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Abstract

Background: Variability is a hallmark of animal behavior. It contributes to survival by endowing individuals and
populations with the capacity to adapt to ever-changing environmental conditions. Intra-individual variability is
thought to reflect both endogenous and exogenous modulations of the neural dynamics of the central nervous
system. However, how variability is internally regulated and modulated by external cues remains elusive. Here, we
address this question by analyzing the statistics of spontaneous exploration of freely swimming zebrafish larvae and
by probing how these locomotor patterns are impacted when changing the water temperatures within an
ethologically relevant range.

Results: We show that, for this simple animal model, five short-term kinematic parameters — interbout interval, turn
amplitude, travelled distance, turn probability, and orientational flipping rate — together control the long-term
exploratory dynamics. We establish that the bath temperature consistently impacts the means of these parameters,
but leave their pairwise covariance unchanged. These results indicate that the temperature merely controls the
sampling statistics within a well-defined kinematic space delineated by this robust statistical structure. At a given
temperature, individual animals explore the behavioral space over a timescale of tens of minutes, suggestive of a slow
internal state modulation that could be externally biased through the bath temperature. By combining these various
observations into a minimal stochastic model of navigation, we show that this thermal modulation of locomotor
kinematics results in a thermophobic behavior, complementing direct gradient-sensing mechanisms.

Conclusions: This study establishes the existence of a well-defined locomotor space accessible to zebrafish larvae
during spontaneous exploration, and quantifies self-generated modulation of locomotor patterns. Intra-individual
variability reflects a slow diffusive-like probing of this space by the animal. The bath temperature in turn restricts the
sampling statistics to sub-regions, endowing the animal with basic thermophobicity. This study suggests that in
zebrafish, as well as in other ectothermic animals, ambient temperature could be used to efficiently manipulate
internal states in a simple and ethological way.
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Background
Variability, both inter- and intra-individual, is an ubiqui-
tous trait of animal behavior [1]. Intra-individual variabil-
ity may participate in efficient strategies, as best exem-
plified by the alternation of exploration and exploitation
phases during foraging [2]. It can also endow the ani-
mal, or the population, with robustness, i.e., the ability to
rapidly and efficiently cope with changing environmen-
tal conditions [3, 4]. The idea, known as bet-hedging, is
that a modest loss in fitness associated with phenotypic
variability could be balanced by the gain in leniency when
facing unexpected and possibly hostile conditions. The
origin of inter-individual variability may be attributed to
genetic, epigenetic, or developmental differences. Intra-
individual variability may in turn reflects spontaneous
transitions between distinct brain states, i.e., patterns of
persistent neural activity [5, 6]. It may also be the sig-
nature of endogenous modulations in the production of
neuromodulators [7].
Although the functional significance of variability in

animal behavior is now largely recognized [8], the way
it is regulated and modulated by external cues, as well
as its neuronal substrate remain elusive. To address this
question, one not only needs to quantify variability, but
also manipulate it in a physiologically relevant manner, in
an animal that is accessible to both behavioral and neu-
ronal circuit interrogation. Here, we used the zebrafish
larva as a model vertebrate as it is uniquely amenable
to in vivo whole brain functional imaging [9–11] and to
high-throughput behavioral studies [12, 13].
As an ectothermic animal, zebrafish must actively nav-

igate towards regions of its environment that are ther-
mally optimal for its thriving [14], while potentially being
exposed to a wide range of temperatures [15]. How fish
swim in thermal gradients has been extensively studied
[16], and the neuronal circuits underlying this thermo-
tactic process have been identified [17]. Zebrafish larvae
integrate thermal signals (change in temperature) over
a sub-second time window, and adapt their forthcom-
ing movement accordingly in order to eventually move
towards optimal zones.
Here, we focus on the exploratory dynamics at various

but spatially uniform temperatures. We use a reductive
approach, as previously introduced [18], to quantify its
spontaneous locomotion using a finite number of short-
term kinematic parameters. We then quantify how the
bath temperature not only impacts the mean of these
parameters, but also their statistical distribution (vari-
ability) and pairwise covariance. We further assess the
time-scale over which this behavioral variability unfolds at
the level of individual animals. From this detailed analysis,
we build a numerical model of zebrafish larvae naviga-
tion at all temperatures over the physiologically relevant
range. Finally, we use this model to demonstrate how

this thermal adaptation of spontaneous swimming pattern
may complement the thermotactic mechanism, based on
direct gradient sensing, in order for the animal to limit its
presence in potentially harmful environments.

Results
A behavioral assay to record spontaneous navigation at
different temperatures
Batches of 10 zebrafish larvae aged 5-7 days were video-
monitored at 25 frames/second for periods of 30 min as
they freely swam in a rectangular 100 × 45 × 4.5 mm3

pool at a constant and uniform temperature (Fig. 1A,
see “Methods” section). For each batch, we successively
imposed up to 5 values of temperature (18, 22, 26, 30,
and 33 °C) in a random order. This thermal range spans
the non-lethal conditions for larval zebrafish and has been
shown to be effectively encountered by the animal in its
natural habitat [19]. Each 30-min-long recording session
was preceded by a 14-min-long period of habituation to
allow the animals to reach their steady-state exploratory
regime. A total of 10 batches per temperature involving
170 different fish were used.
Larval zebrafish swim in discrete bouts lasting for about

100 ms, interspersed with ∼ 1–2 periods of rest. As
we aim to probe how the bath temperature impacts the
long-term exploratory process, we focus on the charac-
terization of a few kinematic parameters associated with
each bout. We thus ignore the fine structure of the swim-
ming events, such as the amplitude of the tail deflection
or beating frequency [20, 21] but examine their result-
ing heading reorientation and linear displacements. The
center of mass coordinates and orientation of each larva
in every frame were extracted using FastTrack [22] (see
“Methods” section). For each identified swim bout, we
computed three scalar parameters (Fig. 2A) whose statis-
tics control the fish spatio-temporal exploration [18]: (i)
the interbout interval (IBI), δtn, is the idle time following
the bout event; (ii) the displacement, dn, is the traveled
distance associated with the bout; and (iii) the reorienta-
tion angle, δθn, denotes the change in heading direction.
Zebrafish larvae, as most animals, tend to adopt a dis-

tinct navigational behavior at proximity of boundaries
[23]. Tracking was thus performed within the innermost
region of the arena, at a minimum distance of 5 mm from
the walls. As a result, individual fish were not tracked
continuously over the entire recording periods, but along
trajectories (from one wall to another). In the analysis,
we ignored trajectories that last less than 25 s. Example
trajectories for three temperatures are shown in Fig. 1C,
where each dot indicates the location of a swim bout,
while its size reflects the interbout interval. This compar-
ison provides a first qualitative illustration of the effect of
temperature on the fish exploration. At low temperatures
(18 °C), the trajectories are relatively straight, comprising
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Fig. 1 Behavioral assay for the video-monitoring of spontaneous navigation of zebrafish larvae at different temperatures. A Sketch view of the setup:
Larval zebrafish are freely swimming in a rectangular pool connected to a pair of Peltier modules in a light-tight box. The setup is illuminated with a
white electroluminescent (EL) panel and a symmetrically positioned a mirror (not shown). The tank is covered with a transparent slide to limit
evaporation. A CMOS camera records images at 25 frames/second. B Blow-up of a raw image around a larva. C Example trajectories extracted offline
from movies recorded at different temperatures. Each dot represents a bout event, with size encoding the time spent at this location

a majority of small discrete forward bouts executed at
relatively low frequency. At high temperatures, the trajec-
tories appearmuchmoremeandering, withmore frequent
and ample reorienting maneuvers with longer traveled
distances. In the following, we quantify these differences
by systematically comparing the statistics of the per-bout
kinematic parameters at different temperatures.

The bath temperature controls the statistical distributions
of the kinematic parameters
For each batch and temperature, a probability density
function (pdf) was computed for interbout intervals, dis-
placements and turn angles by pooling all bout events.
We then computed an average distribution across batches
(Fig. 2B–D, respectively) for the 3 parameters, as well
as the temperature-dependence of their mean values
(Fig. 2F–H).
A decrease in the bath temperature from 26 to 18 °C is

associated with an increase of the mean IBI (〈δt〉) from
1 to 1.4 s, while the bout frequency remains essentially
unchanged at higher temperatures (2B, F). This increase
in the mean values is accompanied by a systematic broad-
ening of the statistical distribution. The per-bout dis-
placement exhibits a similar trend (Fig. 2C). This quantity
increases in the range 18–26 °C from 1 to 1.5 mm, and
remains unchanged at higher temperatures (Fig. 2G).

The turn angle distributions shown in Fig. 2D reveal
the existence of two main bout categories [13, 18, 24].
The central narrow peak corresponds to forward bouts
while the wide tail is associated with turning events. We
adjusted this distribution as a sum of two empirically cho-
sen functional forms in order to extract the fraction of
turning bouts pturn (see “Methods” section). This quan-
tity steadily increases with the temperature, from 0.3 to
0.8 (Fig. 2E). This increase in the fraction of turning bouts
comes with an increase in their associated reorientation
angles δθturn as shown in Fig. 2H.

The bath temperature controls the persistence time of the
orientational state
In a recent study [18], we showed that the orientational
dynamics of zebrafish larvae can be described by two
independent Markov chains (Fig. 3A). The first one con-
trols the bout type selection, between forward scoots
or turn bouts. This process is essentially memoryless,
such that the transition rates are simply set by the ratio
between either categories, namely pturn and 1 − pturn.
The second Markov chain controls the orientations of the
turning bouts. When a turn bout is executed and if this
chain is in the left (right) state, then the animal turns
left (right, respectively). This second selection process has
been shown to display a persistence over a few bouts: the
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Fig. 2 Effects of bath temperature on spontaneous navigation. A Sketch defining three kinematic parameters. δtn is the time elapsed between bout
n and bout n + 1, known as the interbout interval. The displacement dn is the distance traveled during bout n (in mm), while δθn represents the
reorientation angle. A small value around 0 corresponds essentially to a forward swim, while a large positive value (resp. negative) corresponds to a
left (resp. right) turn. Per-batch averaged distributions of interbout intervals (B), displacements (C) and turn angles (D) for each tested temperatures.
Vertical dotted lines are the means of the distributions, shaded areas are standard errors of the mean (s.e.m.). The gray area in Dmarks the forward
events versus the turn events. E–H Boxplots of selected parameters. Each dot corresponds to a batch of 10 fish, the box spans the 25th to the 75th
percentiles, the horizontal line is the median, red crosses are outliers. Significance given only for neighboring boxes (Kruskal-Wallis test, no star
indicates p > 0.05, �p < 0.05, ��p < 0.01, ���p < 0.001). E Fraction of turns, referred to as the turning probability, defined as the ratio of turn bouts
over the total number of bouts. FMeans of the interbout intervals. GMeans of the displacements. HMeans of the absolute reorientation amplitude
of turning bouts

fish tends to chain turn bouts that are similarly orien-
tated [24–26], a mechanismwhose result is to enhance the
angular exploration [18].
Here, we examined how this motor-persistence mecha-

nism is impacted by the bath temperature. We estimated
the flipping rate pflip — the probability to switch orien-
tation at each bout — by first binning the turning angles
into three categories (denoted �) and assigning a discrete
value to each of them: right turn (� = −1), forward bout
(� = 0) and left turn (� = +1). We then computed
the mean discretized angle value 〈�n+1〉 at bout n + 1
for the three possible values of the previous bout �n, as
shown in Fig. 3B. The slope of the linear fit provides a
measurement of pflip (see “Methods” section and Eq. 1).
This flipping probability increases with temperature from
0.22 at 18 °C to 0.45 at 33 °C (Fig. 3C), approaching 0.5.
Hence, at high temperatures, the orientational persistence
essentially vanishes, i.e., the probability to trigger a left vs
a right turn becomes independent of the orientation of
the previous bout. This increase of the flipping probability
counteracts the concurrent increase in turning probability

and turn bout amplitude at high temperature by limiting
the tortuosity of the trajectories in these conditions.
This approach yields a typical number of bouts 1/pflip

over which the turning orientation is maintained. A com-
plementary approach consists in characterizing the actual
time-persistence (in seconds) of the orientational state
[18]. To do so, we assume that the orientation selection is
driven by a hidden two-state continuous signal, of which
the turn bouts provide a stochastic sampling. We hypoth-
esize that a forward bout is “transparent”, i.e., it does not
interfere with the persistence process, and that the ori-
entational state remains unchanged until a bout in the
opposite direction is executed. The procedure for recon-
structing the orientational signal is illustrated in Fig. 3D.
For all trajectories, we computed the autocorrelation

function (ACF, R��) of the reconstructed orientational
signals, and averaged them for each temperature (Fig. 3E).
The ACF shows a faster decay for higher temperatures,
i.e., the time period over which the animal can maintain
its orientational state is larger in colder water. The ACFs
could be correctly adjusted with an exponential decay, a
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Fig. 3 The orientational dynamics is temperature-dependent. A Two discrete and independent Markov chains describe the reorientation dynamics.
The first one (top) selects the bout type, either turn (T) or forward (F), given the transition rate pturn , while the second one (bottom) determines if the
fish is in the left (L) or right (R) state with a transition rate denoted pflip . BMean ternarized reorientation � of the next bout, given the current bout
reorientation. Shaded area is the sem, solid line is the fit (Eq. 1). C Temperature dependence of pflip . The dashed line at 0.5 indicates a memoryless
process. D Schematic representing a motion sequence generated by the two discrete Markov chains. The hidden underlying orientational signal
that sets the left/right state of the fish is exposed only when the fish performs a turning bout and can be estimated (dashed line) for each trajectory.
E Trajectory-averaged autocorrelation function of � (R��) and associated fit (Eq. 2). F Temperature dependence of kflip , extracted from two
methods: pflip divided by the mean interbout interval associated with each temperature (red, shaded area is the s.e.m.) and from the fit of the
autocorrelation function (purple, error bar 95% confidence interval)

functional form that is expected for a simple telegraph
process [27]. This suggests that the left/right transition
over a time interval dt is simply given by kflipdt, where kflip
is the transition rate from one state to another. From the
exponential fit of the ACFs, we extracted kflip, which we
found to increase quasi-linearly with the temperature, as
shown in Fig. 3F (purple line). The rate kflip is the tem-
poral counterpart of the per-bout flipping rate pflip, the
two quantities being linked through the interbout inter-
val. Consistently, we found that pflip/ 〈δt〉 provides a good
approximation of kflip for all temperatures (Fig. 3F, red
line).

Navigational kinematic parameters are statistically coupled
In the preceding sections, we showed that the bath tem-
perature impacts in a systematic way the statistical distri-
butions of the five kinematic parameters that control the
fish spontaneous navigation, namely the interbout interval
(IBI), turn amplitude, traveled distance, turn probability,
and orientational flipping rate. When examining trajec-
tories recorded at a given temperature, we noticed that
they tend to fall in stereotypical categories reminiscent of

those most often observed at various temperatures. Some
trajectories are tortuous with short IBI, akin to typical
hot water trajectories, while other appear to be straighter
with less frequent bouts as generally observed in cold
water (Figs. 4A and 1C). This is suggestive of the existence
of a finite kinematic repertoire accessible to the animals
whose relative occurrence may be controlled by the bath
temperature.
To test this intuition, we first aimed at establishing the

statistical constraints that could set this accessible reper-
toire. We thus examined the pairwise covariance of the
aforementioned kinematic parameters. At short time scale
(over one bout), we did not observe any significant corre-
lation between the 3 parameters that can be evaluated on
a per-bout basis (IBI, reorientation angle, and traveled dis-
tance, see Additional file 1: Figure S1A). However, when
performing the same analysis on per-trajectory averages,
we observed a robust covariance of the parameters. This
is illustrated in Fig. 4B which shows the covariance matri-
ces computed for all data and for each temperature. The
IBI appears to be strongly anti-correlated with the forward
displacement and the flipping rate. In contrast, besides
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Fig. 4 Correlations between parameters are conserved across temperatures. A Two qualitatively different trajectories recorded at the same
temperature (30 °C). B Pearson’s correlation matrices of the average reorientation angle δθ , interbout interval δt and displacement d, along with the
turning probability pturn and flipping rate kflip defined for each trajectory, at different temperatures. Large panel: average over all temperatures. C
Variance explained by each principal component of a PCA performed on each intra-temperature feature matrix. D, E Coefficients of the principal
components for intra-temperature matrices (colors), for the inter-temperature averaged matrix (black square) and for the pooled per-temperature
array (solid line). D First principal component (PC1), E second principal component (PC2). F All per-trajectory values projected into the principal
component space (first two PCs), and their associated marginal distributions for each principal vector

IBI, all pairs of parameter tend to exhibit positive correla-
tions. Importantly, these statistical features are conserved
across the entire temperature range.

Temperature controls the distribution probability within a
well-defined locomotor repertoire
We sought to evaluate how this intra-temperature covari-
ance of the navigational parameters aligned with the
inter-temperature covariance. To do so, we used the
temperature-averaged parameters to build a 5 tempera-
tures by 5 parameters matrix from which we computed an
inter-temperature Pearson correlation matrix (Additional
file 1: Figure S1B). The latter displays a comparable struc-
ture as the mean intra-temperature correlation matrix 4B:
as we have shown in the previous sections, all parameters
increase with temperature, and are thus positively corre-
lated, except for the interbout interval which decreases
with the temperature and is therefore anti-correlated with
the 4 other parameters.

Hence, intrinsic variability and temperature-induced
behavioral changes both reflect a concertedmodulation of
the kinematic parameters along a similar axis. To confirm
this claim, we performed a principal component analy-
sis on both the inter-temperature and intra-temperature
data. For all temperatures, the first principal component
(PC) explains 28 to 45% of the intra-temperature vari-
ance (Fig. 4C), i.e., significantly more than expected for
independent parameters (20%). Due to the small size of
the inter-temperature matrix (5 samples), the first PC
explains more than 90% of the inter-temperature variance
(Additional file 1: Figure S1C). The first PC is conserved
across the temperature range (Fig. 4D, colored bars) and
essentially aligned with the inter-temperature PC (black
squares). The second PC is similarly conserved across
temperatures (Fig. 4E) yet less clearly aligned with its
inter-temperature counterpart.
In order to represent data from various temperatures

within the same low-dimensional space, we performed a
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PCA analysis on the pooled covariance matrix, combining
all intra-temperature arrays after standardization (Fig. 4C,
E, solid gray line). Based on the Guttman-Kaiser crite-
rion, we only retained the first two principal components
[28] (Additional file 1: Figure S1D). Figure 4F shows the
entire dataset projected in this unique 2D PCA space,
where the temperature is color-coded. As the tempera-
ture is increased, the accessible locomotor space is shifted
towards higher values of both marginal projections, with
a concurrent widening of the distribution for the first PC.
These observations are thus in line with the view that
the trajectories are confined to a manifold defined by the
correlation between the various parameters. Each temper-
ature delimits a specific accessible region of this subspace
as defined by the PCs projection values.

Single-fish recordings reveal a slow diffusive-like
modulation of the locomotor behavior
The experiments on which these analysis were performed
are based on simultaneous recordings of 10 fish for each
batch. As we cannot track individual fish over the entire
session, we cannot evaluate to what extent individual ani-
mals’ navigational pattern may vary during the course of
the assay. To address this specific question, we performed
a second series of experiments in which single animals
(N = 18) were continuously monitored for 2h at an inter-
mediate bath temperature of 26 °C. The same analysis
pipeline was implemented. In particular, the recordings
were split into successive “trajectories” corresponding to
wall-to-wall sequences. We observed that over the course
of the assay, the trajectories tended to exhibit strongly
distinct features as illustrated in Fig. 5A, reflecting a
significant intra-individual behavioral variability.
For each individual, we similarly computed a feature

matrix containing, for all successive trajectories, the mean
interbout interval, reorientation angle of turn events, dis-
placement, turning probability, and flipping rate. We then
performed a PCA on each array. Both the explained vari-
ance (Additional file 2: Figure S2A) and the PCA coef-
ficients (Fig. 5B, C) were unchanged with respect to the
multi-fish analysis (5B, C, gray line). This indicates that
the covariance structure in the locomotion pattern is
similar at the intra and inter-individual level.
We thus used the multi-fish PC space defined in the

preceding section to represent the single-fish data. The
result for an example fish is shown in Fig. 5D where
the successive trajectories are indicated as dots in this
two-dimensional PC space. This representation reveals
a slow diffusive-like exploration of the locomotor space
over the course of the experiment, with a progressive
transition from one type of trajectory (e.g., long displace-
ments, frequent bouts, frequent turns) to another (e.g.,
short displacements, longer interbout intervals, and fewer
turns).

To quantify the time-scale of this itinerant exploration
within the locomotor space, we computed the autocorre-
lation function (ACF) of the projections on the two first
PCA components (5E, F, black line). These curves could
be captured by an Ornstein–Uhlenbeck (O.U.) process,
which describes the dynamics of a random walker within
a quadratic energy basin [29, 30], see “Methods” section).
The latter allows one to bound the stochastic exploration
within a finite region of the locomotor space. From the
fit, we extracted the times needed for the dynamical sys-
tem to reach its stationary regime: τ = 2585 ± 58 s
for PC1, τ = 1980 ± 14 s for PC2 (mean ± s.e.m.).
These values clearly demonstrate that the modulation of
the exploratory behavior in individual animals takes place
over time scales that are orders of magnitude longer than
the interbout interval.
This series of experiments allowed us to further assess

the relative contribution of the intra- and inter-individual
components in the observed behavioral variability. As the
assay is longer (2 h) than the time needed to reach the
stationary regime (∼ 2000 s), each recording provides an
estimate of the intra-individual variability. The latter was
quantified in the PC space as the variance of the PC pro-
jections across the entire duration of the assay, averaged
over the various individuals. We then separately com-
puted the variance of the PC projections, pooling the data
of all animals (Additional file 2: Figure S2D, green). The
latter quantity thus encompasses both inter- and intra-
individual variability. This analysis led to the conclusion
that a dominant fraction of the variance (68% on PC1,
53% on PC2) can be explained by the intra-individual
variability.

Simulations of spontaneous navigation at various
temperatures reveal basic thermophobic behavior without
direct gradient-sensing mechanism
Having thoroughly characterized the statistical structure
of the kinematic parameters and their thermal modu-
lation, we sought to build a minimal stochastic model
of the fish navigation in order to generate synthetic
trajectories at different temperatures. Each kinematic
parameter defines a random variable whose mean is
set by the temperature and whose statistical distribu-
tion accounts for both the inter-trajectory variability
and the per-bout stochasticity. The dual nature of the
variability was mathematically recapitulated by express-
ing each of the 5 kinematic variables as a product of
two stochastic, temperature-independent variables: one
accounting for the trajectory-to-trajectory modulation
(within a range controlled by the bath temperature, Addi-
tional file 3: Figure S3B-E, Y column), and the other
reflecting the remaining short-term variability (bout-to-
bout, Additional file 3: Figure S3B-E, ε column, see “Meth-
ods” section). For the former, we used the copula method
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Fig. 5 Diffusive-like exploration of the behavioral manifold for individual fish. A Two qualitatively different trajectories from the same fish at the
same temperature (26°C), recorded at 1h interval. B, C Coefficients of the two first principal components for 18 different fish (one color corresponds
to one fish). The solid line is the PC coefficients computed from the multi-fish experiments as shown in Fig. 4E and F. D Time-evolution of the
projections in the 2D PCA space from an example fish. One dot corresponds to one trajectory whose parameters are projected on the multi-fish PC
space. Color encodes the time at which the trajectory starts. Arrows show trajectories represented in A with the same color. Autocorrelation
function of the projections on E PC1 and F PC2, averaged across fish. Gray area is the standard error of the mean. Red line is the autocorrelation
function of a simulated Ornstein–Uhlenbeck process whose bias parameter (1/τ ) is fitted to the data

to reproduce the observed covariance of the per-trajectory
means of the various parameters.
This approach allowed us to generate various trajecto-

ries at different temperatures, as illustrated in Fig. 6A.
These trajectories are qualitatively similar to those typ-
ically observed at the corresponding temperatures (see
Fig. 1C for a comparison). To quantify how this stochas-
tic model captures the exploratory behavior, we computed
the mean square displacement (MSD, Fig. 6B) and the
mean square reorientation (MSR, Fig. 6C) on both the
real (dots) and numerical data (solid lines). Overall, the
exploratory dynamics appear to be correctly reproduced
by the numerical model. Importantly, the inter-trajectory
variability is also, by construction, correctly reproduced
by this minimal model.
This model was used to probe how the temperature

dependence of the navigational kinematics may partic-
ipate in driving the animal along thermal gradients.
We first experimentally quantified how zebrafish larvae
responded to a linear thermal gradient spanning our tem-
perature range (18–33 °C), by focusing on the steady-state
occupation distribution. We found that the larvae favor
regions where the temperature is comprised between 23
and 29 °C (Additional file 4: Figure S4), i.e., they tend to

avoid both extreme (hot and cold) regions. The underly-
ing sensory-motor mechanism is bound to involve both
the effect of the temperature on the fish navigation pattern
(thermokinesis) and a direct (immediate) response to per-
ceived temperature changes (thermotaxis) [14, 16]. Our
model allows us to assess the relative contribution of the
kinesis process. In order to do so, we implemented a sim-
ulation in which a virtual fish navigates in a rectangular
pool (L × 45 mm) in which we imposed a linear thermal
gradient along the horizontal x-axis spanning the 18–
33 °C range.We simulated trajectories of numerical swim-
mers by continuously updating their exploratory statistics
according to the local bath temperature. These changes
are entirely controlled by the temperature-dependence of
the 5 kinematic parameters, which we linearly interpo-
lated across the thermal gradient. Four gradient strengths
were emulated by changing the length L of the pool (L =
0.1, 0.3, 0.5, 1 m).
The time evolution of the position distribution along the

gradient are shown as heatmaps in Fig. 6D. They reveal
a global drift of the population towards the low tempera-
ture region for all values of the thermal gradient (Fig. 6E).
In all conditions, the distributions were found to converge
towards a unique steady-state profile after a finite time.
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Fig. 6 Simulations indicate that zebrafish does not need gradient information to perform negative thermotaxis. A Example trajectories generated
with a simulation based on rescaled multivariate distributions (see “Methods” section). BMean square displacement, from data (dots) and
simulation (line). CMean square reorientation, from data (dots) and simulation (line). D Distributions of presence of simulated fish through time, for
four strengths of temperature gradient. The white curve is the average position over time. The expected value for a uniform distribution is
highlighted on the colormap. E Steady-state distribution of presence as a function of temperature. The dashed line is the expected value for an
uniform distribution. F Temporal evolution of the average position over time (only the first 75 bins are shown for readability). G Distribution mean as
a function of the time rescaled by the squared pool length

The probability of presence in the steady-state regime dis-
plays a quasi-linear decay from 18 to 26 °C, and remains
uniform at higher temperature. The thermokinesis pro-
cess thus endows the animal with a basic thermophobic
behavior, even for minute gradients — orders of magni-
tude smaller than those imposed in thermotactic assays.
In contrast, the avoidance of cold regions seen in experi-
ments (Additional file 4: Figure S4, see “Methods” section)
is absent in our simulations and must therefore reflect a
direct gradient-sensing mechanism.
The dynamic of this thermophobic behavior in the sim-

ulations appears to depend on the imposed gradient, as
illustrated in Fig. 6F, which shows the mean experienced
temperature across the population as a function of time
for the three gradients. All the curves display a similar

decay associated with a global drift towards the cold
region, until a similar plateau value is reached, albeit with
different time-scales. Due to the diffusive nature of the
fish spatial exploration, the settling time is expected to
scale with the square of the pool length. Consistently, the
four dynamic evolution are found to fall on a unique curve
when plotted as a function of t/L2 (Fig. 6G). The asso-
ciated settling times range from 10 min for the largest
gradient up to ∼ 14 h for the smallest one.

Discussion
Animal behaviors unfold as trajectories in a high dimen-
sional space of motor actions. To make behavior math-
ematically tractable, one needs to unveil statistical rules
that couple the different components of the behavior and
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organize them across time-scales. This dimensionality
reduction approach is a pre-requisite to further distin-
guish between deterministic and stochastic components
of the behavior and concurrently discover the underly-
ing neural mechanisms [31, 32]. Leveraging novel tech-
niques for high-throughput behavioral monitoring and
automatic classifications has allowed to elucidate the sta-
tistical structure organizing self-generated behaviors in
numerous species, such as C. elegans [33], Drosophila [34,
35], zebrafish [21, 36], or mice [37].
With its bout-based navigation, zebrafish larva offers a

relatively simple model for such an endeavor. It has been
shown that as few as 13 different swim bout types are
sufficient to capture the entirety of its behavioral reper-
toire [21]. Here we focus on spontaneous exploration in
the absence of time-varying sensory cues. For this partic-
ular behavior, Marques et al. showed that only 4 different
bout types effectively contribute to the navigation. In
the present work, we further restricted the discretiza-
tion to only two categories (forward and turn bouts), and
extracted 5 kinematic variables, ignoring fine differences
in tail bout execution. We showed that the knowledge of
these 5 variables statistics nevertheless suffices to fully
characterize the long-term exploratory process. Indeed,
synthetic trajectories generated by stochastic sampling
from the statistical distributions extracted from the data
accurately reproduce the experimentally observed angular
and translational dynamics.
Using this reductionist approach, we were able to

demonstrate that the variability in the fish exploratory
dynamics originates from two separate mechanisms, act-
ing on distinct time-scales. Over a few bouts, the fish
displacement is akin to a random walk in which mul-
tiple stochastic processes set the successive values of
two discrete (bout type and turn bout orientation) and
three continuous (interbout-interval, linear, and angular
displacements) variables that together define its instanta-
neous in-plane velocity. These processes are statistically
constrained by mean transition rates and amplitude prob-
ability distributions that can be considered invariant at the
scale of individual trajectories (i.e., over tens of bouts).
These parameters however vary significantly over long
time scales: their time modulation takes place over hun-
dreds to thousands of bouts, indicative of a clear time-
separation between the two different processes. Impor-
tantly, although we did not observe any significant corre-
lation in the instantaneous locomotor variables, the slow
modulation of the kinematic parameters exhibits robust
covariance and is thus constrained within a well-defined
kinematic manifold.
The present study allowed us to quantify how the

water temperature modulates the locomotor statistics of
zebrafish larvae. Rather than evoking distinct locomo-
tor patterns, temperature controls the relative occupancy

within this subspace: changing the temperature consis-
tently impacts the mean value of the kinematic param-
eters but leaves their covariance structure unchanged.
Temperature thus essentially sets the accessible range of
exploratory trajectories within a well-defined continuum
of possible locomotor behaviors.
At the circuit level, it is tempting to interpret these

observations by considering the brain as a dynamical sys-
tem exhibiting multiple metastable patterns of activity
(brain states) whose relative stability and transition rates
define a particular energy landscape [38]. In this view, the
short-time dynamics that select the successive bout prop-
erties correspond to a stochastic itinerant exploration of
this neuronal landscape. The latter is essentially invari-
ant over minutes but is slowly reshaped via endogenous
processes or through temperature changes, leading to a
gradual modification of the short-term statistics.
Slow modulation of locomotor characteristics in

zebrafish larvae have been reported in two recent stud-
ies [2, 36]. In [2], the authors identified two discrete
states, associated with exploration and exploitation during
foraging, with typical persistent times of order of min-
utes. In [36], progressive changes in locomotor statistics
were associated with decaying hunger state, as the initially
starved animal progressively reached satiety. In contrast
with these two studies, the modulation in locomotor kine-
matics that we observed is continuous and does not reflect
spatial heterogeneities in the environment (e.g., local pres-
ence of preys) or explicit changes in internal states such
as satiety. With respect to hunger state, the use of tem-
perature may offer a practical way to externally drive the
internal state to a stationary point in an ethologically
relevant way.
The neuronal basis of this internal state modulation

process remains to be elucidated. The circuits regulating
specific locomotor features, such as the bout frequency
[39] or orientational persistence [25, 26] have been identi-
fied. However, the fact that the various kinematic param-
eters display concerted endogenous modulations points
towards a global drive. Temperature is known to impact
cellular and synaptic mechanisms [40] in such a way that
an increase in temperature tends to speed up neuronal
oscillatory processes [41, 42]. This may explain the con-
current decrease in the persistent times associated with
the orientational persistence and interbout intervals. The
thermal modulation of the angular and linear amplitude
of the bouts may in turn reflect a temperature depen-
dence of the muscular efficiency rather than neuronal
processes [43]. Another possibility is that the tempera-
ture drives the activity level of neuromodulatory centers
which may also exhibit slow endogeneous modulations.
This neuromodulation release would then globally impact
the spontaneous dynamics of various premotor centers
yielding the observed change in locomotor patterns. The
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serotonergic neurons of the dorsal raphe constitute an
attractive candidate for such a mechanism as their acti-
vation has been shown in numerous instances to drive a
persistent change in behavior in zebrafish [2, 5, 44], as well
as in mice [45].
Our study yields a minimal numerical model of

zebrafish locomotion at different temperatures. This
model allowed us to probe in silico how the thermal
modulation of the exploratory dynamics may contribute
to the thermotaxis behavior, thus complementing direct
gradient-sensing mechanisms [17]. Our simulations indi-
cate that this thermokinesis process endows the animal
with the capacity to efficiently avoid hotter regions, but
cannot explain the observed avoidance of cold water. As
thermal gradient sensing operates within a time window
of 400 ms [16], it may be ineffective in conditions where
the lengthscale of thermal gradients is much larger than
the typical distance traveled per bout. In such condi-
tions, this complementary mechanism may be strategi-
cally relevant as it allows the animal to navigate away from
potentially noxious regions.

Conclusions
This study establishes the temperature as an effective
and practical external parameter to explore behavior vari-
ability in vertebrates. Our analysis provides simple latent
variables, namely the two first PCA projections, that
can be used to efficiently track the animal’s behavioral
state. Changes in behavioral states are generally induced
through complex protocols, involving a perturbation of a
sensorimotor loop, or through abrupt changes in sensory
conditions [46]. In such approaches, the change is discrete
and generally transient as the animal eventually adapts
to the new conditions. In contrast, temperature offers a
way to drive a robust, continuous, and chronic shift in
behavior that can be easily implemented while performing
large-scale brainmonitoring. Various behavioral states are
thought to reflect different levels of attention or arousal,
which in turn impact the responses to sensory stimula-
tion. Beyond its utility for studying how a given neuronal
circuit may give rise to distinct dynamics, thermal pertur-
bation could also be leveraged to investigate how internal
states may enhance or inhibit sensory responses.

Methods
Animals maintenance
Experiments were performed with wild type Danio rerio
AB, aged 5 to 7 days post-fertilization (dpf). Larvae were
reared in Petri dishes containing embryo medium (E3), at
28 °C, with a 14/10-h cycle of light/dark and were fed with
nursery powder GM75 everyday from 6dpf. Experiments
were done during daytime, in E3. They were approved
by Le Comité d’Éthique pour l’Expérimentation Animale
Charles Darwin C2EA-05 (02601.01).

Experimental setup
The container consists in a rectangular pool
(100 × 45 × 2.5 mm3) made of copper whose surface was
protected by a biocompatible heat-resistant black layer
(Rust-Oleum). It is stuck on two 78W Peltier modules
(Adaptive) with thermal tape (3M). A transparent, 2-mm-
thick PMMA cover is placed over the pool with 2 mm
spacers to minimize water evaporation, leaving a water
thickness of 4.5 mm. The temperature is measured at both
ends of the pool with thermocouples type T (Omega).
The two left/right error signals (Ttarget − Tmeasured) are
used within two independent PID loops implemented
on an Arduino Uno board (Arduino) whose coefficients
have been optimized manually. Each PID regulates the
PWM frequency sent to a H-bridge driving the power
sent to the two Peltier modules. A graphical user interface
(GUI) written in C++ using the Qt framework is used to
monitor the measured temperatures and to impose the
target temperatures on both ends. Due to its high thermal
diffusivity, the copper piece quickly reaches a uniform
temperature and acts as a thermostat for the water. After
about 4 min, the temperature of the water in the center
of the pool has reached the set temperature (± 0.2 °C),
which then remains constant over time. The GUI moni-
tors the bath temperatures while grabbing frames from a
CMOS camera (FLIR Chameleon3 CM3-U3-13Y3M-CS)
coupled with a macrolens (Navitar) at 25 frames per sec-
ond. The whole apparatus is placed in a light-tight box,
illuminated with a homogeneous white light emitted by a
LED panel (Moritex) placed on the side; a mirror placed
at the other side limits significant phototactic bias in the
small direction of the pool. All codes mentioned above
are available on Github [47] under a GNU GPLv3 license.
Blueprints of the box and pool as well as electronic
designs are available upon request.

Innocuity of the black-painted copper pool
Zebrafish larvae are sensitive to minute concentration of
chemicals. To check the innocuity of the container, ten
zebrafish larvae were left overnight inside the setup. All
survived and were swimming actively.We further checked
whether the black layer may releases chemical compounds
that could impact the animals navigational dynamics. We
prepared a stock of E3 heated for 1 h at 45 °C in the
experimental setup. Three batches of 10 larvae were then
sequentially recorded for 30 min in E3 (control), in a Petri
dish, then placed for 40 min in the heated E3 and recorded
again for 30 min (treated). Both experiments were per-
formed at 28 °C. We then computed the mean interbout
interval, mean displacement, mean reorientation ampli-
tude for each batch, and the cumulative mean square
displacement. Additional file 5: Figure S5A shows that
none of these quantities display any significant change for
larvae recorded in the heated water with respect to the
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control. Copper being known to alter lateral line neuro-
masts [48], we further tested the absence of copper ions by
incubating 10 larvae in the heated E3 for 2 h before mark-
ing their lateral line neuromasts with DiAsp according to
the protocol detailed in [48]. All larvae displayed intact
lateral line neuromasts.

Experimental protocols
The pool is filled with E3. A temperature is randomly
drawn from 18, 22, 26, 30, 33 °C and set with the GUI.
After 10 min, a batch of 10 zebrafish larvae is introduced
in the pool. After 10 min of habituation, the fish kine-
matics are monitored for 1800 s (half an hour). In order
to confirm the full habituation of the animal to the new
conditions, we checked that the fish navigation is indeed
time-invariant during the recording period. We evenly
split each recording into 3 time windows and computed
the statistics of the various kinematic parameters (mean
bout frequency, displacement, and reorientation ampli-
tude) for these 3 periods, The distributions within each
time-window are not significantly different (p > 0.1,
two-sample Kolmogorov-Smirnov test) as shown in Addi-
tional file 5: Figure S5B. Fish remain in the pool while
we randomly draw a new non-tested temperature. After
20 min (temperature regulation and habituation), a new
recording of 1800 s is performed. The five temperatures
are not systematically tested on all batches, but for each
temperature, 10 different batches of 10 fish are used. To
check whether the testing order may impact the kinematic
of swimming for a given temperature, we separated the
assays in two groups depending on whether the previous
recording was performed at a lower (�T > 0) versus
higher (�T < 0) temperature. We then computed the
mean interbout intervals, mean displacement and mean
reorientation amplitude normalized by their temperature
mean. The comparison of the two distributions is shown
in Additional file 5: Figure S5C. For all parameters, the
statistical difference is non-significant, indicating that the
testing order has no major impact on the navigational
statistics. In total, the experiments involved 17 different
batches. The sample size was not statistically determined
beforehand.
For single-fish experiments, the same protocol is used

except that a single fish was placed in the pool. The
recordings last for 2 h and only T = 26 °C is tested.

For thermal gradient experiments (Additional file 4:
Figure S4), 10 larvae are used during 45 min. The first
5 min are recorded with a uniform temperature of 22°C,
then a linear gradient is imposed during 40 min, from
18 to 33 °C. The gradient direction (i.e., which side is
set to either 18 or 33 °C) is chosen randomly. 10 differ-
ent batches are tested. The distribution of presence along
the gradient is computed over the last 2 min (5% of the
gradient duration) such as to allow enough time for the
animals to reach a steady-state.

Tracking and basic analysis
Larvae were tracked offline using the open-source Fast-
Track software [22]. It generates a text file containing
the position of each fish’s center of mass and body angle
across frames until they leave the defined ROI. Kinematic
analyses were performed using MATLAB (R2020a, Math-
works). Bouts are detected when the instantaneous speed
is greater than two times the overall variance of the speed.
Putative bouts are then filtered on a distance criterion
(bouts with a linear displacement — measured in a time
window of ± 0.5 s centered on the bout onset — less than
0.3 mm or greater than 18 mm are rejected) and on a
temporal criterion (bouts occurring within 0.4 s after a
bout are rejected). Bout timing is defined as 80 ms before
the velocity peak. Detection performance was checked
manually on randomly selected sequences. From posi-
tions, time, and body angles before and after a bout event,
we computed displacements, interbout intervals, and turn
angles associated with each bout. Data are split into tra-
jectories, from one edge of the ROI (set at 5 mm from
the walls) to another. Only trajectories that last at least
25 s, with at least 10 bouts, with 3 bout types (left turn,
right turn, and forward scoot) are kept for further anal-
ysis. Trajectories last on average 67 s (median 47 s, 95th
percentile 178 s) and contain on average 60 bouts (median
44 bouts, 95th percentile 154 bouts). The number of tra-
jectories and the number of bouts retained for further
analysis are given for each temperature in Table 1. The
effect of the chosen cutoffs (minimum trajectory duration
and minimum interbout interval) used for trajectory and
bout selection is tested in Additional file 6: Figure S6. This
control demonstrates that changing these cutoffs has no
significant impact on our results. All MATLAB routines
are available on Gitlab [49] under the GNUGPLv3 license.

Table 1 Number of trajectories, number of bouts, and mean trajectory duration kept for analysis per temperature

Temperature (°C)

18 22 26 30 33

# traj. 617 1405 1533 1308 1079

# bouts 34931 96365 89955 77203 48836

Duration (s) 100 82 56 60 50
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Bout classification
To discriminate whether a bout falls in the forward or
the turning categories, we fitted the one-sided (absolute
value) reorientation angles distributions with the sum
of a zero-mean Gaussian distribution and a gamma dis-
tribution. The Gaussian corresponds to the part of the
distribution close to zero, while the gamma function aims
at describing the distribution of high angle reorienta-
tions. We manually set the Gaussian width and the scale
parameter of the gamma function based on the observed
distributions. We fitted the shape parameter for each
temperature, ensuring that the slope at high angles in
logarithmic scale is well reproduced. Then, we defined a
fixed threshold for the angles to be considered as a turn
or a forward bout. This threshold is the angle at which
the two distributions cross, invariably found around 10°
(10.25±0.23◦, mean± sd). This value of 10° (0.17 rad) was
used to classify bouts throughout this work.

Displacement correction
We noticed that the displacement corresponding to a
turn event was systematically larger than the displace-
ment associated to a forward event. This is due to the
fine structure of a turning bout: first, the fish performs a
small reorienting bout, then it scoots forward [20]. Since
we do not look at this fine structure, the overall displace-
ment during a turn bout is geometrically overestimated
and would bias temperature-to-temperature comparison.
We computed the ratio between displacements during
turns and the ones during forward swims, and found a fac-
tor of 1.6 ± 0.1, regardless of the temperature. Therefore,
in all analyses presented in this work, all displacements
corresponding to a turn event were corrected by a factor
1/1.6 = 0.625.

Statistical methods
Probability density functions (pdf) were computed with
a kernel density estimation through the built-in Mat-
lab function ksdensity, with a bandwidth of 0.1 for
interbout intervals and displacements and 0.5 for turn
angles. For the distributions of Fig. 2, a pdf was com-
puted for each batch and the mean and standard error
of the mean are computed. For rescaled curves (Addi-
tional file 3: Figure S3), data from all experiments were
pooled to compute the temperature-average quantity XT
and rescaled values. Boxplots were made with the built-
in Matlab function boxchart, using as input data the
means of the respective quantities for trial (one dot corre-
sponds to a batch of 10 fish). For simulations of navigation,
averages over temperature were computed by pooling all
bout events from all experiments corresponding to this
particular temperature. pturn and pflip values were esti-
mated for each trajectory and then averaged. Error bars
for those temperature averages and for the pdf shown

in Additional file 3: Figure S3 were all computed using
bootstrapping with 1000 boots to get the 95% confidence
interval through the built-in bootci function. Errors
were propagated for the ratio of pflip and 〈δt〉T in Fig. 3F.

Reorientation dynamics
The two Markov chains model has been described in
details in a previous study [18]. We first binned the
reorientation angles δθ into a ternarized reorientation
�, with values −1 (right turn R), 0 (forward bout F) and
+1 (left turn L). To extract pflip, we analytically derived
the mean reorientation �n+1 given the previous reorien-
tation �n. There are 9 combinations of bouts {n; n + 1}:
{L; L}, {L;R}, {L; F}, {F ; L}, {F ;R}, {F ; F}, {R; L}, {R;R}, {R; F}.
All combinations involving a forward bout yield 0. Remain
combinations with two turns in the same direction and
two turns in the opposite direction. For a turn in direction
L (resp. R), the associated probability corresponds to the
case where a flip occurred (i.e., the previous bout was in
direction R, resp. L) and the case where no flip occurred
(i.e., the previous bout was in direction L, resp. R). Noting
�R

n and �L
n the turns in the right and left direction at

bout n, the mean reorientation given the direction of the
previous bout reads:

〈�n+1〉�L
n

= pturn
(
pflip�R

n + (1 − pflip)�L
n
)

〈�n+1〉�R
n

= pturn
(
pflip�L

n + (1 − pflip)�R
n
)

These equations can be summed up as:

〈�n+1〉�n = pturn
(
1 − 2pflip

)
�n (1)

This is the fit used in Fig. 3B.
A random telegraph signal is a binary stochastic process

with constant transition probability per unit of time. In the
case where both states are equiprobable, the two transi-
tion rates (here noted kflip) are equal. For such processes,
the time spent in one or the other state (left or right)
is exponentially distributed [27] and the autocorrelation
function for a zero-mean signal reads :

R��(t) = e−2kflipt (2)

This is the fit used in Fig. 3E.
Mean square displacement (MSD)

〈
d2

〉
and mean square

reorientation (MSR)
〈
δθ2

〉
were computed using the

MATLAB package msdanalyzer [50]. All (x, y) and δθ

sequences are pooled by temperature for both data and
simulations, the MSD and MSR were computed for each
sequence and we show in Fig. 6B and C the ensemble aver-
age for each temperature with the standard error of the
mean.

Principal components analysis
The “features matrices” were built for each temperature.
They include, for each trajectory, mean interbout inter-
vals, turn probability, flip rate (estimated as pflip/ 〈δt〉,
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pflip being extracted as explained above, for each tra-
jectory), mean reorientation angle of turning events and
mean displacements. Each set was standardized (cen-
tered and normalized by its standard deviation) before
being processed by the single value decomposition (SVD)
algorithm through the built-in pca function. Those 5
intra-temperature standardized arrays are then concate-
nated to form the so-called pooled matrix, that is in turn
used to find a common space through PCA. For projec-
tion, each set was normalized by the standard deviation
of all the pooled data (regardless of temperature) and
not centered for comparison purposes. The aforemen-
tioned common space was also used to project data from
single-fish experiments.

Numerical Ornstein-Uhlenbeck process
The single-fish experiments contains an average of 48±16
trajectories (mean ± sd) with a median duration of 42 s
and a value of the 90th percentile of 122 s. Each trajec-
tory yields one point in the PC space. We then linearly
interpolated the PCA projection values in order to pro-
duce a discrete signal defined over the same time vector
across the total duration of the assay (7200 s), sampled
every second. For each fish, on both PC, we computed the
autocorrelation function (Additional file 2: Figure S2B-C)
before averaging them (Fig. 5E, F, black line is the mean,
shade is the s.e.m.). The autocorrelation function of a OU
process reads [30]:

〈X(t)X(s)〉s = D
2k

exp (−k|t − s|)

where D is the diffusion coefficient and k is the bias term.
However, this expression is only valid in the limit where
the recording time is much larger than the relaxation time
1/k of the process. When the recording duration is of
order of the autocorrelation decay time, the computed
autocorrelation function exhibits a negative overshoot,
which reflects an incorrect estimate of the long-time
mean of the signal. This issue is common to stochas-
tic signals whose mean is unknown. In order to fit the
experimental autocorrelation and extract the relaxation
time τ = 1/k, we used simulated dynamics over similar
time-windows. Numerical simulations of the Ornstein–
Uhlenbeck (O.U.) process were sequentially implemented
using the following equation [51] :

Xi+1 = Xi +
√
2DNi

√
δt − kXiδt

with δt the time interval chosen for the simulation (units
s) and N is a random number drawn from a normal
distribution.
To determine τ , we generated 500 realizations of the

O.U. process with D set to 1 and τ set to values in a given

range. For each realization, we computed the autocorre-
lation function (ACF) and averaged them across realiza-
tions. We then computed the residual sum of square (RSS)
and chose the minimum one to select the best parame-
ter τ . After manually narrowing down the best range for
τ (PC1, 2000 to 3000 s, 1000 values; PC2, 1900 to 2100 s,
1000 values), we repeated the previous process 20 times to
get 20 “best τ ” and we report the mean ± s.e.m. in the text
and figure.
It should be noticed that the autocorrelation decay times

extracted from this analysis are 2585 and 1980 s, for
PC1 and PC2 respectively. These time-scales are thus one
order of magnitude larger than the typical trajectory dura-
tion. This clear time-scale separation a posteriori validates
the per-trajectory discretization used in our analysis.

Numerical simulations of trajectories
Trajectories were simulated using the framework
described in Additional file 3: Figure S3, based on the
hypothesis that (1) spatio-temporal dynamics can be
reproduced solely from five parameters, (2) per-bout
values of interbout intervals (δt), displacements (d) and
turn angles (δθ ) are drawn from a distribution that can
be decomposed as X = XTYε, (3) the per-trajectory
values of turning probability (pturn) and flipping prob-
ability (pflip) are drawn from a distribution that can be
decomposed as X = XTY , and (4) the trajectory-averaged
parameters are correlated. Note that for the simulations
we use pflip rather than flipping rate for simplicity in the
code implementation.

XT , the temperature average
All per-bout values of δt, d, reorientation angle of turn
events (δθt) and reorientation angles of forward events
(δθf ) are pooled by temperature and the mean is com-
puted. A pturn and a pflip is estimated for each trajectory,
pooled by temperature and averaged (Additional file 3:
Figure S3B-E, left column).

Y, the trajectorymeans variability
For each trajectory, a mean value is computed for δt, d
and δθt/f while pturn and pflip are extracted. They are then
rescaled by the corresponding temperature average value
computed above. For each temperature, a cumulative den-
sity function (cdf) is computed. They are then averaged
across temperatures to get a single Y cdf for each parame-
ters (pdf shown in Additional file 3: Figure S3B-E, middle
column).

ε, the per-bout variability
Similarly, for each trajectory we rescale values of δt, d and
δθt/f by their corresponding trajectory mean. Then, all
events are pooled by temperature and a cdf is computed.
Finally, we will use the mean cdf, resulting in a single ε cdf
for per-bout parameters. pturn and pflip are defined for a
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trajectory, hence they do not have bout-to-bout variabil-
ity (pdf shown in Additional file 3: Figure S3B-D, right
column).

Correlations ofmeans
We compute the Pearson’s correlation matrix of the tra-
jectories’ parameters (trajectory means and probabilities),
for each temperature. The coefficients are then averaged
to get a single correlations matrix

〈
Rtraj

〉
T .

Algorithm
After choosing a number n of fish (trajectories), we gener-
ate multivariate distributions (copulas) with theMATLAB
built-in mvnrnd function, with the mean

〈
Rtraj

〉
T corre-

lations matrix as input. It produces 5 marginal sets of n
Gaussian random numbers, correlated with one another.
We then get the corresponding normal cdf, which is in
turn used to sample the corresponding Y cdfs, invers-
ing the latter. Finally, those samples are multiplied by the
corresponding temperature average XT . A bout is gen-
erated by sampling a displacement and a turning angle,
along with a interbout interval during which the virtual
fish stands still, from the generic cdf of ε. Those values
are multiplied by the trajectory means drawn earlier, and
the new position (x, y) is computed. The next bout is gen-
erated, and so on. For the gradient simulations, the same
strategy is used, at the notable difference that the tem-
perature averages are determined dynamically given the
position of the agent along the temperature gradient. We
used reflective boundary conditions.We checked the con-
sistency between parameters distributions from the data
and from the simulations, as well as correlations between
trajectory means.

Abbreviations
IBI : Interbout interval
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Additional file 1: Figure S1: Correlations between parameters. A
Pearson’s correlation coefficients between per-bout parameters,
reorientation angles of turn bouts, interbout interval and displacement. B
Pearson’s correlation matrix between temperature-averaged parameters. C
Variance explained by the principal components of the inter-temperature
matrix. D Eigenvalues of the pooled intra-temperature matrix. The red line
highlights the Kaiser-Guttman criterion.

Additional file 2: Figure S2: PCA in single-fish experiments. A Variance
explained by the five principal components for each single-fish. B-C
Autocorrelation function of the projection on PC1 (B) and PC2 (C) from
each fish in single-fish experiments. The color code is the same as in A,
black line and shaded area is the mean and s.e.m. across fish. DMean
variance of projections across time (intra, purple) and overall variance of
projections (green). Error bars for intra is the s.e.m. and error bars for overall
is 95confidence intervals after bootstrapping (n=1000 boots).

Additional file 3: Figure S3: Temperature-independant rescaling of
parameters. A Equation describing parameter X distribution. B-E Left to
right, temperature-averaged value, trajectory-averaged rescaled by

temperature averaged-value and per-bout value rescaled by the trajectory
average, for B interbout intervals, C displacements, D reorientation angle
of turn events, E turning probability.

Additional file 4: Figure S4: Fish position distributions along a linear
thermal gradient. Presence probability density function of 10 batches of 10
larvae experiencing a thermal gradient from 18◦C to 33◦C. Solid line is the
mean across batches, shaded area is the s.e.m. Dashed line is the expected
value for a uniform distribution.

Additional file 5: Figure S5: Controls. A Example statistics of three
batches successively recorded in E3 (control) and in E3 previously heated at
45◦C for one hour in the experimental setup. (Left to right, up to bottom)
Mean interbout interval, mean displacement, amplitude of turn bouts
reorientation angle and mean square reorientation. B Example statistics
from all experiments pooled together, dividing time into three windows of
10 min. (Left to right, up to bottom) Mean interbout interval, mean
displacement, amplitude of turn bouts reorientation angle. C Example
statistics at a given temperature (current T) as a function of the previously
tested temperature. One dot is the mean parameter value for one
experiment, color encoded current temperatures, lines are the mean for
each previous temperature. (Left to right, up to bottom) Mean interbout
interval, mean displacement, amplitude of turn bouts reorientation angle.

Additional file 6: Figure S6: Effect of cut-offs in trajectory selection. A-B
Example statistics when changing cutoffs in trajectory selection. (Left to
right, up to bottom) Mean interbout interval, mean displacement, fraction
of turns, amplitude of turn bouts reorientation angle, first principal
component coefficients, second principal component coefficients. AWith
a minimum time between two consecutive bout of 200ms, trajectory must
last at least 25 s. BWith a minimum time between two consecutive bout of
400ms, trajectory must last at least 5 s.
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