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Dopamine signaling has numerous roles during brain development. In addition, alterations
in dopamine signaling may be also involved in the pathophysiology of psychiatric disor-
ders. Neurodevelopment is modulated in multiple steps by reactive oxygen species (ROS),
byproducts of oxidative metabolism that are signaling factors involved in proliferation, differ-
entiation, and migration. Hexokinase (HK), when associated with the mitochondria (mt-HK),
is a potent modulator of the generation of mitochondrial ROS in the brain. In the present
study, we investigated whether dopamine could affect both the activity and redox func-
tion of mt-HK in human neural progenitor cells (NPCs). We found that dopamine signaling
via D1R decreases mt-HK activity and impairs ROS modulation, which is followed by an
expressive release of H2O2 and impairment in calcium handling by the mitochondria. Nev-
ertheless, mitochondrial respiration is not affected, suggesting specificity for dopamine on
mt-HK function. In neural stem cells (NSCs) derived from induced-pluripotent stem cells (iP-
SCs) of schizophrenia patients, mt-HK is unable to decrease mitochondrial ROS, in contrast
with NSCs derived from healthy individuals. Our data point to mitochondrial hexokinase as
a novel target of dopaminergic signaling, as well as a redox modulator in human neural
progenitor cells, which may be relevant to the pathophysiology of neurodevelopmental dis-
orders such as schizophrenia.

Introduction
Dopamine (DA) is an important neurotransmitter in multiple areas of the adult brain. DA acts through
specific G-protein–coupled receptors, which are divided into D1- and D2-like families and mediate
both excitatory and inhibitory neurotransmission, mainly via the modulation of the cAMP pathway [1].
Dopamine has also been studied from a neurodevelopmental perspective because DA receptors are ex-
pressed very early in the development of the central nervous system before synaptogenesis [2,3]. Currently,
dopaminergic signaling is known to modulate crucial processes, such as the regulation of gene expression,
proliferation, and differentiation [4]. Altered dopamine signaling during ontogenesis may be involved in
the aetiology of neuropsychiatric disorders [5]. Expression of elevated levels of D2 dopaminergic recep-
tors during development in transgenic mice alters dopamine signaling that leads to abnormal behavior
and impaired working memory even when receptor density is normalized in the adult animals [6]. Sim-
ilarly, a transient increase in dopaminergic signaling during a critical window in neurodevelopment of
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Drosophila melanogaster increased visual responsiveness and locomotion in adult animals and reduced gamma-like
activity, resembling the symptoms observed in patients with schizophrenia [7,8]. In contrast, a transient increase in
dopaminergic activity in adult animals had no effect on visual responsiveness, indicating strict developmental nature
of these effects.

Reactive oxygen species (ROS), such as O•− and H2O2, are natural byproducts of oxidative metabolism, which can
modulate the development of the brain [9,10]. ROS are traditionally correlated with oxidative damage and cell death
in physiological and pathological contexts, such as cancer, neurodegenerative and psychiatric disorders. Oxidative
stress has been implicated both with symptomatic features [11,12] and in etiology of psychiatric disorders [13]. How-
ever, ROS are recognized as important intracellular signals that regulate many signaling pathways at physiological
levels by modulation of redox-sensitive molecules, such as transcription factors, signaling proteins and cytoskeletal
components [14]. ROS signaling during neurodevelopment has been shown to modulate the proliferation, migra-
tion, and differentiation of neural progenitor cells [15,16]. Intracellular redox balance is dynamically regulated by
modulation of ROS production and scavenging systems. Moreover, cytosolic levels of ROS may be controlled by ROS
release through the plasma membrane into the extracellular medium. Extracellular ROS may participate in intercellu-
lar communication, leading to the activation of redox-sensitive target proteins. Interestingly, ROS modulate signaling
pathways and cell function in dopaminergic neurons, where both exogenous and endogenous H2O2 reversibly sup-
press dopamine release [17,18].

Mitochondria are the main source of cellular ROS [19,20], which may be produced at various sites of the electron
transport system (ETS) or by matrix dehydrogenases [21]. Mitochondria have their own pool of antioxidant enzymes,
such as superoxide dismutase, catalase, glutathione and thioredoxin systems; however, brain mitochondria are char-
acterized by high rates of ROS production compared with other tissues [22]. Glucose is the main energy substrate
in the brain and may be a significant source of ROS under pathological conditions [23]. More than 90% of glucose
in the central nervous system is phosphorylated by hexokinase (HK) at the mitochondrial surface. HK bound to the
mitochondria acquires high preference for ATP generated by oxidative phosphorylation (OxPhos) and functionally
couples glucose and oxygen metabolism [24].

In 2004, our group demonstrated that HK bound to the outer mitochondrial membrane (OMM) in cultured neu-
rons and brain is a potent regulator of ROS produced by ETS [25]. The reaction catalyzed by HK generates ADP,
which is a substrate for ATP production, and thus consumes mitochondrial membrane potential (m�ψ) [25]. Gen-
eration of mitochondrial ROS by ETS is highly dependent on m�ψ [26]; thus, the activity of mitochondria-bound
hexokinase (mt-HK) almost completely abolishes intraneuronal ROS levels in high glucose medium [25], indicating
that mt-HK is a powerful modulator of ROS in the central nervous system.

The control of the production of ROS may determine brain development because imbalance in mitochondrial
ROS due to a mutation in SOD2 (mitochondrial isoform of the antioxidant enzyme superoxide dismutase) leads to
abnormal brain morphology [27]. Therefore, mitochondrial ROS and their regulation by mt-HK are important for
neurodevelopment [28]. Our group showed that mt-HK activity linearly increases throughout neurodevelopmental
stages [29], correlating with oxidative metabolism and mitochondrial ROS production, unlike classical antioxidant
systems [30]. This observation suggests that mt-HK may also modulate mitochondrial ROS during brain develop-
ment.

Dopaminergic signaling in the context of neurodevelopment is poorly understood, especially with regards to cel-
lular redox dynamics. Thus, our goal was to investigate whether dopamine modulates the redox function of mt-HK
in human neural progenitor cells (NPCs). Our data suggest that mt-HK is a downstream target of dopaminergic sig-
naling in NPCs. Dopamine decreases mt-HK activity, which impact redox balance in these cells. Finally, we propose
that modulation of mt-HK function might be involved in the pathophysiology of brain disorders.

Materials and methods
Materials
Amplex Red (Cat #A22177), MitoSOX Red (Cat #M36008) and Alexa Fluor 488 secondary antibody (Cat #A11008,
RRID:AB 143165) were purchased from Molecular Probes (Thermofisher). N2 supplement (Cat #17502001), B27
supplement (Cat #17504044), Penicillin-Streptomycin (Cat #15140122), Laminin (Cat #23017015), Neural In-
duction supplement, StemPro Accutase (Cat #A11105), Geltrex (Cat #A1413301), and Calcium Green-5N (Cat
#C3737) were from Gibco (Thermofisher). Dihydroethidium and Alexa Fluor 594 secondary antibody (Cat #A11032,
RRID:AB 141672) were from Molecular Probes. D1R antibody (Cat #324390) was from Millipore; D2R antibody (Cat
# sc-5303, RRID:AB 668816) was from Santa Cruz Biotechnology; Poly-l-ornithine (Cat #P4957), Dopamine (Cat
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Table 1 iPSC lines used for NSCs generation

Cell identification Group Gender Age Cells source Diagnosis

CF1 Control M 37 Fibroblast Healthy

CF2 Control M 31 Fibroblast Healthy

GM23279A Control F 36 Fibroblast Healthy

EZQ4 Schizophrenia M 42 Fibroblast Paranoid Schizophrenia

GM23760B Schizophrenia M 26 Fibroblast Paranoid Schizophrenia

GM23761B Schizophrenia F 27 Fibroblast Schizoaffective Disorder

#H8502), SCH 23390 (Cat #D054), Raclopride (Cat #R121), Protease Inhibitor Cocktail (Cat #P8340) and all other
reagents were from Sigma-Aldrich.

Cell cultures
Human neural progenitor cells (NPCs) were differentiated from the embryonic stem cell (ESC) line BR1 [31] fol-
lowing the protocol described by Chambers and collaborators [32]. Briefly, BR1 cells were dissociated into single
cells and replated onto Matrigel-coated dishes. After 72 h, cells were switched from ESCs conditions to knockout
serum replacement medium containing inhibitors of SMAD signaling (Noggin, SB431542 or both factors) and al-
lowed to differentiate into NPCs for a total of 11 days. NPCs were cultured in DMEM/F-12 (Dulbecco’s modified
Eagle’s Medium/Nutrient Mixture F12, (Thermofisher/Gibco) supplemented with 2% N2 supplement, 1% B27 sup-
plement, 1% penicillin-streptomycin (10,000 U/ml) (NPC medium) in plates pretreated with Poly-l-ornithine and
Laminin. The cells were maintained at 37◦C in 95% air–5% CO2 in a humidified incubator. Experiments were per-
formed when the plates achieved around 80% confluence. The maximum number of cell passages used was 16.

We also performed experiments in neural stem cells (NSCs) derived from induced-pluripotent stem cells (iPSCs)
from fibroblast biopsies of three schizophrenia patients (EZQ4, GM23760B and GM23761B cell lines) versus three
healthy individuals (CF1, CF2 and GM23279A cell lines). Lines GM23279A, GM23760B and GM23761B were bought
from Coriell Institute for Medical Research (New Jersey, U.S.A.). Lines CF1, CF2 and EZQ4 were derived from skin
biopsies collected at D’Or Institute for Research and Education (IDOR) by Dr Mário André da Cunha Saporta, special-
ist in biopsy procedures, with informed consent obtained from the patients and/or their legal tutors. All procedures
for sample collection were conducted in accordance with the World Medical Association Declaration of Helsinki and
were approved by the IDOR Ethics Committee under the number CAAE 32385314.9.0000.5249. The collected cells
were used to generate iPSCs from which the NSCs CF1, CF2 and EZQ4 were specified.

NSCs were cultured at 49% Advanced DMEM/F12 (Gibco) + 49% Neurobasal Medium (Gibco) supplemented with
2% Neural Induction Supplement (NEM medium) in plates pretreated with Geltrex. iPSCs lines were differentiated
into NSCs according to Neural Induction Gibco’s protocol [33].

Cell treatment
Since using antioxidant in the dilution of dopamine would interfere in the levels of cellular ROS, to minimize its
autooxidation dopamine was maintained in the dark and diluted in NPC medium just before treating the NPCs.
Nevertheless, measuring dopamine autofluorescence (excitation wavelength of 265 nm/ emission wavelength at 350
nm), we observed oxidation of ∼45% of dopamine after 48 h (data not shown). The ‘control NPCs’ group includes
NPCs exposed only to the vehicle of dopamine dilution (NPC medium).

The protocol used for the treatment of NPCs with dopamine was based on a previous study, which investigated
the effect of dopamine treatment on mitochondrial function of the human neuroblastoma cell line SH-SY5Y [34].
The NPCs were treated with 100 μM dopamine and maintained for 48 h at 37◦C. Then, the medium was discarded,
cells were washed with DMEM/F12 and the biochemical analyses were performed, in comparison with control NPCs.
For the experiments using the antagonists of dopamine receptors, NPCs were pretreated for 10–15 min with specific
antagonist for D1R, SCH 23390 (10 μM) or D2R, Raclopride (20 μM) and then treated with dopamine for 48 h.

High resolution respirometry
Oxygen consumption assays were conducted using High Resolution Respirometry (Oroboros O2K, Innsbruck, Aus-
tria), at 37◦C with constant stirring. Cells were enzymatically detached from the plate (StemPro Accutase) and used
at 1 × 106 cells/ml in NPC medium. Modulators of mitochondrial function were added sequentially, always after
signal stabilization, as follows: Oligomycin 1 μg/ml, FCCP in 1 μM titration, Antimycin A 1 μM. Data were collected
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through a specific software that shows, in real time, the concentration of oxygen and the specific oxygen flow, which
means the negative time derivative of oxygen concentration (DatLab software 5.0, Oroboros Instruments, Innsbruck,
Austria).

Intracellular O•− production
Intracellular O•− production of the NPCs was accessed by DHE (10 μM) that once oxidized by O•− intercalates
with the DNA, staining cell nucleus, and emits at 605 nm. Briefly, cells were plated in a 96w μClear plate, where the
dopamine treatment and the experiment were performed. NPCs were incubated with DHE for 40 min at 37◦C in
the incubator, after which the dye was washed out before imaging. To evaluate mt-HK capacity to modulate ROS,
the cells were coincubated with 2-deoxyglucose (2-DOG) 35 mM, an activator of hexokinase activity, and ATP 5
mM during the incubation time with DHE, and compared with cells incubated with vehicle of 2-DOG dilution (dis-
tilled water). 2-DOG is a substrate of hexokinase that is phosphorylated but, instead of G6P, its reaction product is
2-deoxyglucose-6-P, which does not inhibit hexokinase activity in the same range as G6P [35,36]. The inclusion of
2-DOG is a strategy to specifically evaluate the impact of glucose phosphorylation in mitochondria by mt-HK on mi-
tochondrial ROS production [25,29,37,38]. The images were obtained with Operetta (Perkin Elmer) using Harmony
software, at 37◦C and 5% CO2.

Extracellular H2O2 production
The H2O2 release to extracellular space was measured with Amplex Red (AmR) probe using a fluorimeter (Varian
Cary Eclipse; Agilent Technologies, Santa Clara, CA). Fluorescence was detected at an excitation wavelength of 563
nm (slit 5 nm) and an emission wavelength of 587 nm in NPC medium in the presence of 2.5 × 106 cells/ml and 2
U/ml horseradish peroxidase. Once AmR is cell membrane impermeant, only extracellular H2O2 was measured with
this method. To transform fluorescence units into specific H2O2 production, we used a calibration curve with known
amounts of H2O2. To access maximal H2O2 production, all experiments were done in the presence of SOD 30 U/ml.

Immunofluorescence
Briefly, the NPCs were cultured and treated in a 96w μClear plate, where they were fixed with 4% paraformaldehyde,
permeabilized with Triton X-100 0.3% and incubated overnight with anti-D1R (1:100) and anti-D2R (1:800) at 4◦C.
After incubation with primary antibodies, the cells were incubated for 1 h with Alexa Fluor 488 and Alexa Fluor 594
secondary antibodies (1:400). The nucleus staining was made with 1 μg/ml of 4′.6′-diamino-2-phenylindole (DAPI).
The negative control was obtained after incubation with the secondary antibodies in the absence of the primary
antibodies. Images were obtained in Operetta (Perkin Elmer) using Harmony software.

Total hexokinase activity
Total HK activity was performed by the reduction of NAD+ measured fluorimetrically. Fluorescence was detected at
an excitation wavelength of 352 nm (slit 10 nm) and an emission wavelength of 464 nm in the coupled reaction with
exogenous G6PDH from L. mesenteroides, as described previously [39]. The measurement was done using a Varian
Cary Eclipse fluorimeter. To assess HK activity, the cells (around 3 × 106 cells) were permeabilized in the presence of
2 mM pyruvate, 2 mM malate and 10 mM glutamate with 0.002% digitonin. Then, the cells were centrifuged at 4◦C,
resuspended in the assay medium and kept on ice. The assay medium contained 10 mM Tris-HCl pH 7.4, 320 mM
mannitol, 24 mM MgCl2, 0.08 mM EDTA, 1 mM EGTA, 8 mM Pi, 1 mM ATP, 10 μM AP5A, 1 U/ml G6PDH, 1 mM
β-NAD+ and the reaction started upon the addition of 5 mM glucose.

Mitochondrial hexokinase activity coupled to the oxidative
phosphorylation
Mt-HK activity was measured using a Perkin-Elmer Victor spectrophotometer microplate reader, in a 96w plate, with
detection of NADH at 340 nm. The cells were permeabilized in the same protocol as described for total HK activity
and used in the approximate concentration of 1 × 106 cells/well. The assay medium contained 10 mM Tris-HCl pH
7.4, 320 mM mannitol, 24 mM MgCl2, 0.08 mM EDTA, 1 mM EGTA, 8 mM Pi, 1 mM glucose, 0.3 mM ADP, 10 μM
AP5A, 1 U/ml G6PDH, 1 mM β-NAD+ and the reaction started with the addition of 5 mM succinate. As a control
of OxPhos-coupled mt-HK activity, we used 1 μg/ml oligomycin, an ATP-synthase inhibitor which is expected to
abolish mt-HK activity due to the lack of mitochondrial ATP.
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Calcium uptake assays
To measure mitochondrial calcium handling we used the calcium sensitive probe Calcium Green 5N at 200 nM
with excitation/emission wavelengths of 505/535 nm using a Varian Cary Eclipse fluorimeter at 37◦C. Cells were
permeabilized with digitonin as described for HK activity assay. NPCs were used at 10 × 106 cells/ml in a 1 ml
cuvette in MIR05 without EGTA and with 10 mM Succinate, 10 μM Ap5A, 100 μM ADP and 200 μM ATP. Along the
experiment, each CaCl2 addition resulted on a fluorescence peak representing the binding of the ion to the fluorescent
probe (Figure 6A). Over time, a reduction in fluorescence is observed, indicating calcium detachment from the probe
and its entry into the mitochondria. Titrations were performed until there was no more mitochondrial calcium uptake.
To investigate the role of mt-HK activity in calcium uptake of control and dopamine-treated NPCs, we used a 2-DOG
free condition versus the presence of 2-DOG 35 mM during the experiment.

Flow cytometry
To access mitochondrial O•− production in NSCs derived from healthy and schizophrenic individuals we used Mi-
toSOX Red (2.5 μM), which is oxidized by O•− and binds to nucleic acids, emitting its maximal fluorescence at
580 nm. Briefly, after about 3 days in culture the NSCs were enzymatically harvested of the well (six-well plate) and
co-incubated for 20 min in the bath at 37◦C with MitoSOX Red and 35 mM 2-DOG or Antimycin A, as a positive
control of mitochondrial O•− production. The inclusion of 2-DOG is a strategy to specifically evaluate the impact
of glucose phosphorylation in mitochondria by mt-HK on mitochondrial ROS production [25,29,37,38]. After the
incubation time, the cells were washed twice with warm PBS and analyzed in a BD FACSCalibur Flow Cytometer.
The control for the intrinsic fluorescence background of the cells was obtained including a group exposed only to the
vehicle of MitoSOX Red dilution (NPC medium).

Statistics
Data were plotted on GraphPad Prism 6® or OriginLab 8 software, and are expressed in mean +− SEM. The n number
indicates the number of independent cell culture preparations for NPCs and the number of individuals for NSCs (three
control versus three schizophrenia patients). Representative experiments are shown for a sake of clarity of the data.
All data were quantified from at least three experiments.

Most of the data represents a comparison between two groups: control and dopamine-treated NPCs, and the sta-
tistical analysis used was unpaired t-test. The data comparing NSCs derived from healthy versus schizophrenic in-
dividuals were also analyzed using unpaired t-test. The data with unequal variances were analyzed using unpaired
t-test with Welches correction. The data from DRs antagonists were analyzed by one-way ANOVA with Tukey’s as a
post-test for multiple comparisons. To reach statistical power, a minimum number of three experiments was neces-
sary.

Results
NPCs exposed to dopamine release high levels of H2O2 without changes
in intracellular ROS
Previous studies have shown that dopamine may induce an increase in ROS and oxidative stress in neural cells [40,41].
We evaluated the intracellular content and release of ROS to extracellular space in control and dopamine-treated
NPCs. Determination of intracellular O•− using dihydroethidium (DHE), a permeable probe oxidized into a fluores-
cent adduct, indicated the lack of differences between control and dopamine-treated NPCs (Figure 1A). Interestingly,
despite similar levels of intracellular ROS, NPCs exposed to dopamine released a higher level of H2O2 than controls
(Figure 1B,C).

Dopamine treatment impairs ROS modulation by mitochondrial
hexokinase
Mitochondrial HK phosphorylates glucose to potently decrease ROS generation in the brain [25]; thus, we assessed
ROS generation in response to the activation of mt-HK to investigate whether higher H2O2 release is influenced
by mt-HK activity. Similar to the results obtained in mature neurons [25], activation of mt-HK in control NPCs
by 2-DOG prevented the generation of ROS by mitochondria because significantly lower levels of ROS were de-
tected in the intracellular and extracellular media (Figure 2A,B). Interestingly, this effect was lost in dopamine-treated
NPCs, in which 2-DOG-induced activation of mt-HK did not alter intra- or extracellular ROS levels (Figure 2A,B).
High-resolution respirometry of control and dopamine-treated NPCs was used to determine whether this effect is
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Figure 1. NPCs release higher levels of H2O2 upon dopamine treatment but no difference is detected in intracellular O�−

(A) Quantification of the intracellular levels of O�- by DHE fluorescence of control and dopamine-treated NPCs (Dopamine 100

μM for 48 h). (B) Representative measurement of H2O2 release rate assessed fluorimetrically by Amplex Red-Peroxidase system,

specific for H2O2, in intact NPCs. (C) Quantification of the rate of H2O2 release upon dopamine treatment when compared to

control. In all experimental conditions we used 5 × 104 cells/ml. The difference between groups was analyzed by unpaired t-test

in a (n = 5 per group) and c (n = 7 per group). In c, we used Welches correction for unequal variances.

Figure 2. Dopamine treatment impairs the regulation of ROS by mitochondrial hexokinase with no change in mitochondrial

function

(A) Quantification of the intracellular levels of O�− by DHE fluorescence after activation of hexokinase with 2-DOG 35 mM for 30 min

in control versus dopamine-treated NPCs. In all experimental conditions we used 5 × 104 cells/ml. (B) Normalized quantification of

the rate of H2O2 release after the activation of hexokinase with 2-DOG 35 mM for 30 min in control versus dopamine-treated NPCs.

For a sake of clarity, the scale range chosen was from 50 to 160. The differences between groups were analyzed by unpaired t-test

in a (n = 5 per group) and by unpaired t-test with Welches correction in b (n = 3 per group). (C) Representative oxygraphic data of

mitochondrial function from control and dopamine-treated NPCs in response to sequential additions of 1 μg/ml Oligomycin (Omy),

1 μM pulses of FCCP (F) and 2.5 μM antimycin A (Ama); Veh, vehicle.

related to alterations in mitochondrial function. All tested parameters of mitochondrial function were similar (Figure
2C, representative data), suggesting that dopamine specifically acts on mt-HK to control ROS production.
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Figure 3. Dopamine reduces total hexokinase activity in NPCs

(A) Total hexokinase activity of control and dopamine-treated NPCs, measured fluorimetrically through the detection of glu-

cose-6-phosphate (G6P). (B) Dose–response curve of the effect of dopamine in total HK activity in NPCs (48 h). The asterisks

mark the points where the inhibition of the total activity of HK is statistically significant, as * means P<0.05; ** means P<0.002; ***

means P<0.003. The difference between groups was analyzed by unpaired t-test.

Dopamine treatment reduces the enzymatic activity of mitochondrial
hexokinase in NPCs
Since mt-HK does not decrease mitochondrial ROS in dopamine-treated NPCs, we determined specifically the
mt-HK activity. Total hexokinase activity in the presence of glucose and ATP (not linked to OxPhos activity) was
approximately two-fold lower in dopamine-treated NPCs than that in control NPCs (Figure 3A). A dose-response
curve was used to characterize the effect of dopamine on hexokinase activity; the results indicated dose-dependent
inhibition with a maximal effect at 500 μM (Figure 3B). Sigmoidal shape of the inhibition curve of HK activity versus
dopamine concentration suggested that this effect is mediated by receptor activation [42].

The inhibition of coupled activity of mt-HK by dopamine depends on the
activation of D1 receptor
Crosstalk between dopamine and HK activity in NPCs was investigated by the analysis of classes of dopamine re-
ceptors important for the regulation of mt-HK activity. Initially, we demonstrated that human NPCs express both
dopamine receptors type 1 (D1R) and 2 (D2R) (Figure 4A). D1R and D2R were blocked with specific antagonists
(SCH 23390 and raclopride, respectively), and mitochondrial HK coupled activity was selectively analyzed by gen-
eration of G6P in a system stimulated by succinate + ADP + Pi, in which mitochondrial ATP is used as a substrate
for mt-HK phosphorylation of glucose (Figure 4B) [43]. Control treatment with oligomycin, a specific inhibitor of
F1FO-ATP synthase, completely abrogated mt-HK-dependent generation of G6P (Figure 4C). In addition to total HK
activity, dopamine treatment induced a 60% decrease in mt-HK coupled activity (Figure 4C,D). The inhibition of
mt-HK coupled activity was blocked by pretreatment with a D1R antagonist (SCH23390), but not with D2R antago-
nist (raclopride) (Figure 4C,D), demonstrating that dopamine specifically impairs mt-HK through the activation of
D1R.
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Figure 4. The decrease in hexokinase-coupled activity in response to dopamine is selectively blocked by D1 receptor

antagonist

(A) Representative images of NPCs labeled for D1R (green), D2R (magenta) show that NPCs express both classes of dopamine

receptors. On the upper panel, representative images of the negative controls. Nuclei are stained in blue by DAPI; scale bar: 100

μm. (B) Scheme of the protocol used to assess the coupled-activity of mitochondrial-hexokinase (mt-HK). Addition of Succinate+

glucose + ADP + Pi couples HK activity to OxPhos. (C) Representative experiment of mt-HK coupled-activity in NPCs treated with

control (black), oligomycin (gray) or dopamine (red), 10 μM SCH 23390 + dopamine (green) and 20 μM Raclopride + dopamine

(magenta) for 48 h. (D) Quantification of mt-HK coupled-activity. The difference between groups was analyzed by ANOVA + Tukey’s

multiple comparison test (n=4); D1R, dopamine receptor 1; D2R, dopamine receptor 2; ETS, electron transfer system; Glc, Glucose;

G-6P, glucose-6 phosphate.

Dopamine treatment abolishes the increase in mitochondrial calcium
uptake by mt-HK
Mitochondria play an essential role in calcium homeostasis through the uptake of cytosolic calcium. Recently,
de-Souza-Ferreira (2019) demonstrated that mt-HK plays an important role in calcium uptake by brain mitochondria
because mt-HK inhibition by G6P impairs mitochondrial uptake of calcium, whereas mt-HK activation by 2-DOG
improves the uptake [29]. Treatment with dopamine decreased mt-HK coupled activity (Figure 4C,D); hence, we
investigated whether the uptake of calcium by the mitochondria is changed in NPCs exposed to dopamine. We as-
sessed the uptake in permeabilized NPCs using Calcium Green-5N fluorescence [43]. In control NPCs, activation of
mt-HK by 2-DOG enhanced calcium retention capacity of mitochondria measured as Calcium Green fluorescence
after calcium pulses (Figure 5A). The amount of calcium retained by the mitochondria represents a balance between
the influx and efflux rates. The influx rate was derived from the decay of the signal of Calcium Green fluorescence.
On the other hand, the accumulation of calcium in the medium results from inhibition of the influx and/or an in-
crease in the efflux of calcium by mitochondria. The rate of calcium influx in control NPCs was gradually inhibited
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Figure 5. Dopamine treatment impairs the modulation of mitochondrial calcium uptake by mt-HK in NPCs

(A) Uptake of sequential calcium pulses (50 nmol each) by mitochondria of control NPCs in the presence of 2-DOG 20 mM (red) or

vehicle (black). (B) Rate of mitochondrial calcium influx of control NPCs in the presence of 2-DOG 20 mM (red) or vehicle (black).

(C’) Calcium accumulation outside mitochondria in response to sequential 100 nmol calcium pulses in control NPCs with 2-DOG

20 mM (red) or vehicle (black). 2-DOG shifted the curve toward calcium retention. (C”) Calcium accumulation outside mitochondria

in response to sequential 100 nmol calcium pulses in dopamine-treated NPCs in the presence of 2-DOG 20 mM (red) or vehicle

(black). � AUF means the difference in the calcium outside mitochondria between NPCs treated and untreated with 2-DOG. In

C, each point expresses the lowest Calcium Green fluorescence after each addition of calcium, which represents the moment

immediately after the uptake of calcium by mitochondria. (D) Quantification of � AUF in control (n=3) and dopamine-treated NPCs

(n=2), as % of vehicle group; AUF, arbitrary units of fluorescence; Veh, vehicle.

by calcium added to the reaction (Figure 5B, black circles); this effect was detected only at higher concentrations of
calcium in NPCs exposed to 2-DOG (Figure 5B, red circles). A reduction in the accumulation of calcium outside
of mitochondria upon stimulation with 2-DOG compared with that in unstimulated control NPCs indicated more
efficient calcium uptake in the presence of 2-DOG (Figure 5C’). Conversely, after treatment with dopamine, the stim-
ulation of mt-HK activity did not improve the uptake of calcium by the mitochondria because 2-DOG did not alter

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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calcium accumulation outside of mitochondria (Figure 5C”). These data are summarized as the magnitude of the
effect of 2-DOG on the decrease in the amount of calcium outside of mitochondria in control and dopamine-treated
NPCs (Figure 5D).

Overall, these data demonstrated that dopaminergic signaling in human neural progenitor cells affects the redox
function of mitochondria-bound hexokinase to eventually impair normal modulation of mitochondrial calcium han-
dling.

Mitochondrial hexokinase in NSCs derived from Schizophrenia patients is
unable to decrease mitochondrial ROS
Dysregulation of dopamine signaling was proposed to be involved in the pathophysiology of psychiatric disorders,
such as schizophrenia [6–8,44]; hence, we compared the function of mt-HK in neural stem cells derived from iPSCs of
three schizophrenia patients to that in NSCs from three healthy individuals (Table 1). We did not detect any apparent
functional alterations in the oxygen flow and mt-HK coupled activity (Supplementary Figure S1). However, mt-HK in
NSCs derived from schizophrenia patients was unable to decrease the generation of ROS by mitochondria, as shown
in a representative experiment using MitoSOX fluorescence (Figure 6A) and from data obtained when NSCs derived
from three healthy and three schizophrenia patients were treated with 2-DOG to activate mt-HK (Figure 6B). These
data suggest that modulation of mitochondrial ROS by mt-HK is altered in schizophrenia.

Discussion
The present study showed that dopamine impairs the modulation of mitochondrial ROS by decreasing mt-HK ac-
tivity via D1R-dependent signaling in human NPCs. This effect resulted in an increase in extracellular H2O2 and
impairment of mitochondrial calcium dynamics in dopamine-treated NPCs.

Initially, we determined whether dopamine treatment influences ROS production in human NPCs since ROS are
naturally produced during enzymatic metabolism of dopamine or nonenzymatic autoxidation of dopamine degra-
dation products [45]. Surprisingly, intracellular ROS levels were not altered by dopamine treatment (Figure 1A) in
contrast with the results of previous studies that suggest that cytosolic dopamine may induce oxidative stress in brain
cells [40,41]. However, all previous studies investigated dopamine metabolism in adult brain cells and not in neural

Figure 6. In NSCs derived from iPSCs of schizophrenic patients mt-HK is unable to modulate mitochondrial ROS

(A) Representative experiments of flow cytometry for MitoSOX Red fluorescence with (red) or without (black) 2-DOG 35 mM in

NSCs derived from healthy individuals or schizophrenic patients-iPSCs. The gray area corresponds to the negative control (without

MitoSOX Red). (B) Quantification of MitoSOX Red fluorescence in response to 2-DOG 35 mM by control and schizophrenic-derived

NSCs (n = 3 per group). The basal ROS was plotted as 100% and the fluorescence of MitoSOX Red after 2-DOG was normalized

by the basal ROS (without 2-DOG). The differences between groups were analyzed by unpaired t-test with Welches correction in b

(n = 3 per group); Veh, vehicle.
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progenitor cells. Products of dopamine autoxidation have been implicated in oxidative stress, leading to mitochon-
drial dysfunction [45]. Since dopamine treatment did not alter intracellular ROS levels in NPCs, mitochondrial func-
tion was expected to be unaffected in these cells, which was confirmed by high-resolution respirometry (Figure 2C).
Normal mitochondrial function in NPCs upon dopamine treatment can be a consequence of immature state of mito-
chondria in progenitor cells characterized by different vulnerability to challenges [29] or may suggest that dopamine
effects were not due to autoxidation and were mediated by the activation of a cell signaling cascade.

Although the levels of intracellular ROS remained unaltered, the release of H2O2 in response to dopamine treat-
ment of human NPCs was significantly higher (Figure 1B,C). H2O2 acts as an important mediator in the extracellular
medium by modulating redox-sensitive molecules and signalling pathways. Previous studies demonstrated a relevant
role of H2O2 in the modulation of cellular function; for example, H2O2 inhibited dopamine release in striatal slices,
which may directly impact brain function [17,46]. Accordingly, an increase in H2O2 release can down-regulate the
levels of dopamine and consequently protect NPCs against dopamine neurotoxicity.

mt-HK has been shown to be a potent modulator of mitochondrial ROS in neurons, and activation of mt-HK almost
completely abolishes ROS production [25]; hence, we evaluated this effect in NPCs. In control NPCs, activation of
mt-HK with 2-DOG down-regulated ROS levels in intracellular (Figure 2A) and extracellular media (Figure 2B).
However, dopamine treatment impaired the regulation of ROS by mt-HK since the activation of mt-HK in treated
NPCs did not change the levels of ROS (Figure 2A and B). In agreement with this result, the total HK activity of
dopamine-treated NPCs was significantly lower than that in the control cells (Figure 3A), which may explain the loss
of ROS modulation by mt-HK after exposure to dopamine. To the best of our knowledge, there are no previous studies
that correlated dopamine with mitochondrial hexokinase activity or its modulation of ROS. On the other hand, an
alteration in dopamine homeostasis in human neuroblastoma cells was shown to lead to a significant reduction in the
expression of VDAC [47], which anchors mt-HK to the OMM and plays an important role in mt-HK function and
coupling to OxPhos. Indeed, de novo mutations on VDAC or alterations in specific proteins involved in the binding
of hexokinase to mitochondria may impact ROS modulation by mt-HK [48,49]. The effect of dopamine on NPCs was
apparently specifically related to mt-HK function because of a lack of detectable alterations in mitochondrial function
(Figure 2C).

Alterations in brain glucose metabolism and in the function and protein expression of HK have been previously as-
sociated with psychiatric disorders [50,51]. Although only a few studies used patient-derived neural cells, a decrease
in the attachment of HK to mitochondria in the postmortem cortex of patients with schizophrenia, bipolar disor-
der and depression has been demonstrated [52]. Importantly, a decrease in the activity of HK in the schizophrenic
prefrontal cortex has also been demonstrated [53].

Specific antagonists of D1R (SCH23390) or D2R (raclopride) were used to investigate the mechanism by which
dopamine affects mt-HK in human NPCs. We demonstrated that NPCs used in the present study expressed both
dopamine receptors (Figure 4A) in agreement with the data of previous studies that described the expression of DRs in
neural progenitors [54,55]. Selective assay of mt-HK activity associated with OxPhos [43] demonstrated that mt-HK
activity in dopamine-treated NPCs was 60% lower than that in control NPCs (Figure 4C,D). Additionally, blockade of
D1R signaling, but not D2R signaling, completely abrogated dopamine inhibition of mt-HK coupled activity (Figure
4C,D). Therefore, our data indicated that mt-HK is a target of the effect of dopamine via the D1R signaling pathway.
In contrast, although HK activity was not evaluated in other studies, D2R signaling, but not D1R signaling, was shown
to modulate glucose metabolism in the brain [56,57]. In fact, a study suggested that both D1R and D2R may regulate
extracellular lactate and glucose concentrations in the brain; however, the study used apomorphine, a mixed D1R/D2R
activator, which does not discriminate between receptors responsible for the effect [58]. On the other hand, during
neurodevelopment, D1R is more abundant than D2R in the striatum and frontal cortex, and previous studies suggested
that the effects of D1R overcome D2R signaling in the control of the proliferation of neural progenitors in vivo [3,59]
in agreement with our data on dopamine signaling via D1R in human NPCs.

Recently, mt-HK was characterized as a potent modulator of calcium handling in brain mitochondria due to an
increase in calcium uptake upon activation of mt-HK [29]. The present study is the first to show that mt-HK activation
by 2-DOG in human NPCs also improved mitochondrial calcium uptake (Figure 5). Moreover, dopamine completely
abolished the stimulatory effect of mt-HK on calcium handling since mt-HK activation in dopamine-treated NPCs
did not shift the curve toward calcium retention (Figure 5C,D). mt-HK together with adenylate translocator (ANT)
and outer membrane porin was proposed to be a part of a complex that may include the permeability transition
pore [60]; hence, an impairment in mt-HK activity (Figure 4C) induced by dopamine may explain the impact on
the modulation of calcium handling by mt-HK in dopamine-treated NPCs. Moreover, our data are in agreement
with previously reported alterations in calcium handling in dopamine-treated neuroblastoma cells and a substantial
decrease in the uptake of calcium by mitochondria after exposure to dopamine [46].
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Finally, we evaluated the function of mitochondria and mt-HK in neural stem cells derived from three schizophre-
nia patients. We did not detect any significant differences in mitochondrial oxygen flux (Supplementary Figure S1a)
between NSCs derived from healthy and schizophrenic subjects. Other studies used patient-derived cells and re-
ported impaired mitochondrial respiration in iPSCs [61] and during neuronal differentiation [62]. However, another
study showed that mitochondrial function in iPSCs derived from schizophrenia patients was similar to that in healthy
individuals [63]. Investigation of mt-HK function indicated that OxPhos-coupled mt-HK activity was similar in the
groups (Supplementary Figure S1b); however, the modulation of mitochondrial ROS by mt-HK was impaired in NSCs
derived from schizophrenia patients. In NSCs derived from healthy individuals, the activation of mt-HK by 2-DOG
significantly decreased mitochondrial ROS production (Figure 6A,B). However, this modulation was not detected in
NSCs derived from schizophrenia patients (Figure 6A,B). mt-HK activity was measured in permeabilized cells; thus,
intracellular microenvironment was lost [43], which could have masked functional differences potentially detectable
in a more physiological system. Therefore, we used flow cytometry of intact cells to demonstrate that the modulation
of mitochondrial ROS production by mt-HK is absent in NSCs derived from schizophrenia patients (Figure 6).

Most data on dopaminergic alterations in schizophrenia involve signaling via D2R. However, D2R signaling al-
terations are associated with schizophrenia symptomatology in adults, as medication used for controlling positive
symptoms are mostly D2R antagonists [64,65]. In the present study, we used neural progenitor cells (NPCs) and
neural stem cells (NSCs), which recapitulate very early steps of neurodevelopment [33] that involves a completely
different set of signaling cascades and modulations. Recently, D1R activity was demonstrated to increase the forma-
tion of cerebral organoid by human NSCs through modulation of proliferation and differentiation [66]. On the other
hand, most NSCs do not express D2R [67].

Overall, our data highlight the role of mitochondrial hexokinase, a potent redox modulator in mature neurons, as
an equally relevant redox modulator in human neural progenitor cells. Importantly, we propose that mt-HK is a novel
target of D1R-mediated dopaminergic signalling, which impairs the role of mt-HK as a redox modulator in NPCs.
Similarly, impaired control of ROS production by mt-HK was shown in NSCs derived from schizophrenia patients;
these findings may indicate a correlation between dysregulation of dopaminergic signalling during neurodevelop-
ment with pathophysiology of schizophrenia. Applicability of these findings to other cell types in addition to neural
progenitor cells used in the present study remains to be determined. The results of the present study obtained using
various approaches suggest that redox balance fine-tuned by mt-HK may be disrupted by dopamine signalling in
human brain cells.
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