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Simple Summary: Pigs have been used in various animal model studies on the gastrointestinal tract
(GIT) across both animal science and biomedical science fields. Recently, intestinal organoids have
been used as a research tool for the GIT, and they have also been applied to farm animals, including
pigs. However, to our knowledge, no functional studies of the porcine intestine using intestinal
organoids have been conducted to date. In the present study, we developed two porcine intestinal
organoid models (basal-out and apical-out organoids) and compared their characteristics. We also
confirmed the possibility of conducting research related to intestinal functions, such as nutrient
uptake and gut barrier function. The present study suggests that porcine intestinal organoids can
be used as potential models for future GIT mechanism studies, such as host–microbe interactions,
harmful ingredient tests, and nutritional research.

Abstract: Pig models provide valuable research information on farm animals, veterinary, and biomed-
ical sciences. Experimental pig gut models are used in studies on physiology, nutrition, and diseases.
Intestinal organoids are powerful tools for investigating intestinal functions such as nutrient uptake
and gut barrier function. However, organoids have a basal-out structure and need to grow in the
extracellular matrix, which causes difficulties in research on the intestinal apical membrane. We
established porcine intestinal organoids from jejunum tissues and developed basal-out and apical-out
organoids using different sub-culture methods. Staining and quantitative real-time PCR showed the
difference in axis change of the membrane and gene expression of epithelial cell marker genes. To
consider the possibility of using apical-out organoids for intestinal function, studies involving fatty
acid uptake and disruption of the epithelial barrier were undertaken. Fluorescence fatty acid was
more readily absorbed in apical-out organoids than in basal-out organoids within the same time. To
determine whether apical-out organoids form a functional barrier, a fluorescent dextran diffusion
assay was performed. Hence, we successfully developed porcine intestinal organoid culture systems
and showed that the porcine apical-out organoid model is ideal for the investigation of the intestinal
environment. It can be used in future studies related to the intestine across various research fields.

Keywords: pig model; intestinal organoid; apical-out; nutrient uptake; barrier integrity

1. Introduction

The intestine as mucosal tissue has multiple functions, such as nutrient digestion/uptake
and immune responses against external environmental agents [1]. In the intestine, intestinal
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epithelial cells form a monolayer and renew themselves every three to five days; thus, it is
one of the most actively regenerated tissues [2]. The epithelium in the GIT plays functions
to ensure the well-controlled regeneration of intestinal stem cells (ISCs) by forming the
crypt–villus tissue architecture [3]. For example, ISCs in the small intestine are able to
differentiate into specific cell types, such as absorptive enterocytes, goblet cells, Paneth
cells, and enteroendocrine cells. These intestinal epithelial cells are responsible for nutrient
absorption, formation of mucus layer, production of antimicrobial peptides, and hormone
secretion [4].

Animal models undoubtedly provide valuable information for both animal and veteri-
nary sciences and biomedical sciences. Many in vivo pig studies have been performed to
better understand the changes in physiology, productivity, and pathology as well as various
factors such as infections, stress, and nutrition. Out of the various animal models, pigs
are often used in human physiology research due to their anatomical and physiological
similarities to humans [5]. GIT studies using pig models that aim to understand human
digestive disorders and inflammatory diseases are amongst the most appropriately applied
cases compared with other organ studies [6–8]. Although in vivo pig experiments have
many advantages, they also have limitations including difficulties in manipulating the
experiment, high-throughput study, and animal welfare issues. Therefore, there is a need
to develop alternative approaches to animal experiments.

Recently, intestinal organoids have gained attention as advanced in vitro tools for un-
derstanding the gut environment. In livestock and veterinary research, intestinal organoid
culture systems have recently been reported, including for pigs [9]. An intestinal organoid
has a three-dimensional (3D) structure that mimics the intestinal epithelial environment by
forming a crypt–villus structure in vitro. It can be used for various mechanistic studies on
regulation of intestinal physiology and immunity [10]. For example, a culture system for
porcine small intestinal organoids has been used for lentivirus transduction in functional
research [11,12]. In addition, to investigate various physiological actions in GIT such as
nutrient absorption, digestive enzymes and hormone secretion in pig organoids have been
reported [13]. Although the 3D structure of an organoid shows high similarity to living
systems in an in vitro culture system, it has some structural disadvantages. For example, a
3D organoid culture system has limited access to luminal agents, such as nutrients, chemi-
cal compounds, or microorganisms, for apical surface treatments of the organoids. This
may create problems for studies on host–microbe interactions and nutrient metabolism.
To avoid this limitation, modifying the form of intestinal organoids was attempted. In
epithelial tight junction and permeability tests, porcine ileum organoids were used as a
form of two-dimensional (2D) monolayer [14]. In this system, nutrient uptake (glucose
absorption) and reactions to bacterial enterotoxins were examined [15]. Another example
is a new organoid cultivation technique that was developed using suspension culture [16].
The model can cause the apical surface to face outward and can be utilized in several GIT
studies. To the best of our knowledge, nutritional or gut barrier function studies that used
porcine apical-out organoids have not been investigated.

Despite the importance of pig organoids in many fields of research, there is limited
information on pig gut organoid systems. Thus, we established basal-out and apical-out
organoid systems and compared their potential in the study of nutrition and gut barrier
function. Our study suggests that the porcine apical-out organoid model can be utilized as
a useful in vitro system to study physiological reactions in the porcine intestine.

2. Materials and Methods
2.1. Isolation of Crypts from Porcine Small Intestine

The crypts of porcine were harvested from the jejunum tissue of 5-week-old pigs
(n = 3, body weight: 7.80 ± 0.96 kg). All piglets were healthy without diarrhea symptoms.
A total of 3–4 cm of tissue was harvested and opened longitudinally. To remove luminal
content, mucus, and part of villus, tissue was scraped using slide glass and washed with
phosphate-buffered saline (PBS) 3–4 times. Next, 0.5 × 0.5 cm2 jejunum segments were cut
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and incubated for 30 min on ice at horizontal shaking of 100 rpm using 30 mM ethylene-
diamine-tetra acetic acid (EDTA) and 1 mM DL-dithiothreitol (DTT). After incubation step,
tissue fragments were transferred to cold crypt washing buffer (54.9 mM D-sorbitol and
43.4 mM sucrose in PBS) and vigorously shaken for 2 min to release intestinal crypts. Then,
to remove villus and debris, supernatant was transferred to new 50 mL tube by using
100 µm cell strainer (SPL Life Sciences, Pocheon, Korea) and was centrifuged at 200× g
for 2 min (two times repeat for removing debris and single cells). The crypt pellet was
suspended with advanced Dulbecco’s modified Eagle medium/F12 (advanced DMEM/F12)
(Thermo Fisher Scientific, Waltham, MA, USA) and counted for culturing organoids.

2.2. Culture of Porcine Small Intestinal Organoid

The porcine crypts were counted and mixed in Matrigel (Corning Inc., Corning, NY,
USA) containing solution. These were seeded in a 96-well cell culture plate (SPL Life
Sciences, Pocheon, Korea) to 5 crypts/µL concentration (total volume: 4 µL). To solidify
complex, plate containing crypts in Matrigel was stored in incubator at 37 ◦C for 30 min.
Additionally, porcine intestinal organoid culture medium (advanced DMEM/F12 supple-
mented with 1x N2 supplement (Thermo Fisher Scientific, Waltham, MA, USA), 1x B27
supplement (Thermo Fisher Scientific, Waltham, MA, USA), 1 mM N-acetylcysteine (Sigma-
Aldrich, St. Louis, MO, USA), 50 ng/mL recombinant murine EGF (Thermo Fisher Scien-
tific, Waltham, MA, USA), 100 µg/mL recombinant murine Noggin (Peprotech, NJ, USA),
10% R-spondin 1 conditioned media, 50% Wnt-3A conditioned media, 2 mM GlutaMAX™
Supplement (Thermo Fisher Scientific, Waltham, MA, USA), 10 mM HEPES (Thermo Fisher
Scientific, Waltham, MA, USA), 100 µg/mL Primocin™ (InvivoGen, San Diego, CA, USA),
10 mM nicotinamide (Sigma-Aldrich, St. Louis, MO, USA), 10 µM Y-27632 (Selleckhem,
Houston, TX, USA), 10 µM SB 202190 (Sigma-Aldrich, St. Louis, MO, USA), 0.5 µM A 83-01
(Sigma-Aldrich, St. Louis, MO, USA), and 2.5 µM CHIR99021 (Sigma-Aldrich, St. Louis,
MO, USA)) was added. After first 2 days, organoids were cultured in fresh media without
Y-27632, and the organoid media were replaced every 2 days.

Two critical factors for porcine small intestinal organoid culture, R-spondin 1 and
Wnt3a, were utilized by using cell culture conditioned media. The conditioned media were
prepared with some modifications by the method described previously [17]. To obtain
conditioned media, R-spondin 1-expressing HEK 293T cell line was kindly provided from
Ph.D. Lee [18]. The L Wnt-3A cell line (CRL-2647™) was purchased from American Type
Culture Collection (ATCC, Manassas, VA, USA). Two types of cells were cultured in DMEM
containing 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin with selective
antibiotics (0.2 mg/mL Hygromycin B for HEK 293T cells and 0.4 mg/mL G-418 for
L Wnt-3A cells). Then, advanced DMEM/F12 (containing 10% FBS, 100 U/mL penicillin
and 100 µg/mL streptomycin) were used for conditioned media preparation. To gain high
concentration of conditioned media, R-spondin 1 and L Wnt-3A cells were initially seeded
in 5 × 105 cell to 100 mm cell culture dish and cultured for 7 days. In brief, cells were
grown for 4 days (approximately to 8–90% confluency) and taken off media (first batch).
Then, they were replaced by fresh culture media and cultured for another 3 days and taken
off media (second batch). Next, first and second batch were mixed and filtered at 1:1 ratio
and stored at −20 ◦C until use.

2.3. Sub-Culture Technique and Development of Apical-Out Porcine Organoid

To passage organoids and develop apical-out organoids, Matrigel was dissociated
with cell recovery solution (Corning Inc., Corning, NY, USA) at 4 ◦C for 30 min by using
an orbital shaker (Daihan Scientific, Wonju, Korea) with gentle, slow shaking (60 rpm).
Then, collected supernatant containing organoids was centrifuged at 100× g for 2 min
and resuspended in advanced DMEM/F12 and passaged by mechanical disruption with
pipetting. For basal-out organoid experiment, organoid fragments were replaced in new
Matrigel and cultured with same progress as described above. To generate apical-out
organoids, organoid fragments were cultured in 500 µL of organoid culture media in
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ultra-low attachment 24-well cell culture plate (Corning Inc., Corning, NY, USA). For
experiments, basal-out and apical-out organoids were cultured for 3 days.

2.4. Imaging of Porcine Organoids

For porcine basal-out and apical-out organoid images, inverted or confocal microscope
were used in this study. The bright-field images of porcine organoid, such as development
of basal organoids and comparison of two types of organoid morphology, were examined
under an inverted microscope (Olympus IX51, Tokyo, Japan) daily to check their form
(×40 or ×100 magnification). A confocal microscope (K1-Fluo, Nanoscope systems, Daejeon,
Korea) was used for all fluorescence images of porcine organoids in the experiments
(×400 magnification). The AlexaFlour 555 phalloidin (Thermo Fisher Scientific, Waltham,
MA, USA) was used to check for axis change of basal-out and apical-out porcine organoids
by F-actin staining. The basal-out organoids were collected by the same method mentioned
above, and the apical-out organoids were collected directly. The organoids were fixed
with 2% paraformaldehyde for 20 min at room temperature. After washing with PBS two
times, samples were stained with 4, 6-Diamidino-2-phenylindole (DAPI) and AlexaFluor
555 phalloidin conjugated to F-actin. DAPI was diluted 1:500 with PBS, and phalloidin
was diluted 1:200 with PBS. After staining, the samples were subjected to analysis by
confocal microscope.

2.5. Quantitative Real-Time PCR (qRT-PCR)

Samples were processed for total RNA extraction using TRIzol™ Reagent (Thermo
Fisher Scientific, Waltham, MA, USA). The 500 ng of isolated total RNA was used for cDNA
synthesis using AccuPower® RT PreMix (Bioneer, Daejeon, Korea) in accordance with
manufacturer’s instructions. qRT-PCR was performed using a QuantStudio 1 Real-Time
PCR system (Applied Biosystems, Waltham, CA, USA) with reaction conditions as follows;
50 ◦C for 10 min, 95 ◦C for 10 min, 95 ◦C for 30 s, and 60 ◦C for 30 s (40 cycles), followed by
melting curve analysis. The GAPDH gene was used as a housekeeping gene, and relative
gene expression level was calculated using the 2−∆∆C

t method [19]. To confirm intestinal
marker gene expression, gel electrophoresis was performed in this study. In brief, the
qRT-PCR products were mixed with Dyne LoadingSTAR (Dyne Bio Inc., Seoul, Korea)
and were run in gel electrophoresis at 100 V for 30 min by using Agaro-Power™ System
(Bioneer, Daejeon, Korea). The primer information used in this study is listed in Table 1.

Table 1. List of primers used for this study.

Gene Forward Reverse Product Size (bp) 1

Lgr5 CCTTGGCCCTGAACAAAATA ATTTCTTTCCCAGGGAGTGG 110
Muc 2 GCTGGCCGACAACAAGAAGA TGGTGGGAGGATGGTTGGAA 126

Lyz GCAAGACACCCAAAGCAGTT ATGCCACCCATGCTTTAACG 132
ChgA TGAAGTGCATCGTCGAGGTC GAGGATCCGTTCATCTCCTCG 104
ALPI AGGAACCCAGAGGGACCATTC CACAGTGGCTGAGGGACTTAGG 83

GAPDH ATTCCACCCACGGCAAGTTC CACCAGCATCACCCCATTTG 126
1 bp; base pair.

2.6. Assessment for Fatty Acid Uptake

Fatty acid analog absorption assay was performed for two types of organoids. For
basal-out organoids assay, Matrigel was solubilized in cell recovery solution at 4 ◦C for
30 min by using an orbital shaker with gentle, slow shaking (60 rpm). The organoids
were washed with advanced DMEM/F12, then fatty acid analog absorption assay was
conducted. For absorption test, C1-BODIPY-C12 (Thermo Fisher Scientific, Waltham, MA,
USA), which is fluorescent fatty acid analog, was used on porcine intestinal organoids.
BODIPY staining of porcine organoids was conducted according to a previously established
protocol with a minor modification [16]. In brief, the organoids were resuspended in a
solution of 1 µM C1-BODIPY-C12 with 10% fatty-acid-free BSA solution, then incubated
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in ultra-low attachment 24-well cell culture plate for 30 min. Then, organoids were fixed
in 2% paraformaldehyde and stained with DAPI for images. The intracellular fluorescent
signal from absorbed C1-BODIPY-C12 was quantified using ImageJ software (NIH).

2.7. Breach Epithelial Barrier

Apical-out organoids were harvested and resuspended in advanced DMEM/F12
containing 4 kDa FITC–dextran (2 mg/mL, Sigma-Aldrich, St. Louis, MO, USA). Apical-
out organoids were treated with 5 mM EDTA in PBS on ice (for 30 min) and resuspended in
the FITC–dextran solution. Then, apical-out organoids were immediately observed under
confocal microscope.

2.8. Statistical Analysis

All data from experiments were presented as means ± standard deviation (SD). The ep-
ithelial cell marker gene expression level was presented using the tissue of each individual
pig and organoids formed from them (n = 3). The BODIPY uptake of porcine organoids was
presented each organoid (n = 10) and 7–10 areas were used for calculation. The significance
between two groups was analyzed by two-tailed unpaired Student’s t-test with Prism 8
software (GraphPad, La Jolla, CA, USA). Statistical significance was considered at p < 0.05.

3. Results
3.1. Development of Porcine Small Intestinal Organoids

Porcine small intestinal organoids were prepared using the scheme of the experimental
procedure shown in Figure 1A. The crypts were isolated by EDTA incubation (Figure 1B),
and crypts were embedded in Matrigel in organoid culture media containing various factors
for organoid development (See Material and Method Section 2.2 for organoid culture media
construction). In the organoid culture system, the size of each porcine crypt became larger,
and the morphology changed to an intestinal organoid shape via cell proliferation and
differentiation. At three to four days after culturing, most of the porcine crypts budded and
formed the crypt–villus structure (Figure 1C). These results demonstrate that the porcine
jejunum organoid culture system was successfully established as a basal-out model.

3.2. Morphological Difference between Porcine Apical-Out and Basal-Out Organoids

Although basal-out organoids were well formed, most of the gut physiological phe-
nomena, such as nutrient absorption, occur in the apical side of gut epithelial cells. There-
fore, we used the suspension sub-culture method to expose the apical membranes during
the sub-culture protocol. Unlike the basal-out organoid sub-culture method that uses
Matrigel, the sub-culture of apical-out organoids is conducted in suspension culture on an
ultra-low attachment plate without using Matrigel. Apical-out organoids induced polarity
reversal and formed shapes compared with basal-out organoids (Figure 2A). In the sub-
cultured basal-out organoids, fragments of organoids were larger and budded over three
days of culture and had a clear lumen structure. Unlike basal-out organoids, the apical-out
organoids formed a spherical shape and did not form a budding structure. To clarify the
structural differences in apical-out and basal-out organoids, we performed staining for
each organoid using F-actin (Figure 2B). Strong F-actin staining of microvilli brush borders
showed the difference between the outward surface of basal-out and apical-out organoids.
To determine whether the two types of porcine organoids have intestinal epithelial cell
characteristics, we performed qRT-PCR for examining the mRNA expression for genes of
various intestinal epithelial cell types. The major small intestinal epithelial cells include
intestinal stem cells, goblet cells, Paneth cells, enterocytes, and enteroendocrine cells. The
mRNA expressions of intestinal epithelial cells (Lgr5 for intestinal stem cells, Muc2 for
goblet cells, Lyz for Paneth cells, ChgA for enteroendocrine cells, and ALPI for enterocytes)
were compared with those of porcine jejunum tissue (Figure 3). A comparison between the
two types of organoids revealed that Lgr5 and Lyz showed low gene expression, whereas
ChgA and ALPI showed higher gene expression in apical-out organoids than in basal-out
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organoids. These results imply that both basal-out organoids and apical-out organoids
include major intestinal epithelial cell types.

Figure 1. Development of small intestinal organoids in porcine jejunum tissue. (A) Brief scheme for
experimental procedure of this study. (B) Representative image of isolated crypts from pig jejunum
tissue (magnification: ×100). Scale bar (100 µm). (C) The organoids images show development of
organoids from day 0 to day 5 (magnification: ×40). The arrows indicate the organoid budding
points. Scale bar (200 µm).

Figure 2. Comparison of morphology for basal-out and apical-out porcine small intestinal organoids.
(A) Representative images of two types of organoids culture from day 1 to day 3 (magnification:
×100). The arrows indicate the organoid budding points. Scale bar (200 µm). (B) Images of stained
organoids (magnification: ×400). Nuclear and F-actin were stained by DAPI and phalloidin. The
images represent switched axis between basal-out organoid and apical-out organoids. Scale bar
(100 µm).
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Figure 3. The expression of genes for intestinal epithelial cells in established organoids. (A) The image
of gel electrophoresis shows expression of intestinal epithelial cell markers (Lgr5, Muc2, Lyz, ChgA,
ALPI). The pig jejunum tissue was used for positive control. (B) The mRNA expression of intestinal
epithelial cells on both basal-out and apical-out organoids. Data are represented as mean ± SD (n = 3).
The significance between basal-out and apical-out organoids was analyzed by two-tailed unpaired
Student’s t-test. ** p < 0.01; *** p < 0.001.

3.3. Fatty Acid Analog Uptake by Different Types of Porcine Organoids

One of the major physiological responses that occurs in the small intestine is nutrient
absorption. Thus, we determined whether our organoid system was functional for nutrients.
We used fatty acid as one of nutrients absorbed in the small intestine. Fatty acids are
incorporated into lipid droplets after absorption and transported to the basal regions of the
intestinal epithelial cells. To evaluate the fatty acid absorption by porcine organoids, we
treated basal-out organoids and apical-out organoids with fluorescent fatty acid analogs
(Figure 4A). Strong fluorescent signals and a larger area of lipid droplets were observed in
apical-out organoids compared to basal-out organoids (Figure 4B). These data suggest that
apical-out porcine organoids may serve as more efficient models for nutrient-related studies.

Figure 4. The BODIPY uptake for porcine small intestinal organoid. (A) Representative organoid
images for basal-out and apical-out organoids treated with fluorescent fatty acid analog (BODIPY)
(magnification: ×400). Each organoid was treated with BODIPY for 30 min, then staining was
performed. Nuclear was stained by DAPI. Scale bar (100 µm). (B) Quantification of fatty acid
analog uptake in porcine organoids. Data are represented as mean ± SD (n = 10, 7–10 fluorescence
area/organoids). The significance between basal-out and apical-out organoid was analyzed by
two-tailed unpaired Student’s t-test. *** p < 0.001.

3.4. Porcine Apical-Out Organoids Have Gut Barrier Function

Gut epithelial cells act as a physical barrier for separation between luminal antigen and
host immune cells. This barrier function of intestinal epithelial cells is important for main-
taining intestinal tissue homeostasis. As shown in Figure 5, strong signals for fluorescent
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dextran were detected outside the organoids; however, the apical-out organoids completely
blocked the inflow of FITC–dextran due to the barrier integrity. Tight junctions and bar-
rier integrity in apical-out organoids can be disrupted by EDTA treatment. FITC–dextran
penetrates EDTA-treated apical-out organoids and spreads into the intercellular region of
the organoids. These findings confirm that porcine apical-out organoids form an intact
epithelial barrier and can be applied as a useful model in gut barrier integrity studies.

Figure 5. Disrupted gut barrier on porcine small intestinal apical-out organoid. The porcine apical-
out organoids were treated in FITC–dextran-containing media (2 mg/mL) (magnification: ×400).
Five mM EDTA was used for demonstrating disruption of epithelial barrier integrity. Scale bar
(200 µm). BF, bright field.

4. Discussion

The intestinal epithelium acts as a major part of the GIT with multiple physiological
functions. For example, gut epithelial cells secrete enzymes to digest food materials
and absorb nutrients from the lumen of the intestine. The intestinal epithelium also
provides a physical and immunological barrier against luminal antigens including toxins
and pathogens [4]. Many studies have used in vitro cell lines to better understand the
role of intestinal epithelial cells in the regulation of various intestinal tissue responses
including nutrient uptake and gut epithelial barrier function. Multiple types of intestinal
epithelial cell lines are available. Caco-2 and IEC-6 cells have been widely used to determine
the effects of bioactive compounds on functions of epithelial cells such as gut barrier
functions [20]. For example, butyrate increased the TEER of Caco-2 cells and facilitated
the assembly of tight junctions through activation of AMP-activated protein kinase [21].
Domestic-animal-originated IPEC-1 and IPEC-J2 have also been used [8,22]. It has been
reported that vitamin A regulates tight junction protein (ZO-1, Occludin, Claudin-1) and
TEER in IPEC-J2 cells [23]. Jiang et al. used IPEC-J2 cells to determine the effects of
4-Phenylbutyric acid (4-PBA), an aromatic fatty acid, on barrier damage in IPEC-J2 induced
by deoxynivalenol (DON) and lipopolysaccharides (LPS) [24]. These gut epithelial cell lines
have several advantages in intestinal nutritional and immunological studies. However,
there are the limitations of using cell lines in vitro experiment. For example, it is difficult to
reproduce a complex tissue system as they are composed of a single type of cell. To make
a stable cell line, an immortalization process is required, and this process may affect the
normal or intact biological function of this cell line [25]. Thus, it is important to build a better
in vitro system that represents complex biological reactions of the intestinal epithelium.

Since the establishment of mouse intestinal organoids in 2009, human and farm animal
intestinal organoid culture models have emerged [26–28]. The developed organoid culture
models have been widely used to investigate GIT mechanisms, such as interactions between
pathogens and the host, nutrient absorption, and intestinal epithelium integrity [29–31].
Gonzalez et al. demonstrated the first successful intestinal organoid culture in young



Animals 2022, 12, 372 9 of 12

piglets [12]. Recently, another research team compared expressed genes and pathways
in porcine intestinal organoids, epithelial tissues, and IPEC-J2 cells at the transcriptomic
level [32]. In brief, their results show that porcine intestinal organoids generally resemble
epithelial tissue, not IPEC-J2. Recently, physiological responses of pig organoids have been
studied. Glutamate enhances pig organoid development and epithelial cell proliferation
via mTORC1 activation, which includes IR, IRS, PI3K, and Akt pathways [33]. Additionally,
pig organoids showed a pathophysiological response to cholera toxin, a bacteria-derived
toxin [15].

Although an organoid system has various advantages, gut organoids, especially
basal-out organoids, have a critical limitation for gut functional studies. In the intestine,
the apical side of the intestinal epithelium performs various biological functions such as
nutrient absorption and gut microbe recognition. However, the basal-out organoids have
limited access to luminal materials such as nutrients and microbes. Thus, researchers often
used 2D monolayer organoid culture models to overcome the structural limitations of
basal-out organoids [15]. Monolayer pig organoids showed cellular functional transport
characteristics, such as SGLT1 and CFTR. In a 2D organoid culture system, an epithelial
permeability assay has also been conducted [14]. The tight junction formation within the
epithelial monolayer was measured using transepithelial resistance and FITC–dextran.
Thus, the 2D monolayer model is useful for intestinal mechanistic studies.

The 2D culture of organoids is an efficient model to study interactive response in
the gut tissue, but the in vitro condition still differs from that of the living body. In the
biomedical field, human apical-out organoids have been well established for studying
barrier integrity, nutrient uptake, and pathogen infection [16,34]. It has been suggested that
the apical-out organoid system has certain advantages. For example, apical-out organoids
maintain their ability to differentiate into various intestinal epithelial cell types, maintain
proper polarity and barrier function, and can absorb nutrients under polarity-specific
conditions. The domestic animal apical-out organoid model has also been used to evaluate
the pathological response of intestinal epithelial cells to pathogen infection [13]. Li et al.
conducted a study on the swine enteric virus and immune responses using a porcine
organoid model [35]. They infected the porcine apical-out organoid and investigated the
infectivity and antiviral immune responses by identifying interferon response genes, such
as IFN-α, IFN-λ1, ISG15, and IGS58. In another study, organoids of chickens were studied
for host–pathogen interactions, such as bacterial, viral, or protozoal interactions [36]. They
established an avian organoid model to investigates the intestines of chickens. Chicken
apical-out organoids were used as a model for host–bacterial interactions (Salmonella
typhimurium), host–viral interactions (influenza A virus), and host–protozoal interactions
(Eimeria tenella). The apical-out organoid system provides valuable opportunities for
studying nutrition and gut barrier function while maintaining the characteristics of the
intestinal epithelium and mimicking the intestinal environment.

In this study, we tested the possibility of using apical-out organoids to study nutrient
uptake (especially that of fatty acids) and gut barrier integrity, which are major functions
of the intestine. Fatty acids are one of the major nutrients absorbed through various
transporter proteins located on the apical sides of intestinal epithelial cells [37]. Enterocytes,
a major component of intestinal epithelial cells, use specialized receptors and transporters
to mediate the uptake of fatty acids at the apical surface [38]. Fatty acids are metabolized
within the intestinal epithelial cells after uptake. The triacylglycerols are reformed within
the enterocytes from the absorbed fatty acids and are incorporated into chylomicrons.
Previous studies have suggested the potential roles of fatty acids in the regulation of
intestinal epithelial cells [39]. Fatty acids, including medium-chain and long-chain fatty
acids, regulate gut permeability by the activation of nuclear and transmembrane receptors.
For example, under inflammatory conditions, n-3 polyunsaturated fatty acids (n-3 PUFAs)
restored impaired gut barrier functions through the regulation of gut permeability, mucus
production, and tight junction protein expression [40]. In a pig study, supplementation
with butyrate prevented small intestine mucosal atrophy, increased cell proliferation, and
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decreased apoptosis of enterocytes in neonatal piglets [41]. In this study, we compared
the degree of absorption of fatty acid analogs through two porcine organoid models using
fluorescence-labeled fatty acids, BODIPY (Figure 4). As expected, apical-out organoids
absorbed more BODIPY, forming more lipid droplets compared to basal-out organoids.
This observation suggests that the apical-out organoid model is better than the in vitro
organoid model system to investigate the biological reactions of fatty acids in the intestinal
epithelium. In future studies, other nutrients can be applied to this model based on their
physiological reactions in the gastrointestinal tract.

Intestinal epithelial layer lines in the gastrointestinal tract provide a physical barrier
(gut barrier function) between host immune cells and microbes in the lumen. Maintaining
gut barrier function is critical for regulating gut tissue homeostasis by promoting antibacte-
rial immunity and preventing unnecessary inflammation driven by commensal microbes
and food materials. The intestinal epithelial cells regenerate every three to five days;
therefore, efficient regeneration of the epithelial layer is necessary to maintain gut barrier
function. Gut integrity is determined by a variety of factors, such as intestinal immune cells
and the immune system, microbiota, and intestinal epithelium [42]. For example, intestinal
epithelial cells regulate gut barrier function by forming tight junctions, thus preventing
microorganisms or microbial toxins from penetrating the body [43]. The EDTA solution,
which disrupts tight junctions, was used in this study, and it allowed the permeation of
FITC–dextran through the intracellular spaces of porcine apical-out organoids (Figure 5).
In other words, it indicates a breakdown of the epithelial barrier, and this model can be
applied to gut permeability assays. Disruption of epithelial barrier function is associated
with many pathological states, including infectious and inflammatory diseases caused by
pathogens or toxins. In future studies, the porcine apical-out organoid model can be used
to understand the regulatory mechanism of gut permeability and integrity against various
environmental factors.

5. Conclusions

In this study, we established a porcine basal-out and apical-out organoid system. By
performing a comparative study, we proposed a porcine intestinal organoid culture system
as a useful model for nutritional or mechanistic studies to elucidate the interrelationship
of intestinal epithelial cells. Additionally, we believe that this model has the potential to
facilitate future discoveries with respect to farm animals and humans.
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