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Selective crack suppression during deformation
in metal films on polymer substrates using
electron beam irradiation
So-Yeon Lee 1, Kyung Ryoul Park 2, Sung-gyu Kang 1, Ji-Hoon Lee3, Eun-chae Jeon 4,

Cheol-Hwee Shim 5, Jae-Pyoung Ahn5, Dong-Ik Kim 6, Heung Nam Han 1,7, Young-Chang Joo 1,7*,

Changsoon Kim 2* & In-Suk Choi 1,7*

While cracks are usually considered detrimental, crack generation can be harnessed for

various applications, for example in ceramic materials, via directing crack propagation and

crack opening. Here, we find that electron beam irradiation prompts a crack suppression

phenomenon in a copper (Cu) thin film on a polyimide substrate, allowing for the control of

crack formation in terms of both location and shape. Under tensile strain, cracks form on the

unirradiated region of the Cu film whereas cracks are prevented on the irradiated region. We

attribute this to the enhancement of the adhesion at the Cu–polyimide interface by electrons

transmitted through the Cu film. Finally, we selectively form conductive regions in a Cu film

on a polyimide substrate under tension and fabricate a strain-responsive organic light-

emitting device.
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Cracks should be avoided unless we can control them.
Crack formation has been considered a fatal failure, and
most studies on cracks have focused on suppressing crack

generation. However, researchers have recently attempted to
control crack formation and even utilize the beneficial effects of
cracking1–5. For instance, cracks in thin ceramic materials can be
controlled in paths with widths down to sub-nanometers by
residual stress engineering, which can be used as nanofluid
channels for lab-on-a-chip applications6,7. While most of the
studies on crack control are for ceramic thin films, some studies
have proposed techniques to suppress crack formation in metallic
thin films on polymer substrates by enhancing the adhesion
between the film and the substrate because major electrical circuit
failure in flexible and stretchable electronics occurs at metallic
interconnects or current collectors that are susceptible to cracking
due to frequent and severe deformation such as bending or
stretching8–11. However, the proposed processes are hardly
applicable to submicron-thick metallic films because of the brittle
nature of the adhesive interlayers and rough surfaces caused by
surface modification12,13. Moreover, controlling the shape and
area of crack formation in thin metallic films is even more
challenging compared to ceramic thin films because the general
crack formation behavior of metallic films is very different from
the crack formation behavior of ceramic thin films due to com-
pletely different fracture mechanisms arising from plastic defor-
mation in metals10. Consequently, possible applications of
selective crack formation in metallic thin films have been beyond
the conventional research scope.

In this paper, we introduce a method for controlling the crack
formation in a metallic thin film on a polymer substrate by uti-
lizing unique electron beam–matter interactions at the nanoscale.
We found that when the electron beam (e-beam) irradiates the
surface of a 100-nm-thick Cu film deposited on a polyimide (PI)
substrate, the crack formation is significantly suppressed so that
the e-beam-irradiated area is hardly cracked, even at a tensile
strain of 30%. The controlled e-beam patterns can even generate a
non-crack pattern of any shape in the metallic thin film upon
applying a tensile load. Experiments and simulations have shown
that transmitted electrons can alter and engineer the interface
between the Cu thin film and the PI substrate, leading to the
improved adhesion between the Cu thin film and the PI substrate,
thereby suppressing crack formation during tensile deformation.
By utilizing e-beam irradiation, we can not only achieve selective
suppression of crack formation but also introduce a strain-
responsive conductivity pattern in the metallic thin film because
of the difference in electrical conductivity between the cracked
and non-cracked areas. Hence, we further incorporate our non-
destructive and mask-free crack patterning method into the
fabrication of an organic light-emitting device (OLED). We have
successfully fabricated a phosphorescent OLED on a Cu thin film
with an e-beam irradiated pattern, which results in a strain-
induced light emission pattern when a tensile load is applied. We
believe that our technology can be applicable not only to
enhancing crack resistance in flexible and stretchable devices but
also to developing smart devices engineered by strain-responsive
conductive patterning.

Results
Crack suppression in a metal film using e-beam irradiation.
Figure 1a describes our experimental procedure to investigate the
effect of e-beam irradiation on the crack behavior of a Cu thin
film under tensile deformation. Briefly, samples, each consisting
of an array of 100-nm-thick rectangular (100 × 100 µm) Cu thin
film on a 125-µm-thick PI substrate, were exposed to e-beam
irradiation with an acceleration voltage (VA) of 25 kV in a

scanning electron microscope (SEM) and subsequently observed
under in situ tensile testing with gradually increasing tensile
strain (ε) oriented along the vertical direction in Fig. 1b to f. More
detailed description of the experiment is described in the Meth-
ods section, Supplementary Fig. 1, and Supplementary Table 1.
Figure 1b shows the result of a control experiment (i.e., an
experiment without e-beam irradiation). At ε= 10%, which is a
pre-crack stage, a morphological change in a form of wavy lines
can be seen, with microcrack nucleation observed in some areas.
As ε increases, the number of microcracks increases, and the
microcracks are then merged via crack propagation along a
direction perpendicular to the tensile direction, resulting in cracks
distributed over the entire film at ε= 20%. Further increase in ε
leads to the Cu thin film delaminated at the crack peripheries, as
shown in the rightmost image in Fig. 1b (ε= 30%). This type of
crack behavior during initial tensile deformation is a phenom-
enon commonly observed for Cu thin films deposited on flexible
substrates and has been reported in many previous studies8–10. In
contrast, the e-beam irradiation is found to remarkably suppress
the crack generation under tensile deformation. When the e-beam
has irradiated the entire area of the Cu thin film with a beam
current (I) of 11 nA and a dose (D) of 4.52 × 104 µC cm−2

(Fig. 1c), the Cu film is found to be crack-free at ε= 10%, and
even at ε= 20%, it is almost crack-free, where only several
microcracks of very small sizes are observed. When ε reaches
30%, microcracks with sizes comparable to those found in the
unirradiated film at ε= 10% (Fig. 1b) are formed (more detailed
comparison of crack behavior of the Cu thin films can be found in
the in situ video provided in Supplementary Video 1). It should
be noted that the conventional Cr adhesion layers are hardly
applicable to suppress crack formation by adhesion enhancement
for submicron-thick Cu films because of the brittle nature of the
adhesive interlayers initiating crack formation in nano-metallic
thin films12. Our experiment also showed the same crack for-
mation in the Cu thin film with a Cr adhesion layer as shown in
Supplementary Fig. 2.

The crack suppression by e-beam irradiation is more evident
when the e-beam has irradiated only specific region(s) in the Cu
thin films. For example, when only the upper half region of the
Cu thin film is irradiated with the e-beam (I= 11 nA, D= 4.52 ×
104 µC cm−2), that region remains crack-free at ε= 30%, while in
the unirradiated lower half region many cracks are formed (Fig. 1d),
with a degree of cracking similar to that of the Cu thin film whose
entire area is unirradiated (rightmost image of Fig. 1b). Likewise, as
shown in Fig. 1e, the e-beam irradiation in the left half region of the
Cu thin film effectively suppresses the crack formation in that
region (I= 11 nA, D= 4.52 × 104 µC cm−2). In addition, in this
case, propagation of cracks formed in the unirradiated right half
region stops at the boundary of the two regions, indicating that
the e-beam irradiation can also prevent the crack propagation due
to mode I fracture that occurs in the samples shown in Fig. 1b, d.
Furthermore, the suppression of formation and propagation of
cracks by e-beam is found to be equally effective when the
boundaries of the irradiated regions have an arbitrary orientation
with respect to the tensile direction. As shown in Fig. 1f, at ε=
30%, cracks are not generated only in the ‘S’-shaped and ‘T’-
shaped regions that underwent the e-beam irradiation (I= 45 nA,
D= 9.02 × 104 µC cm−2), whose boundaries are marked by
yellow lines. Our results indicate that local e-beam irradiation
followed by stretching allows for selective prevention of crack
formation in the Cu thin films on the PI substrates (Cu film-PI
system).

Analyses of e-beam induced changes in the Cu film–PI system.
When a solid material is irradiated with electrons, they can be
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transmitted or reflected by elastic collisions. Alternatively, by
inelastic collisions, the energy of the electrons can be absorbed in
the material, which often results in the change in material
properties14. Therefore, it is necessary to investigate whether the
e-beam caused a structural change in the Cu film, which can
suppress the crack formation by enhancing its ductility. Figure 2a,
b show the representative textures of the unirradiated and irra-
diated Cu thin films, respectively, which were obtained using the
recently developed automatic crystal orientation and phase
mapping package in a scanning transmission electron microscope
(STEM), referred to as ASTAR™. The e-beam irradiation condi-
tion was VA= 25 kV, I= 11 nA, and D= 4.52 × 104 µC cm−2,
which was also the case for other irradiated samples in Fig. 2. In
both cases, the Cu thin films consist of nanocrystals in various

sizes, with nanotwins present in most of them. The inverse pole
figure maps and (111) pole figures of the Cu thin films shown in
Fig. 2a, b and the insets indicate that the texture of the as-
deposited Cu thin film remains random without an evolution of a
specific texture after the e-beam irradiation. In Fig. 2c, the grain
size distributions of the unirradiated and irradiated Cu thin films
are quantitatively compared, showing that the two distributions
are very similar: in both cases, most grains are smaller than
100 nm in size, and the number fraction peaks at an identical size
range (25–50 nm); there is almost no difference in average grain
size (54.8 ± 13.0 nm and 53.4 ± 5.7 nm for the Cu thin film
without and with the electron irradiation, respectively). In addi-
tion, the lengths of low-energy and twin boundaries, which play
an important role in increasing the ductility of nanocrystalline
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Fig. 1 Effect of electron beam (e-beam) irradiation on the crack behavior of Cu thin films during tensile loading. a Schematic diagram of e-beam irradiation
and subsequent tensile testing. SEM images of Cu thin films deposited on polyimide (PI) substrates were captured at various levels of tensile strain, 0, 10,
20, and 30% (b) without irradiation and (c) with irradiation on the entire Cu film. The e-beam irradiation effectively suppresses the crack formation in the
irradiated region even at a high tensile strain. SEM images of the Cu thin films irradiated only in specific region(s) such as (d) the upper half region, (e) the
left half region, and (f) in ‘S’-shaped and ‘T’-shaped regions are shown. The local e-beam irradiation selectively prevents the crack formation in the Cu thin
films on PI substrates. Scale bars, 10 μm (b–e); 100 μm (f)
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Cu, show almost no change upon the e-beam irradiation. The
fraction of the length of high-energy boundaries was slightly
increased from 0.42 to 0.46 due to the e-beam irradiation, but the
overall length distribution was unaltered, and no growth or dis-
appearance of specific misorientations is observed (Supplemen-
tary Fig. 3). These results indicate that the electron energy
transferred to the Cu film in our case is sufficiently low that the
nanostructure of the Cu film remains unaltered. This is not
surprising because the e-beam irradiation condition in our case
(VA ≤ 25 kV, I= 11 nA), which is in fact similar to that used in
the conventional e-beam-based characterization techniques such
as SEM and electron backscatter diffraction, is significantly milder
than that required to cause the known e-beam-induced damages
such as knock-on atomic displacement and e-beam sputtering15.

If the ductility of the Cu film is not improved, how can we
explain the crack suppression by e-beam irradiation? The most
typical method for suppressing the formation of cracks in a metal
thin film on a flexible substrate under tensile stress is to increase
the adhesion between the metal film and the substrate10,11,16. The
main mechanism of cracking in such a film is strain localization
arising from its partial delamination from the substrate caused by
tensile deformation. Since the delaminated film has the same
behavior as a free-standing film, even a slight deformation results
in deformation instability, generating cracks due to necking or
void formation17. This crack formation can be avoided if the
delamination of the metal film is prevented by increasing the
adhesion. We performed a nanoscratch test on the two Cu
film–PI systems—as before, one unirradiated and the other
irradiated. Specifically, the critical normal force (Lcr), which refers
to the normal force at the Cu–PI interface at the onset of
delamination, was obtained by the nanoscratch test, and the
relative value of work of adhesion (W) was calculated from the
following equation:

Lcr ¼
dcr
νμ

ffiffiffiffiffiffiffiffiffiffiffiffi

2tEW
p

ð1Þ

where dcr is the width of the scratch at the onset of delamination,
ν is the Poisson ratio of the substrate, μ is the friction coefficient
at the film–substrate interface, t is the thickness of the thin film,
and E is the Young’s modulus of the substrate18. Figure 2d
compares the values of Lcr and relative W of the two cases,
showing that after e-beam irradiation Lcr increased from 2.74 ±
0.24 mN to 3.37 ± 0.28 mN, which results in the increase of W by
a factor of 1.47. This result shows that the suppression of crack
formation by e-beam irradiation can be explained by the adhesion
enhancement at the Cu–PI interface without an appreciable
change in the microstructure of the Cu thin film. The systematic
characterization can give clues on the origin of the adhesion
enhancement at the Cu−PI interface. Figure 2e shows the
electron energy loss spectroscopy (EELS) data collected from
different positions at 5 nm intervals across the Cu−PI interface,
with the corresponding probe positions denoted on the high-
angle annular dark field (HAADF) images. As the probe point
moves downward (i.e., toward the PI region), the EELS intensity
due to Cu atoms—the peak near 950 eV (the Cu L2 edge) and the
broad signal beyond ~1000 eV—abruptly decreases near the
interface for the unirradiated sample (Fig. 2e, left), whereas that
of the irradiated sample (Fig. 2e, right) shows a much more
gradual decrease across the interface. This result indicates that Cu
atoms near the Cu−PI interface in the irradiated sample migrated
into the PI substrate, possibly enhancing the interface adhesion
by increasing the interfacial area between the Cu and PI regions.
Furthermore, the Cu2O (111) TEM diffraction pattern observed
near the Cu−PI interface (Supplementary Fig. 4) suggests that the
interface adhesion may have been further strengthened by the
oxide formation between the migrated Cu atoms and the oxygen

atoms in the PI substrate, although the Cu2O peaks could not be
distinguished from the Cu peaks in the EELS data (Fig. 2e)
because the EELS signals were not sufficiently strong. The e-
beam-induced oxidation of Cu seems plausible, considering our
observation based on X-ray photoelectron spectroscopy that the
e-beam irradiation caused a chemical change in PI (Supplemen-
tary Fig. 5).

Dependence of crack suppression on the acceleration voltage.
Trajectories of electrons and their interaction with materials, such
as elastic and inelastic scattering and energy absorption in mate-
rials, can be quantitatively described using a Monte Carlo simu-
lation (CASINOTM software) to understand the electron–matter
interactions in this thin film system19–21. Figure 3a shows the
distribution of the amount of energy absorbed in a 100-nm-thick
Cu film and a PI substrate, when an e-beam with a radius of
50 nm is irradiated with different VA. In each case, the e-beam,
consisting of 1,000,000 electrons and centered at (r, z)= (0 nm,
0 nm), is directed along the positive z-direction, and the absorbed
energy per unit volume is averaged over the azimuthal angle.
When VA= 3 kV, the energy of the incident electrons is absorbed
entirely in the Cu film. As VA increases, the inelastic scattering in
the Cu film progressively decreases, resulting in a monotonic
decrease of the energy absorbed in that region (upper panels,
Fig. 3a). At the same time, the energy absorbed in the PI film
(lower panels, Fig. 3a) monotonically increases with VA. This
phenomenon is directly associated with the VA-dependence of the
number of electrons transmitted through the 100-nm-thick Cu
film, as shown in Fig. 3b (blue). The ratio of the number of
electrons transmitted through the Cu thin film to that of the total
incident electrons, starting at zero at VA= 3 kV, is only 0.03 at
5 kV, abruptly increases to 0.77 at 10 kV, and reaches a plateau of
>0.92 when VA ≥ 15 kV, implying that the degree of crack sup-
pression by e-beam is likely to have a strong VA-dependence.

Hence, we carried out the tensile tests on the Cu film–PI
systems irradiated with VA varying from 3 to 25 kV, I= 11 nA,
and D= 4.87 × 103 µC cm−2. The SEM images of the Cu thin
films obtained at ε= 30% shown in Fig. 3c clearly indicate that
the crack density in the Cu thin film indeed decreases as VA

increases. The dependence of crack suppression on VA can be
more quantitatively seen in Fig. 3b (red), where the crack
densities normalized by the crack density of the unirradiated
Cu thin film are plotted. The crack densities were determined
from the SEM images using an image analysis, the details of
which are shown in Supplementary Fig. 6. Figure 3b shows that
the degree of crack suppression indeed has a strong VA

dependence, and for a relative crack density < ~0.2, VA needs to
be larger than ~10 kV. This result indicates that the electrons
are required to reach the Cu−PI interface with sufficient kinetic
energy for effectively suppressing the crack formation, which is
consistent with our rationalization that the enhancement of the
Cu−PI interface adhesion by the transmitted e-beam is a key
mechanism for the crack suppression. E-beam-induced radi-
olysis of PI, which is strongly suggested by the increases in
C–O–C bonds in the irradiated PI substrates (Supplementary
Fig. 5) and the increase in indentation hardness of the PI
substrate (Supplementary Fig. 7), may have caused the
adhesion enhancement: the radiolytic damage could have
facilitated both the migration of Cu atoms and the formation
of Cu2O. Alternatively, the e-beam-induced migration of the
Cu atoms may have been caused by the successive momentum
transfers from the irradiated electrons to the Cu atoms,
analogous to the electromigration22–24. Further investigation
is required to clarify the mechanism of the adhesion
enhancement.
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Application to strain-responsive OLEDs. Our finding can be
incorporated into a real device fabrication. Here, we fabricate a
strain-responsive optoelectronic device based on the selective
formation of a conductivity pattern by the crack suppression
technique. The experimental process is schematically described in
Fig. 4a. After a Cu layer deposited on a PI substrate was exposed
to patterned e-beam irradiation (VA= 25 kV, I= 45 nA, D=
1.00 × 104 µC cm−2), small-molecule organic semiconductor
layers and a top metal electrode, both being 1.5 × 1 mm in size
and covering the patterned region of the Cu layer, were
sequentially deposited to form a green phosphorescent OLED
with a layer structure shown in Fig. 4b. The e-beam-irradiated
area of the Cu layer was in the shape of a smiling face, corre-
sponding to the OLED area that is to remain emissive upon the
application of strain, and a DC bias of 8 V, with the positive bias
applied on the neck of the smiling face (marked by a red star-
shaped dot in Fig. 4a), was maintained during the stretching of
the OLED. When ε, applied along the direction indicated by red
arrows in Fig. 4a, was small (≤4%), the entire (1.5 × 1 mm) OLED
was emissive, with small dark spots distributed throughout the
device caused by imperfections such as particulates and scratches
on the PI substrate (Fig. 4c, d). At ε= 5%, the pattern of light-
emission intensity corresponding to that of the smiling face began
to appear (Fig. 4e) and became increasingly clear as ε increased
(Fig. 4f, g, in situ video provided in Supplementary Video 2). This
intensity pattern is the result of cracks in the Cu layer derived
only in the unirradiated area, which increased the electrical

resistance of the Cu layer in that region. Consequently, the
resistive voltage loss in the unirradiated Cu region was increased,
which in turn decreases the values of the local electrical bias and
therefore decreases the light intensities in the unirradiated region.
This result suggests that with further development, such as the
optimized design of the metal–flexible substrate system, the area-
selective crack suppression by e-beam may be a versatile techni-
que for patterning various electronic devices in addition to our
strain-responsive devices.

In summary, we found that e-beam irradiation onto the surface
of a 100-nm-thick Cu thin film deposited on a PI substrate
significantly suppresses the crack formation so that the e-beam-
irradiated area was nearly crack-free, even at a large tensile strain
of 30%, whereas the unirradiated area started crack formation
before a strain of 10%. Our experiments and simulations
suggested that e-beam irradiation transmitted the Cu thin film
and induced the migration of the Cu atoms near the Cu−PI
interface, which improved the adhesion at that interface so that
crack formation was suppressed during tensile deformation. Since
we were able to control the crack formation region in a metallic
thin film on a polymer substrate by e-beam patterning, we could
also generate any shape of a non-crack pattern in the metallic thin
film upon applying a tensile load. These strain-responsive
conductivity patterns in a metallic thin film were further
incorporated into the fabrication of an OLED, which unveiled a
strain-induced light emissive pattern when a tensile load was
applied.
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Methods
Sample preparation. To deposit an array of Cu thin films (thickness: 100 nm,
width and length: 100 μm) on a 125-μm-thick PI substrate (Kapton®, DuPont),
thermal evaporation using a metallic shadow mask (Supplementary Fig. 1) was
employed. A spherically shaped Cu pellet (purity of 99.99%) was used as a
deposition source. The base pressure and deposition rate were 2 × 10−6 Torr and
8 Å s−1, respectively.

Electron beam irradiation. Prior to e-beam irradiation and SEM observation,
10-nm-thick Pt films were deposited to prevent charging of the non-conducting PI
substrate. E-beam irradiation was performed using an SEM (Inspect F or Quanta
3D FEG, FEI). Detailed e-beam conditions are summarized in Supplementary
Table 1.

Fabrication of OLED. The top-emitting OLED has the following structure: PI/
100 nm Cu/10 nm 1, 4, 5, 8, 9, 11-hexaazatriphenylene hexacarbonitrile (HAT-
CN)/40 nmN,N’-bis(naphthalene-1-yl)-N,N’-bis(phenyl)benzidine (NPB)/20 nm
4,4’-N,N’-dicarbazolebiphenyl (CBP) doped with 3 wt% fac-tris(2-phenylpyridine)
iridium [Ir(ppy)3]/15 nm bathocuproine (BCP)/25 nm tris-(8-hydroxyquinoline)
aluminum (Alq3)/20 nm Mg:Ag (1:2 mass ratio). All layers were deposited by
thermal evaporation in vacuum at a pressure of ~10−7 Torr. The deposition rates
for all layers were 1 Å s−1.

Characterization. The tensile test was conducted using a microtensile machine
(Microtest 200 N, DEBEN) mounted on a specimen holder in the chamber of the
SEM, enabling in situ observation during tensile deformation. The Cu thin films on
the PI substrate were elongated up to a strain of 30% at a strain rate of 0.05 min−1.
High-voltage transmission orientation mapping in STEM was performed in an FEI
TecnaiTM F20 S/TEM equipped with an ASTARTM unit. Accelerating voltage,
aperture size for the nano-beam diffraction mode, and beam precession angle were
200 kV, 30 μm, and 1°, respectively. EELS spectra, HAADF and high-resolution
TEM (HRTEM) images were acquired with a JEOL ARM200 under the accelerating
voltage of 200 kV. Fast Fourier transforms (FFT) obtained from the HRTEM
images were calculated using Gatan Digital MicrographTM (DM) software (version
3.5). XPS analysis was performed with a PHI 5000 VersaProbe (ULVAC PHI,
Japan) using a monochromatized Al Kα source. The two ends of the OLED sample
were fixed on a Microtest 200 N tensile stage in ambient, and both electrodes were
electrically connected to a Keithley 2400 SourceMeter® to apply a DC bias of 8 V.
Then, the tensile load was applied to the device with a strain rate of 0.05 min−1

until the sample was stretched 10% of its original length. A CCD camera (EO-
0312c, Edmund Optics) was mounted above the device to record the OLED device
performance in real time.

Data availability
All relevant data are available from the authors upon request.
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