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Abstract

Sympatric populations of phylogenetically related species are often vulnerable to

similar communicable diseases. Although some host populations may exhibit

spatial structure, other hosts within the community may have unstructured pop-

ulations. Thus, individuals from unstructured host populations may act as inter-

specific vectors among discrete subpopulations of sympatric alternate hosts. We

used a cervid-bovine tuberculosis (Mycobacterium bovis) system to investigate the

landscape-scale potential for bovine tuberculosis transmission within a nonmi-

gratory white-tailed deer (Odocoileus virginianus) and elk (Cervus canadensis)

community. Using landscape population genetics, we tested for genetic and spa-

tial structure in white-tailed deer. We then compared these findings with the

sympatric elk population that is structured and which has structure that corre-

lates spatially and genetically to physiognomic landscape features. Despite genetic

structure that indicates the white-tailed deer population forms three sympatric

clusters, the absence of spatial structure suggested that intraspecific pathogen

transmission is not likely to be limited by physiognomic landscape features. The

potential for intraspecific transmission among subpopulations of elk is low due

to spatial population structure. Given that white-tailed deer are abundant, widely

distributed, and exhibit a distinct lack of spatial population structure, white-

tailed deer likely pose a greater threat as bovine tuberculosis vectors among elk

subpopulations than elk.

Introduction

One of the key goals of disease ecology is to understand

pathogen transmission and disease spread over space and

time (Tompkins et al. 2011). To date, the majority of

research to describe and predict the spread of disease in

natural populations is based on the transmission heteroge-

neity within a single host population. However, in many

cases, pathogens are not species-specific and pathogen

transmission is a multi-host community-level phenomenon

(Rigaud et al. 2010). Ignoring the interactions among dif-

ferent members of the host community greatly limits our

ability to estimate different epidemiological parameters

(McCoy et al. 2003; Johnson and Thieltges 2010; Searle

et al. 2011). Identifying the relative contributions of differ-

ent host species, their interactions, and environmental

characteristics in overall transmission heterogeneity is

clearly needed (Paull et al. 2012).

Studying multi-host endemic disease systems is often

complicated because they commonly involve highly mobile

and widely distributed wildlife species with low prevalence

of infection [e.g., chronic wasting disease, CWD and

bovine tuberculosis, Mycobacterium bovis, bTB (Conner

et al. 2008)]. As a result, in these systems, empirical data

from which to derive or apply traditional epidemiological

models are lacking. Professionals responsible for managing
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and preventing the spread of disease need to employ alter-

native methods to infer potential infection pathways and

disease dynamics. This is particularly important in cases

where the social and economic ramifications of the disease

are unrelated to its prevalence, but rather just its presence

or absence [see, e.g., the impact of bTB on beef exports in

Manitoba (CAN), Nishi et al. (2006)]. In these cases, popu-

lation genetics is a useful method to estimate the potential

for disease spread by revealing the permeability (ease with

which animals can penetrate and pass through) of specific

landscapes (Biek and Real 2010, Remais et al. 2011). This

genetic approach is appropriate for free-ranging and

unbounded wildlife populations and has been recently

applied to understand and predict landscape-scale trans-

mission of several pathogens in natural populations includ-

ing CWD (Blanchong et al. 2008; Cullingham et al. 2011a,

b), bTB (Blanchong et al. 2007; Vander Wal et al. 2012),

and raccoon rabies (Cullingham et al. 2009; Côt�e et al.

2012) by examining only one of several potential hosts in

the system. However, this approach has not explicitly been

considered to study multiple hosts simultaneously. Even if

phylogenetically similar, hosts may exhibit very different

behaviors relating to intraspecific sociality, movement

rates, philopatry, habitat, and resource requirements.

Therefore, landscape permeability for one host may differ

from heterospecifics, resulting in one host acting as a vector

among allopatric demes of the alternate host species. In this

study, we aimed to expand upon this single host popula-

tion approach (see Fenton et al. 2002) and apply new

genetic methods to compare the potential pathogen trans-

mission at a broad landscape scale between two largely

sympatric bTB hosts, white-tailed deer (Odocoileus virgini-

anus) and elk (Cervus canadensis).

Bovine tuberculosis is a generalist pathogen affecting a

wide range of species globally (Daszak et al. 2000), includ-

ing two members of a cervid community in southwestern

Manitoba (Canada) (Nishi et al. 2006; Brook 2009). In this

region, elk and white-tailed deer are abundant free-ranging

hosts for bTB [although susceptible (Hawden 1942), bTB

has not been detected in the third member of the commu-

nity, moose (Alces alces), despite widespread testing (Parks

Canada unpublished data)]. Limited connectivity among

elk subpopulations in the region indicates a low potential

for long-distance disease spread through the movement

and dispersal of infected elk (Vander Wal et al. 2012).

However, the potential for long-distance (i.e., >30 km to

the nearest large protected area) disease spread within and

between elk and white-tailed deer populations may persist

through the dispersals of white-tailed deer from the infec-

tion focus. Several genetic studies on single host-pathogen

systems suggest that this might be the case (Blanchong

et al. 2008; Cullingham et al. 2011a; Lang and Blanchong

2012). Landscape genetics of white-tailed deer has been

well studied (Mathews and Porter 1993; Scribner et al.

1997; Blanchong et al. 2006; Comer et al. 2011; Miller et al.

2011; Robinson et al. 2012), particularly with reference to

two critical infectious agents, bTB (Blanchong et al. 2007)

and CWD (Blanchong et al. 2008; Grear et al. 2010; Cull-

ingham et al. 2011a). In contrast to our findings for elk

(Vander Wal et al. 2012), these studies showed that high

landscape permeability for white-tailed deer with very little

differentiation among populations suggesting relatively fre-

quent long-distance movements and a high potential for

regional disease dispersal (Cullingham et al. 2011a).

Herein, we combine a multi-host population genetics

approach with bTB distribution data to test whether white-

tailed deer, considered to be a secondary host in this region,

are more likely to be involved in long-distance transmission

of bTB outside of the endemic area. To do so, we test first

for genetic and spatial structure in the white-tailed deer

population. We then augment results from Vander Wal

et al. (2012) with a new analysis of additional spatial data to

reaffirm that the elk population is spatially structured. If the

white-tailed deer population is unstructured, as we predict,

our system will provide the necessarily juxtaposition

between population structures to test whether population

structure affects the dispersion of bTB-infected white-tailed

deer and elk. We predict that an unstructured white-tailed

deer population will result in higher dispersion of bTB-

infected individuals than a structured elk population.

Materials and methods

Study area

In southwestern Manitoba, Canada, the Boreal Plains eco-

region (Bailey 1968) transitions into the Prairie ecoregion

(Olson et al. 2001). This area includes the Riding Moun-

tain region, which is comprised of Riding Mountain

National Park (RMNP; 3000 km2) and the Duck Mountain

Provincial Park and Forest (DMPP&F; 3800 km2) (Fig. 1).

The region encompasses the Manitoba Lowlands and the

Manitoba Escarpment, resulting in a 475 m elevation

change. The altitudinal gradient results in variation in vege-

tation (Caners and Kenkel 2003) and in local climate. An

agriculture-dominated matrix surrounds both reserves.

The matrix acts as a barrier to elk movement (Vander Wal

et al. 2012) and elk are predominantly within the protected

areas (Brook 2008); however, white-tailed deer occur in

both reserves and are also abundant in the surrounding

agricultural matrix (Brook et al. 2012). Over the last five

decades, agricultural expansion has eroded a once extensive

forest and native grassland corridor between RMNP and

DMPP&F (Walker 2001).

The occurrence of bTB is clumped spatially (Fig. 1) and

corresponds largely to the distribution of elk subpopula-

tions; however, it is not restricted to elk. Extensive testing
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of a wide range of other potential bTB hosts in the region

has not identified any other infected wildlife species (Parks

Canada unpublished data). The apparent prevalence of

bTB differs markedly between elk and white-tailed deer.

Apparent prevalence of bTB in white-tailed deer is esti-

mated at <1% (Nishi et al. 2006; Wobeser 2009). Con-

versely, of the 41 elk detected with bTB (1991–2010), 37
have been reported in the west subpopulation of RMNP,

that is, 2.7% apparent prevalence (Shury and Bergeson

2011). Fourteen cattle (Bos taurus) herds around RMNP

have tested positive for bTB between 1991 and 2010 (Shury

and Bergeson 2011), which has resulted in significant

socioeconomic repercussions and conflicts (Brook and

McLachlan 2006; Nishi et al. 2006; Brook et al. 2012).

General sampling considerations

For this study, we used two different sampling tech-

niques to collect white-tailed deer and elk genetic sam-

ples. Elk samples were collected through the winter

using a net gun fired from a helicopter (see Vander

Wal et al. 2012 for sampling details). Most of the

white-tailed deer samples were collected from autumn

hunter kills. Although homogeneity in sampling meth-

ods is always desirable, this was logistically unfeasible.

In such cases, combining genetic data from multiple

sources is common, including hunt-harvested samples

(e.g., Blanchong et al. 2008; Grear et al. 2010; Culling-

ham et al. 2011a,b; Rogers et al. 2011). Theoretically,

structure artifacts may arise if the hunted individuals

have disrupted home ranges and/or if hunter chased

the animals for some distance. However, at a broad

regional scale (>40 000 km2 in this study), the effects

of hunting in the estimates of population subdivision

are likely to be negligible. Also critical is obtaining suf-

ficiently large and widespread distribution of the sam-

ples used. In our study, both strategies yielded

widespread and large samples sizes.
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Figure 1 Riding Mountain National Park (RMNP) and Duck Mountain Provincial Park and Forest (DMPP&F), Manitoba, CAN with spatial locations of

bovine tuberculosis (bTB)-positive white-tailed deer (WTD; n = 11) and elk (n = 41) and from 1991 to 2010 illustrating apparent disease clustering in

the Riding Mountain Region.
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White-tailed deer sampling

We sampled tissues from 494 individuals between mid-

October and early December (2004–2006) following the

animal care protocol 472602 of the University of Alberta.

Although most of the samples (�94%, n = 464) came from

hunt-harvested deer, a few of them (�6%, n = 30) were

obtained by Parks Canada using a helicopter-deployed net

gun (see Cattet et al. 2004; Shury and Bergeson 2011 for

details). Total genomic DNA was extracted using the stan-

dard Qiagen DNeasy protocol. Each sample was genotyped

at 24 microsatellite loci using a series of PCR with fluores-

cence-labeled primers (Anderson et al. 2002; Supplemen-

tary Table S1). Resulting products were run in an ABI-3730

genetic analyzer using 600 LIZ as internal standard. Alleles

were then sized using GeneMapper 4.0 software (Applied

Biosystems Inc., Foster City, CA, USA).

White-tailed deer population structure analyses

Statistical descriptors such as, allele diversity, expected

(HE) and observed (HO) heterozygosity estimates, and tests

of Hardy–Weinberg equilibrium (HWE) were obtained

using the ADEGENET package (Jombart 2008). Natural

populations often possess complex genetic structures that

are not always well described by explicit, hierarchical

genetic models. Thus, we examined the genetic differentia-

tion of white-tailed deer using nonmodel (i.e., principal

component analysis; PCA)-based approaches comparable

to those previously used in the juxtaposed population of

elk (Vander Wal et al. 2012). Unlike Bayesian clustering

(Pritchard et al. 2000; Guillot et al. 2005; Corander et al.

2008), these methods do not rely on explicit population

genetics models, and they are preferable when many loci

are available and the structure is subtle (Jombart et al.

2008, 2010; Reeves and Richards 2009). Specifically, we

used Discriminant Analysis of Principal Components

[DAPC (Jombart et al. 2010)] and Spatial Principal Com-

ponent Analysis [sPCA (Jombart et al. 2008)] as imple-

mented in ADEGENET (R.2.11.1; R Development Core

Team 2011). These multivariate methods are designed to

reveal groups of genetically related individuals directly

from genetic polymorphism data, rather than on notions of

existing structure that are reliant on the assumptions of

HWE.

DAPC transforms data using a principal component

(PC) analysis before summarizing genetic variance between

and within groups [i.e., a discriminant analysis (DA) (Jom-

bart et al. 2010)]. The optimal number of clusters (i.e., K,

demes) is inferred using sequential K-means and model

selection (Jombart et al. 2010). Because at broad regional

scale (>1000 km2) spatial population structure, white-

tailed deer are typically panmictic (K = 1; Mathews and

Porter 1993; Blanchong et al. 2008; Grear et al. 2010; Cull-

ingham et al. 2011a), we varied K from 1 to 20 extending

our analyses far beyond the number of populations that

might be expected (Robinson et al.2012). We identified the

optimal K as the one showing the lowest Bayesian Informa-

tion Criterion (BIC). Then we used DAPC to assign indi-

viduals into populations, retaining the number of principal

components using 85% of the cumulative deviance.

Spatial PCA summarizes spatial patterns of genetic struc-

ture by defining eigenvalues that optimize the product of

the genetic variance and Moran’s I (Moran 1948, 1950).

Patterns are divided into positive (i.e., global) and negative

(i.e., local), such that global patterns are used to identify

clines in allele frequencies and genetically distinguishable

groups. Conversely, local patterns detect differences

between nearby individuals (Jombart et al. 2008). For fur-

ther descriptions of the sPCA analyses see Vander Wal

et al. (2012). Variation among and within the predicted

clusters was estimated using Analysis of Molecular Variance

(AMOVA), which was implemented in Arlequin (Excoffier

and Lischer 2010).

Elk population structure analyses

The methods used to analyze white-tailed deer (e.g., sPCA)

were also used in a recent population genetics study of the

sympatric elk population, which comprises at least three

spatially and genetically distinct clusters (Vander Wal et al.

2012). This suggested a low potential for long-distance dis-

ease spread through the movement and dispersal of

infected elk. Hence, to further assess connectivity, we con-

trasted our previous population genetics findings with a

large radio-telemetry dataset (n = 11 194 locations

n = 379 elk collected from 2002–2009). Free-ranging elk

were captured with a net gun from a helicopter (Cattet

et al. 2004) following the animal care protocols #F01-037

(University of Manitoba) and #20060067 (University of

Saskatchewan). Elk were relocated 1–16 times per fortnight

using a fixed-wing aircraft (Cessna 172; Wichita, KS, USA)

and ground telemetry and their position entered into a geo-

graphic positioning system (see Vander Wal et al. 2011 for

details). Minimum convex polygons (95%) were chosen to

delineate the borders of the subpopulations and assigned

using the Home Range Tools (Rodgers et al. 2007) exten-

sion in ArcGIS (Redlands, CA, USA).

Bovine tuberculosis testing in white-tailed deer and elk

A total of 6909 white-tailed deer and 3620 elk were tested

for bTB infection status using a two-stage process (Shury

and Bergeson 2011). First, lymphocyte stimulation test, flu-

orescence polarization assay, and chromatographic immu-

noassay were used in parallel to ascertain whether animals
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were suspected of being infected with bTB. Subsequently,

suspected individuals were recaptured and killed with a

captive bolt gun according to the guidelines of the Cana-

dian Council for Animal Care and had tissues harvested

and cultured to confirm or refute initial assays. For further

information on disease testing protocols see Rousseau and

Bergeson (2005) and Shury and Bergeson (2011), and for

assay descriptions see Rohonczy et al. (1996) and Surujballi

et al. (2009).

Dispersion of bovine tuberculosis-positive white-tailed

deer and elk

Broad-scale population structure is likely to affect the

probability of landscape-scale disease transmission. In con-

trast to the relatively structured population of elk, we

expected the white-tailed deer population to be panmictic

(or quasi-panmictic). Thus, we predicted infected individu-

als would be more geographically dispersed than infected

elk. To test this hypothesis, we used the spatial location of

bTB-positive white-tailed deer (n = 11) and elk (n = 41;

Fig. 1) collected between 1991 and 2011 to test whether

bTB-positive white-tailed deer were more dispersed that

bTB-positive elk. We used two approaches to test for differ-

ences in dispersion of diseased animals. First, we compared

the mean nearest-neighbor distances between bTB-positive

individuals with a Mann–Whitney U-test because sample

sizes were unequal and distributions non-normal. Second,

to control for differences in the distribution of sampled elk

and white-tailed deer, we randomly sampled the locations

of 11 bTB-positive elk (without replacement) and subse-

quently calculated their mean nearest-neighbor distances.

This was repeated 1000 times, and the means were pooled

to create a bootstrap distribution against which we could

test the average mean nearest-neighbor distance of bTB-

positive white-tailed deer. We programed analyses in R v

2.11 (R Development Core Team 2011).

Results

White-tailed deer: population and spatial structure

Our full dataset consisted of 24 microsatellite loci scored

for 494 white-tailed deer drawn from RMNP and the Duck

Mountain Provincial Park and Forest. We ran analyses on

the full dataset and a subset of microsatellites (n = 17

microsatellites). The subset excluded those with propor-

tions of missing data > 0.06 (n = 3 microsatellites). When

we applied a Bonferroni correction for multiple compari-

sons, no loci exhibited significant deviation from HWE (at

P < 0.0001, Table S1 in the Supplementary Material).

However, using a more conservative approach, we also ran

our analysis excluding loci that were not at HWE at

P < 0.05 (an additional n = 4 microsatellites; Table S1 in

the Supplementary Material). Results did not change

among subsets and all failed to detect spatial structure

(below).

The average numbers of alleles per locus was 12 (range

from 2 to 23). The mean HO across loci (0.627) was lower

than the mean HE (0.730). Almost all loci (22/24) showed

an excess of homozygotes and significant deviations from

HWE (P < 0.05) occurred in 5/24 loci, suggesting the exis-

tence of inbreeding and/or population subdivision (i.e.,

Wahlund effect). Therefore, we used DAPC to investigate

the partition of genetic variation in this dataset. Our analy-

ses showed that the BIC reached its minimum value at

K = 3 and consequently displayed the smallest increase

from K = 3 to K = 4. This strongly suggested that popula-

tion subdivision into three clusters should be considered.

We retained 75 principal components of PCA in the preli-

minary data transformation step, which altogether con-

tained more that 85% of the total genetic variation. The

first two principal components of DAPC explained 10% of

this variation and were sufficient to capture the genetic

structure of the white-tailed deer population (Fig. 2A). The

first principal component differentiated cluster 3 (blue)

from clusters 1 and 2 (green and red), whereas the second

principal component displayed the genetic difference

between cluster 2 (red) and the other two. The mean clus-

ter membership probabilities based on the retained discri-

minant functions were >0.96, and only �7% of the

individuals (35/494) showed some traces of admixture (i.e.,

no more than 80% membership in a single cluster). Our

results, however, clearly showed no correspondence

between genetic and spatial structures. DAPC results sug-

gest no spatial clustering based on discrete genetic structure

(Fig. 2B), that is, green, blue, and red locations appeared

intermixed (Fig. 2B). Furthermore, ellipses to delineate the

spatial extent of possible subpopulations based on genetic

clusters were overlapping (Fig. 2B). There was little differ-

entiation between pairwise mean FST (group 1 versus group

2: 0.021; group 1 versus group 3: 0.016; and group 2 versus

group 3: 0.022). Subsequent AMOVA analysis revealed that a

small (2.7%) but significant (P < 0.0001) amount of

genetic variation was related to differences among clusters.

Spatial Principal Component Analysis (sPCA) scores can

detect clines and spatial groups (global structures) as well

as strong genetic differences between neighbors (local

structures). A global permutation test on the eigenvalues

derived from a sPCA with a minimum neighbor connec-

tion network did not find any significant global or local

structures (PGLOBAL = 0.1, PLOCAL = 0.6). The first two

eigenvalues were large compared with the others, and

therefore were retained. Individual scores on these two axes

are shown on Fig. 3A. Had spatial structure been detected

with the sPCA similarly shaded white-tailed deer locations

would have clustered together or alternatively would
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appear clinal across the landscape from light to dark red.

However, individual scores did not show any sharp bound-

aries or any progressive change. Ultimately, sPCA, DAPC

[and STRUCTURE (Pritchard et al. 2000), K = 1 data are

not shown] all corroborated the lack of any spatial struc-

ture in the white-tailed deer dataset.

Elk: telemetry and spatial structure

Radio-telemetry relocations segregated the regional popu-

lation of elk into three nonoverlapping geographic areas

(95% minimum convex polygons, Fig. 3B), where elk

were most commonly relocated. Thus, 95% of all animal

relocations have occurred within each of these areas.

Because we never documented collared animals moving

among areas, we inferred that such movements were

highly unlikely. The geographic locations of these poly-

gons highlighted that these distinct areas corresponded to

that of the cryptic population structure revealed by our

previous landscape genetic analyses [(Vander Wal et al.

2012) and Fig. 3C]. At the landscape-scale, radio-teleme-

try and sPCA analyses revealed that the elk population is

composed of three spatial clusters. These clusters corre-

sponded to discrete areas within a southeast to northwest

genetic cline of elk (Vander Wal et al. 2012). Within this

cline, which spans across the two protected areas present

in the region, occurs a genetically distinct cluster corre-

sponding to the west RMNP subpopulation. (Fig. 3B,C,

see also Vander Wal et al. 2012).

Dispersion of bovine tuberculosis-positive white-tailed

deer and elk

The Riding Mountain region has low bTB prevalence and

only 11 white-tailed deer and 41 elk were bTB positive (i.e.,

infected). Infected white-tailed deer appeared to be more

dispersed than infected elk. For the Mann–Whitney U-test,

bTB-positive white-tailed deer were significantly more dis-

persed than bTB-positive elk (Fig. 4A, v = 4.94, P = 0.02,

df = 1). However, the bootstrap results were not significant

at P = 0.05. Rather the average mean nearest-neighbor dis-

tance for white-tailed deer occurred at the 90th percentile

of the distribution of resampled elk mean nearest-neighbor

distances (Fig. 4B).

Discussion

Differences in connectivity among subpopulations are

known to affect the probability of landscape-scale disease

transmission (Hess 1994; Collinge et al. 2005; Real and

Biek 2007). Here, we demonstrate that at the landscape-

scale sympatric populations of white-tailed deer and elk

show contrasting populations structures. Although the

elk population is spatially structured with low connectiv-

ity among subpopulations, the white-tailed deer is rela-

tively uniform. This difference mirrors our finding that

infected (bTB positive) white-tailed deer individuals are

more dispersed on the landscape than infected elk.

Overall our results indicate that white-tailed deer is the
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firmed by a Mann–Whitney U-test (v = 4.94, P = 0.02, df = 1). A histogram (B) with smoothed density distribution (solid curve) illustrating that mean

nearest-neighbor distances for white-tailed deer fall at the 90th percentile (dashed line) of 1000 iterations of an n = 11 bootstrap (without replace-

ment) of bTB-positive elk mean nearest-neighbor distances.
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host more likely to be involved in long-distance trans-

mission of the disease.

In the Riding Mountain Region, elk have the highest

prevalence of bTB and have traditionally been considered

the reservoir and main potential vector for the spread of

M. bovis into neighboring cattle farms (Brook and McLach-

lan 2006, 2009). However, fragmentation and loss of wild-

life corridors (Walker 2001) have reduced the capability of

elk to disperse diseases across the landscape into other sub-

populations. Moreover, our genetic and biotelemetry data

clearly show that the remnant elk population in the RMNP

region consists of three spatially discrete subpopulations

(Fig. 3B,C), one of which is currently endemic with bTB

(Fig. 1, Vander Wal et al. 2012). Thus, direct transmission

of bTB among subpopulations of elk or between elk and

cattle farms not proximal to the bTB infection focus is unli-

kely due to the observed bounded spatial structure and

uncommon elk dispersals (Vander Wal et al. 2012).

In comparison with elk, white-tailed deer are well adapted

to highly modified agricultural landscapes (Côt�e et al.

2004). This has allowed white-tailed deer to extend their

geographic range west and north following European colo-

nization of the Prairie and Boreal Plain ecoregions (Wishart

1984; Côt�e et al. 2004; McShea 2012). Consequently, in our

study region, white-tailed deer are more widely distributed

and more abundant than elk (Brook 2008). This coupled

with the fact that white-tailed deer are much more likely to

interact with cattle than elk (Brook et al. 2012) highlights

the risk posed by white-tailed deer for the spread of bTB on

the landscape and to cattle. Our results suggest that this may

be the case. Our population genetic analyses revealed the

lack of physiognomic landscape features that act as insur-

mountable barriers to white-tailed deer dispersal (Ellsworth

et al. 1994; Rogers et al. 2011; Lang and Blanchong 2012;

Robinson et al. 2012). However, the population is not

necessarily panmictic. Although not spatially structured,

white-tailed deer fall into three genetically distinct sympat-

ric clusters (Fig. 2). Pairwise mean FST suggests mixing but

there is still a small (2.7%) amount of genetic variation

retained among clusters. We did not, however, sequence

mtDNA haplotypes and cannot comment on whether these

clusters represent vestiges of the colonization or expansion

of distinct geographic lineages. Nor do we have information

to suggest that assortative mating contributes to the mainte-

nance of sympatric clusters. Notwithstanding this, our

results underscore the high connectivity that characterizes

white-tailed deer populations.

Because of being highly connected, white-tailed deer may

disperse bTB further from the bTB infection focus than elk.

Our dispersion results are not fully conclusive as the mean

distance to the nearest infected neighbor for white-tailed

deer occurred at the 90th percentile of the bootstrapped

mean infected-neighbor distance distribution for elk.

Despite the intensive sampling (6,909 white-tailed deer and

3,620 elk, Shury and Bergeson 2011), the low bTB preva-

lence translates into low sample sizes for infected animals

(nwhite-tailed deer = 11, nelk = 41). Furthermore, appreciating

that these samples were collected using mixed sampling

methods (see General Sampling Considerations). Thus, our

results should be viewed as a trend, rather than a definitive

result.

For white-tailed deer to act as vectors from the focal area

of bTB among uninfected subpopulations of elk (and

among cattle herds), transmission needs to occur interspe-

cifically. This can occur from animal to animal and by

environmental contamination (Williams et al. 2002; Pal-

mer et al. 2004; Mathiason et al. 2006). Although much

remains unknown about interspecific transmission between

cervids (but see Hamir et al. 2011), two indirect lines of

evidence suggest that it occurs locally. First, transmission

via the environment is likely due to white-tailed deer and

elk sharing similar space and food sources (Conover 1997;

Beck and Peek 2005; Jenkins et al. 2011; Walter et al.

2011). Rudolph et al. (2006) found that bTB transmission

risk increases at hunter bait sites, even if the survival of

M. bovis in the environment is relatively short (Duffield

and Young 1985). Second, the same endemic spoligotype

of bTB has been detected in white-tailed deer, elk, and cat-

tle in the Riding Mountain Region (Lutze-Wallace et al.

2005). Interspecific transmission may have contributed to

the evolution of bTB strains in Manitoba, which are con-

sidered endemic (Lutze-Wallace et al. 2005), this despite

the origins of bTB being non-North American in origin

(Mostowy and Behr 2005) and that bTB in the RMNP cer-

vids was likely historically and perhaps contemporarily

acquired from cattle that frequently grazed within the cur-

rent boundaries of the park (Brook 2009).

We have highlighted that understanding the potential

for pathogen transmission among wildlife at landscape

scales requires knowledge of the population structures of

all free-ranging hosts, particularly when connectivity

among populations can be a function of intraspecific

and/or heterospecific dispersals. Our study suggests that

the role of white-tailed deer in bTB transmission is likely

to be more critical than previously appreciated. This has

important applications for ongoing intervention pro-

grams that so far have been largely elk-biased. Several

behavioral and life history traits make managing disease

in white-tailed deer especially problematical. For example,

white-tailed deer are more likely to co-mingle with cattle

on winter cattle feeding areas (Brook et al. 2012). White-

tailed deer also aggregate in ‘winter yards’, a network of

packed trails to minimize effort traveling through deep

snow. Winter yards may play an important role in ampli-

fying intraspecific transmission (Lankester and Peterson

1996) and landscape-level transmission because they con-
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centrate individuals, which subsequently disperse after

snow melt. Either sharing these areas with elk or moving

from winter yards to areas shared by elk have the poten-

tial to exacerbate interspecific transmission. Life history

traits that are problems for managing disease in white-

tailed deer include their often extremely high population

density, high reproductive rates, and high dispersal rates

(Côt�e et al. 2004). These problems, often seen in single

host-pathogen systems, for example, white-tailed deer

and bTB in Michigan (O’Brien et al. 2004) and white-

tailed deer and CWD in Wisconsin (Joly et al. 2006), are

further compounded when multiple hosts are present, as

is the case for bTB in the Riding Mountain Region.

Data archiving statement

Data for this study are available as supplementary material

online.
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