diagnosing, and classifying
breast cancer. This study presents six ML methods for classifying and segmenting ultra-
sound images of CT scans of cancer patients. Six ML methods have been performed to
detect and segment ultrasound images to diagnose the disease or tumor type. First, the
features of the images are extracted using the fractal method. Then KNN, SVM, DT, and
NB classification techniques were used to classify patients’ images. Then, the convolution
neural network (CNN) architecture was designed to classify patients based on direct ultra-
sound images. Traditional classifiers provide excellent results for binary recognition but
have many problems for multiple classifications. According to the decision tree method or
DT, results with an acceptable amount can help diagnose cancer.

The accuracy of the decision tree method is 81%, and the error rate is 19%. Following
KNN, SVM and NB were recorded with 67.7%, 40.1%, and 44.9% accuracy, respectively.
The final model trained in both the training and experimental sets for the proposed CNN
method is evaluated. The presented model trained 305 cases (99.7%) correctly in 306 images
with benign tumors. As a result, the accuracy of the training set is 99.8%. Regarding the
test results, out of 131 benign experimental images, 116 were correctly detected; in other
words, this diagnosis was associated with 88.5% sensitivity. In other words, the total
accuracy of the model for the validation of the proposed model is 76.1%. Based on the
findings of this study, it can be concluded that the proposed high-potential CNN algorithm
can be used to diagnose breast cancer from ultrasound images. The second CNN model
presented was able to identify the original location of the tumor. The results show 92%
of the images in the high-performance region with an AUC above 0.6. The proposed
model results identified the tumor’s location and volume by morphological operations
as a post-processing algorithm. These findings can also be used to monitor patients and
prevent the growth of the infected area. Much work is being done to classify patients
using artificial intelligence, such as diagnosing brain tumors, breast cancer, and lung cancer.
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However, implementing these approaches is not always convenient. These methods can
be used in a wearable monitoring system to diagnose the disease, monitor, and transfer
to specific physicians. According to studies on ML in medical image processing, it is time
to implement artificial intelligence methods in medicine to help physicians make better
diagnoses and as soon as possible.
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