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Abstract: The scope for biocatalytic modification of non-
native carvone derivatives for speciality intermediates has
hitherto been limited. Additionally, caprolactones are im-
portant feedstocks with diverse applications in the polymer
industry and new non-native terpenone-derived biocatalyt-
ic caprolactone syntheses are thus of potential value for in-
dustrial biocatalytic materials applications. Biocatalytic re-
duction of synthetic analogues of R-(—)-carvone with addi-
tional substituents at C3 or C6, or both C3 and C6, using
three types of OYEs (OYE2, PETNR and OYE3) shows signifi-
cant impact of both regio-substitution and the substrate
diastereomer. Bioreduction of (—)-carvone derivatives sub-
stituted with a Me and/or OH group at C6 is highly depen-
dent on the diastereomer of the substrate. Derivatives bear-
ing C6 substituents larger than methyl moieties are not
substrates. Computer docking studies of PETNR with both
(65)-Me and (6R)-Me substituted (—)-carvone provides a
model consistent with the outcomes of bioconversion. The
products of bioreduction were efficiently biotransformed
by the Baeyer-Villiger monooxygenase (BVase) CHMO_Phi1
to afford novel trisubstituted lactones with complete regio-
selectivity to provide a new biocatalytic entry to these
chiral caprolactones. This provides both new non-native
polymerization feedstock chemicals, but also with en-
hanced efficiency and selectivity over native (+)-dihydrocar-
vone Baeyer-Villigerase expansion. Optimum enzymatic re-
actions were scaled up to 60-100 mg, demonstrating the
utility for preparative biocatalytic synthesis of both new
synthetic scaffold-modified dihydrocarvones and efficient
biocatalytic entry to new chiral caprolactones, which are
potential single-isomer chiral polymer feedstocks. )

Diastereoisomers of (R)-(—)-carvone and (+)-dihydrocarvone
are sources of crucial building blocks as chiral precursors in the

synthesis of many natural and non-natural organic com-
pounds." Dihydrocarvone-derived caprolactones (by Baeyer—
Villiger ring expansion) have also seen applications to ring-
opening polymerizations (ROP).

Conversion of (R)-(—)-carvone to (+)-dihydrocarvone isomers
has been widely reported using chemical catalysis® and
biocatalysis using isolated enzymes® or whole cells.” Several
members of the Old Yellow Enzyme (OYE) family have been
shown to catalyse ene-reduction of (—)- or (+)-carvone in
good yields and with high diastereoselectivity in favour of the
(2R)-isomer.*? This includes pentaerythritol tetranitrate reduc-
tase (PETNR) from Enterobacter cloacae,”” OYE1 from Saccharo-
myces pastorianus®™ and thermostable Old Yellow Enzyme
(TOYE) from Thermoanaerobacter pseudethanolicus.”® Models
accounting for the stereochemical outcomes, and mutants re-
versing selectivity have been reported,®*" and approaches to
process improvements are described.”?

Carvone derivatives with additional alkyl or heteroatom sub-
stituents (e.g., hydroxyl) have also been useful synthetic chi-
rons,"“® and new variants offer value as new precursors. Howev-
er, there are no reports of bioreduction of (—)-carvone substitut-
ed at C6 or with additional scaffold changes including substitu-
tion at the [3-alkene carbon (C3). Furthermore, native terpenone
Baeyer-Villigerase-derived caprolactones, including (+)-dihy-
drocarvone, have recently been reported providing biocatalytic
access to substrates for polymerizations,” but synthetically-
modified terpenones have not been previously evaluated.

This paper reports the evaluation of biocatalytic enone re-
ductions of a matrix of synthetic carvone derivatives, encom-
passing diasteromerically pure 6-methyl-(—)-carvones and 6-hy-
droxy-carvones. It describes the impact of the configuration
(6R or 6S), substituent types, and also assesses the effect on
bioreductions of locating an additional methyl at C3 (regioiso-
meric with C6 methyl-substituted (—)-carvones) (Figure 1).

The ene-reductases OYE2 and OYE3 from Saccharomyces cer-
evisiae®™ and PETNR®™ were screened for activity against substi-
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Figure 1. Scope for synthetically modified carvone skeleton: evaluating sub-
stituent and diastereoisomer effects on ene-reductase biocatalysis, and po-
tential for chem-biocat-biocat route to caprolactones.

tuted carvone derivatives. These results define how the diaste-
reo-structure of these substrates determines optimum en-
zymes for several new highly selective biotransformations. Fur-
thermore, the products from bioreduction of C6-methyl- and
C3-methyl carvones are shown to be bio-oxidized by a second
enzymatic step using the Baeyer-Villigerase CHMO_Phi1 (from
Rhodococcus sp. Phi1"%). This affords the first examples of sub-
stituted dihydrocarvone biocatalytic ring expansion to synthet-
ically valuable caprolactones (Table 1) indicating that these
offer enhanced efficiency and stereochemical selectivity over
native carvone. Additionally, preparative scale synthesis of
enantiopure lactones by means of this chemical-biocat-biocat
sequence is demonstrated (Figure 1). This expands the poten-
tial scope of such materials precursors and a viable entry to
single-isomer ROP components directly.

Synthesis of both 6-methyl carvone diastereomers (65)-2 and
(6R)-3 was effected through methylation of the lithium enolate
prepared from (—)-carvone (1), with a final epimer equilibra-
tion, both diastereomers being isolated through chromatogra-
phy (Scheme 1; SI).°“" An X-ray crystal structure of (5R, 6S)-6-
methylcarvone diastereomer 2, further confirmed structural as-
signments (Figure 516)."? The pure 6-hydroxy carvone diaste-
reomers were also prepared from (—)- and (+)-carvone eno-
lates through Rubottom oxidation® ' and also isolated
through chromatography (Supporting Information), affording
compounds 4 and 5 from (—)-carvone, and 7 and 8 from
(4)-carvone, respectively. This provided a set of six C6-substi-
tuted (—)- and (4)-carvone derivatives. The 3-methyl substitut-
ed analogue 10 was prepared from (4)-carvone through
methyl Grignard addition followed by a 1,3-oxidative transposi-
tion using PCC," affording 3-methyl-(—)-carvone 10 in over
80% isolated yield (Scheme 1).

We previously reported 24 h biotransformations of PETNR
(2 um) with (—)-carvone 1.”! Here, whilst finding that OYE2-cat-
alysed reduction of 1 was similarly effective over 24 h, a signifi-
cantly shorter reaction time of 2 h provided (2R)-(—)-dihydro-
carvone in 95% yield and 96% de (Scheme 2, Table 1 Entries 1,
2, Table S4). We established that the 24 h reaction time using
PETNR™ can also be reduced to afford similar outcome after
2 h, indeed with enhanced yield (Table 1, Entry 1). Both these
reaction times (2 h or 24 h) were also evaluated for OYE3-cata-
lysed reduction of 1, with the same short reaction time afford-
ing yields of 80% and de of 95% (Table S5). With highly effi-
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Scheme 1. Synthesis of 3- and 6-modified carvone substrates. a) LDA, THF,
—78°C; b) TMSCI; ¢) MCPBA, CH,Cl,; d) HCI (1.5 m); e) Mel; f) DBU;

g) MeMgBr, h) PCC, CH,CL,. Yields (24 3) =85%, (4+5)=58%, (7 +8) =43 %,
(10) =84 %.
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Scheme 2. Bioreduction of 6-Me-(—)-carvones.

cient, selective and short biocatalytic reaction times for 1 using
these three ene-reductases, optimal conditions were deter-
mined with seven synthetically modified carvone derivatives
(Scheme 1).

Biotransformation of the two C6-Me diastereomers, 2 and 3,
with OYE2 and PETNR at 2 and 24 h, showed that the yield
from the (5R, 6S) diastereomer 2 was low with both enzymes,
although in both cases the product was formed with very high
diastereocontrol (Scheme 2, Table 1, Entries 3 and 4) in favour
of (2R, 5R, 65)-11. However, the (5R, 6R) diastereomer 3 was
converted to (2R, 5R, 6R)-13 within 2h in 88-90% yields

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 1. Biocatalytic reduction of 6-substituted carvones by PETNR/

OYE2.

Entry Substrate Major Time OYE2 PETNR
Product  [h] Yield [%] de [%] Yield [%] de [%]

1 1 2R-DHC® 2 84 93 95 926

2 1 2R-DHC® 24 82 85 78 95

3 2 11 2 17 >99 7 >99

4 2 11 24 15 >99 17 >99

5 3 13 2 20 >99 88 >99

6 3 13 24 53 >99 43 >99

7 4 15 2 28 >99 66 >99

8 4 15 24 40 >99 70 >99

9 5 17 2 1 >99 80 >99

10 5 17 24 30 16 70 >99

1l 8 19 2 7 57 95 28

12 8 19 24 6 57 85 28

[a] 6R-dihydroxycarvone. General reaction conditions: enzyme (2-10 pm),

substrate (5mm), 50 mm KP buffer solution (pH 7.0), NADP* (15 um),

GDH (10 U), glucose or glucose-6-phosphate (15 mm), 30°C at 130 rpm.

(PETNR; OYE2) and >99% diastereoselectivity (Scheme 2;
Table 1, Entry 5). Thus, both 6-Me diastereomers undergo bio-
reduction with high diastereofacial control, introducing R-con-
figuration at the new chiral centre.”” We also evaluated chemi-
cal dithionite reduction of 2 and 3, (also to provide reference
samples) and observed that this provides preference for the
same diastereomer as biocatalysis but with much lower diaste-
reomer ratios of 4:1 to 8:1. Notably, OYE3 was a very poor
enzyme for this biotransformation. Bioreduction of synthetic
(—)-carvones substituted with C6 groups larger than Me such
as C,H;, CHOHCH, and CH,Ph™ showed no observable prod-
uct formation using up to 10 um of biocatalysts OYE2 or
PETNR.

By " b
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These data therefore indicate that the configuration at C6
does not affect the binding and/or orientation of the substrate
with respect to diastereofacial selectivity. Additionally, the sub-
stitutions show higher stereoselectivity than the parent com-
pound 1, but the stereo-configuration of the methyl at C6
does significantly impact the rate of conversion [(6S)-2 is slow
(6R)-3 is fast] and also the yield. This reduction in conversions
was also demonstrated using a mixture of diastereomers 2 and
3 (Figure S3), where a more rapid depletion of 3 and formation
of 13 was observed.

To examine whether the bound conformation of the sub-
strate explains the major product enantiomers, DFT models"®
were created from a crystal structure of PETNR with bound 2-
cyclohexanone (PDB ID 1GVQ), using first-shell amino acids
truncated at the Cy a truncated FMN and the 6S- and 6R-Me
carvones (Figure 2 and Figure S15) built using the 2-cyclohexa-
none structure.

For each substrate, two orientations were modelled, either
with the C5 propenyl group facing the flavin or pointing away
from it. Because hydride transfer requires that transferring H is
in-plane with the donor and acceptor atoms as well as the ac-
cepting p-orbital, we can estimate the degree of rearrange-
ment required by the dihedral angle ¢ in Figure 2E; thus, con-
formations A and C in Figure 2 require a significant amount of
substrate reorientation for hydride transfer to occur, and we
can infer that hydride transfer from FMNH, is more likely for
the conformations where the C5-propenyl group points away
from the Flavin (Figure 1B and D), with proton transfer (either
from a water molecule or active site Tyr) to the opposite face
of the substrate, which leads to the major observed product.
This supports a mechanistic rationale for the conserved selec-
tivity of diastereofacial reduction for the different substrate
diastereomeric C6 configurations.

R(D-A) = 4.34 A DA)
¢ =109° ¢ =-60°

D
Ng
e

3.55A

cZ\Hl
0
HN—"—N
—N=— 0O

¢ =1-2-3-4 dihedral

WM

R(D-A) = 3.48 A R(D-A) =
¢ =107° §=41°

3.87A

Figure 2. FMNH, and Me carvone from the optimised PETNR active-site models with (A,B) 65-Me carvone and (C,D) 65-Me carvone in two possible bound con-
formations; the donor-acceptor distance for hydride transfer from FMNH, N5 to carvone C3 are listed, as well as the dihedral angle ¢, which measures how
far the transferring hydride sits from the plane ideal for hydride transfer. (E) Schematic of the sequential hydride and proton transfers, with definition of the

dihedral angle ¢.
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Having identified the diastereo-differentiated reactivity for
C6-Me carvones, the effect of heteroatom substitution at C6
(rather than Me), while preserving comparable steric effects
was explored. This was performed by using both C6 diastereo-
mers with 6-OH substitution in place of 6-Me for both (—)- and
(4)-carvone backbones (4 and 5, and 7 and 8, respectively;
syntheses from Scheme 1). The two (—)-carvone derived 6-hy-
droxyl diastereomers, 4 and 5, were converted to the corre-
sponding 6-hydroxydihydrocarvones, 15 and 17, by OYE2 with
moderate yields (Table 1, entries 7-10), but with very high dia-
stereoselectivity in all cases (Scheme 3). PETNR proved a signifi-
cantly better biocatalyst, affording 66 and 80% yields of 15
and 17, respectively, after 2 h, with very high diastereoselectivi-
ties. As with the 6-Me substrates, these were poorer substrates
for OYE3 under the same conditions, with trace conversion of
5, but up to 17 % yield with 4 (Table S7).

OYE2 ;
2h 28%
24h 40%
>99% d.e. !
—_—
PETNR = |
2h 66% !
4 >99%de.

OYE2
2h 1%

2) O 24h30% !
@ >99% d.e. |
5 —_—.
3704 PETNR |
N i

2h 80%
5 >99%d.e.
OYE2
2h 7%
>57% d.e.
P —
PETNR

2h 95%

>28% d.e.
changed

Scheme 3. OYE2 and PETNR bioreduction of 6-OH (—)- and (+)-carvones.

The corresponding 6-hydroxycarvone diastereoisomers de-
rived from S-(+)-carvone (7 and 8) were poor substrates for
OYE2, affording <10% yields at 2-24 h (Scheme 4). This was
similar to PETNR with the (65)-7 (5-10% maximum yields
across both enzymes); however, PETNR showed excellent
yields of 19 (85-95%) from (6R)-8, but with much reduced de
(<30%). (Table 1, Entries 11 and 12).

The synthetic C3-Me-(—)-carvone analogue 10 is a regioiso-
mer of the 6-Me substrates 2 and 3, but introducing a methyl
at the site of enzymatic conjugate reductive attack. Bioreduc-
tions with OYE2 and PETNR led to poor yields (<10%), al-
though with high de (>99) in favour of the (25, 3R, 6R)-3-
methyldihydrocarvone product.

This suggests that the nature and/or location of an addition-
al substituent on the carvone scaffold has significant impact

Chem. Eur. J. 2019, 25, 2983 - 2988 www.chemeurj.org

2986

CHEMISTRY

A European Journal

Communication
OYE2or! Me ; Me Me
O PETNR | O CHMO_Phil & L0
— —_— o o
“Me 2h i ..+ 24h R) ),
: 88-90% ! @ Me: 90% Y P
S - e i e | e
299% d.e.} 2 1 299% d.e. =N AL
3 I 21 not observed

W C1-Cé

Scheme 4. Sequential biocatalysis ene-reductase-regiospecific biocatalytic
conversion of (—)-carvone to enantiopure caprolactone derivative 21.

on bioconversion and selectivity with OYEs. Amongst the (—)-
and (+)-6-OH-hydroxycarvones 4, 5, 7 and 8, PETNR is the bio-
catalyst of choice for high yielding and highly diastereoselec-
tive bioreductions of either (6R)- or (6S)-4 and 5, providing a
practicable biocatalytic route to novel 6-OH carvones 15 and
17.

With efficient biosynthesis demonstrated for (2R, 5R, 6S) and
(2R, 5R, 6R)-6-methyldihydrocarvone isomers 11 and 13
(Scheme 2, Table 1), we sought to evaluate these products as
non-native substrates for Baeyer-Villiger monooxygenase
(BVMO) ring expansion reactions. Applications of BVMOs have
been attracting attention as an alternative to chemical synthe-
ses, for potentially delivering lactones with improved or
changed regioselectivity."”

The (2R, 5R, 6R)-6-methyldihyrocarvone isomer 13 was com-
pletely converted to lactone 21 with apparently complete re-
gioselectivity (>99%, SI, GC, Figure S12). However, there was
no observed lactone produced from (2R, 5R, 6S)-6-methylcar-
vone 11 (total substrate recovery). This indicates a remarkable
diastereoisomer-selectivity whereby a change of 6-methyl con-
figuration can largely preclude enzymatic transformation.

Conversion of 13 to 21 provides a highly efficient dual-bio-
catalyst process in which a synthetic diastereopure carvone an-
alogue(s) are the best substrate(s) for the ene-reductase (OYE2
or PETNR) and highly effective substrate for single isomer lac-
tone formation with CHMO. As the carvone derivatives de-
scribed here contain two similar groups alpha to the carbonyl
(compared to one methylene for the natural terpenoids), there
are two migration pathways that may compete for any
Baeyer-Villiger reaction,™ with O-insertion into either C1-C2
or C1-C6 (see Scheme 4). We investigated whether the sub-
strate diastereo-configuration would impact efficacy and regio-
control of the subsequent BVMO reaction by evaluating both
6-Me dihydrocarvone diastereomers 11 and 13. Both substrates
were therefore screened against CHMO_Phil from Rhodococ-
cus sp. Phi1.l'¥! To further demonstrate the synthetic utility of
this dual biocatalytic route, bio-expansion of (2R, 5R, 6R)-6-
methyldihydrocarvone 13 was scaled up using 50 mg of sub-
strate. Analytical TLC showed no starting material or any evi-
dence of by-products after 24 h, and the pure lactone product
21 was obtained with 90% yield, completing an efficient labo-

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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ratory scale sequential ene-reduction-BV expansion process
with complete diastero- and regiocontrol across both steps
(Scheme 4).

With such highly regioselective expansions and diastereo-
mer-sensitivity, we wished to evaluate the regio-isomeric 3-
methyl modified dihydrocarvones through a similar sequential
biocatalytic process. However, the poor ene-reductase out-
comes using OYE2 and PETNR for synthetic substrate 10 (vide
supra) led us to assess a chemically reduced mixture of such 3-
methyldihydrocarvones for enzymatic BV conversion. Chemical
reduction with Cu'-catalysed trimethylaluminium provided a
mixture of four isomers with a diastereomeric ratio of
1.5:1:1:0.1,2” The two 3R diastereomers 22 and 23 (about 70-
75% of total) were separated from the two (35)-24 and 25.
This allowed evaluation of all four isomers, and of the separate
pairs of C3 diastereomers with CHMO_Phi1. Biotransformations
were run at 25°C for 24 h, with NADP*/GDH employed as the
hydride donor. Product analysis by GC showed complete con-
version of (25, 3R, 5R)- and (2R, 3R, 5R)-22 and 23 to their cor-
responding lactones, 26 and 27, in 98% vyield, and >99.9% ee
(Scheme 5, Figures S13 and S14) However, no lactones were
observed from biooxidation of (2R, 3S, 5R)-24 and (2S5, 3S, 5R)-
25 diastereomers. Noting this remarkable diastereomer-specific
(3S inactive) behaviour, the biocatalytic oxidation of 22/23 was
scaled up to 50 mg under the same conditions. No starting
materials were evident by TLC after 24 h, and after organic ex-
traction and isolation, the two lactones 26 and 27 were ob-
tained in high yield. Future applications as ROP components
may be addressable, comparable to the regioisomeric lactone

1 = 10
PZ S
CuBr (5%), MezAl OYE2 or
90% PETNR
Ratio 15 , .. S e
: Me Me Me Me
Me O _0 Me ®L__0! Me, ®L__0 Me,® A0
<@ ) AN @'(j
PN A s N
22 23 24 25
CHMO_Phi1 l 100% CHMO_Phi1 % 0%
Me___ O Nig o No conversion to lactone.
Me Me R Ketones recovered unreacted.
R 9 R o
) (S)
S 26 oz
%\ %\

Scheme 5. Biocatalytic diastereomer-discriminating BV of 3-methyldrohydro-
carvones. 25°C for 24 h, Enzyme (2 um), Substrate (5 mm) pH 7.0 of 50 mm
Tris-HCI buffer solution, NADP* (15 um), GDH (10 U), Glucose (15 mm), 25°C
at 130 rpm for 24 h.
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mixtures obtained from BVase conversion of (+)-dihydrocar-
vone.[”

In conclusion, evaluation of synthetically modified carvone
scaffolds (6-Me, 6-OH or 3-Me) using three OYEs (PETNR, OYE2
and OYE3) have identified that OYE2 and PETNR are efficient
ene-reductases of 6-Me substituted carvones, with the configu-
ration at C6 a major determinant of substrate conversion. The
6-OH substituted substrates 4 and 5 showed significant differ-
ences between OYE2 and PETNR, unlike their C6-methyl ana-
logues, with PETNR being a significantly better biocatalyst. The
best substrates for overall yield and high de were (6R)-Me-(—)-
carvone 3 and either diastereoisomer of 6-OH-(—)-carvone, 4
and 5 and this work provides a viable biocatalyst route to
enantiopure 6-substituted dihydrocarvones 13, 15 and 17.

Furthermore, homochiral intermediate 13 undergoes a
highly efficient biocatalytic Baeyer-Villiger reaction with essen-
tially complete regiocontrol to afford chiral lactone 23. Whilst
3-methylcarvone is shown to be a poor substrate for ene-re-
ductase, chemically synthesised 3-methylated dihydrocarvones
are shown to be excellent substrates for BVMOs, identifying a
near complete selectivity based on the configuration of the ad-
ditional methyl not present in natural dihydrocarvone. The
(3R)-diastereomers 22 and 23 are completely converted into
new chiral lactones, 26 and 27, whilst the (35)-diastereomers
24 and 25 are not enzyme substrates. Biocatalytic routes were
also shown to be viable on a preparative synthetic scale. These
enzymatic reactions provide insight defining scope of diaste-
reomer control of enzyme selectivity for new synthetic sub-
strates, both with respect to selectivity by ene-reductases for
modified carvones, but also importantly for the selectivity of
enzymatic BVMO ring expansions. This provides a practical
route to several chiral derivatives through synthetic-enzymatic
processes, and a convenient chem-enz-enz route to enantio-
pure new caprolactone 21, and to 6R configuration-specific
diastereomeric mixture of the caprolactones 26 and 27, regio-
isomeric with 21, which may all be of value as ROP compo-
nents.
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