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Abstract

Myocardial infarction (Ml) is a serious heart disease and a leading cause of mortality and
morbidity worldwide. Although some molecules (genes, miRNAs and transcription factors
(TFs)) associated with Ml have been studied in a specific pathological context, their dynamic
characteristics in gene expressions, biological functions and regulatory interactions in Ml pro-
gression have not been fully elucidated to date. In the current study, we analyzed time-series
RNA expression data from peripheral blood mononuclear cells. We observed that significantly
differentially expressed genes were sharply up- or down-regulated in the acute phase of Ml,
and then changed slowly until the chronic phase. Biological functions involved at each stage
of MI were identified. Additionally, dynamic miRNA-TF co-regulatory networks were con-
structed based on the significantly differentially expressed genes and miRNA-TF co-regula-
tory motifs, and the dynamic interplay of miRNAs, TFs and target genes were investigated.
Finally, a new panel of candidate diagnostic biomarkers (STAT3 and ICAM1) was identified to
have discriminatory capability for patients with or without MI, especially the patients with or
without recurrent events. The results of the present study not only shed new light on the
understanding underlying regulatory mechanisms involved in MI progression, but also con-
tribute to the discovery of true diagnostic biomarkers for MI.

Introduction

Myocardial infarction (MI) is defined pathologically as myocardial cell death caused by pro-
longed ischemia, and is a leading cause of morbidity, mortality and cost to society [1]. The
recurrence of MI greatly increases the risk of death. Clinically, different methods are used for
diagnosis, including electrocardiography, blood tests, and coronary angiography.
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In the past decades, the molecular mechanisms underlying MI have been widely investi-
gated. Most of these studies focused on several genes on specific conditions. For example, glu-
taredoxin regulates apoptosis in cardiomyocytes via NF«B targeting Bcl-2 and Bcl-xL [2]. In
murine cardiac fibroblasts, miRNA (miR)-21 modulates matrix metalloproteinase-2 expression
at the infarct zone via a phosphatase and tensin homologue pathway [3]. However, the
dynamic features in gene expressions, biological functions and regulatory interactions in MI
progression have not been fully studied at a system level.

Dynamic data could provide more valuable information for understanding biological pro-
cesses than data focused on single time points [4-6]. Nowadays, different genomics data can be
measured over time, of which time-series gene expression data are one of the most abundant
and available data [4]. Recently, some studies have applied time-series gene expression data to
uncover complex regulatory mechanisms underlying biological process and disease status [6-
11]. For example, Nazarov et al. [7, 8] systematically investigated dynamic regulation of
mRNA and miRNA expression following stimulation of melanoma cells with interferon-vy, and
revealed dynamic interplay of miRNA and upstream regulators with biological functions in
human. Li et al. [10] identified dynamic network biomarkers and analyzed the underlying
mechanisms of complex diseases by constructing dynamic human protein-protein interaction
networks. For MI, Port et al. [6] analysed changes in expression of mRNAs and miRNAs in
mouse using expression profiles of three time points post-MI. Zhang et al. [11] identified sev-
eral key genes and their possible functions in acute MI by the analysis of six time points gene
expression data in mouse. However, the dynamic characteristics of biological function and reg-
ulatory interactions in MI progression in the above two studies have not been investigated, and
whether the results in mouse are applicable to humans remains unknown.

Network-based systems biology approaches have emerged as powerful tools for deciphering
the complex regulatory interactions underlying diseases [12, 13]. Gene regulatory networks
control gene expression and protein formation, and therefore influence the cell fate. miRNAs
and transcription factors (TFs) are two major regulators in gene regulatory networks and are
involved in many important biological events, such as cell proliferation, differentiation and
apoptosis. Therefore, abnormal expression of miRNAs and TFs will trigger a series of diseases.
MiRNAs are small non-coding RNAs (~22nt) capable of inhibiting expression of target
mRNAs by binding to their 3' untranslated regions (UTRs) [14]. MiRNAs regulate expression
of genes at the post-transcriptional level, while TFs modulate gene expression at the transcrip-
tional level. Additionally, miRNAs and TFs can regulate the same target genes, and they may
mutually regulate each other; hence forming feed-forward loops (FFLs), which have been dem-
onstrated to comprise recurrent network motifs and play important roles in mammalian
genomes [15, 16]. Recently, Zhang et al. [17] and Arora et al. [18] have reviewed miRNA-TF
co-regulatory loops in biological processes and diseases. The miRNA and TF interactions
focused on FFLs in cancer have been studied [19-23]. For example, significant miRNA-TF
FFLs associated with cancer have been identified using mRNA and miRNA expression profiles
[21]. The gene regulatory networks involved in miRNA-TF FFLs have been examined for
breast cancer subtypes to study their distinct and common features [22]. Simultaneously, MI-
related miRNA-TF co-regulatory network based on FFLs has also been investigated [24, 25],
from which certain important regulators and regulatory modules were identified. However,
these studies were focused on static networks, but the regulatory interactions within the net-
works vary with different disease states. Thus, dynamic miRNA-TF co-regulatory networks
involved in FFLs are essential to capture the changing information during disease progression.

In this study, we revealed the dynamic features in MI progression at a system level via inte-
grating time-series gene expression data and miRNA-TF co-regulatory networks analysis. The
workflow was depicted in Fig 1. Three aspects were investigated including dynamic changes in
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expression, biological function and the regulatory interactions among miRNAs, TFs and target
genes. Additionally, a new panel of diagnostic biomarkers defined by STAT3 and ICAM1 was
identified.

Materials and Methods
Gene Expression Profiles

The MI related gene expression profile data were downloaded from the Gene Expression
Omnibus (GEO) database under accession number of GSE62646 (www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE62646) [26], including a case group of 28 patients with ST-segment ele-
vation MI and a control group of 14 patients with stable coronary artery disease, without a his-
tory of MI. The gene expression profiles were measured in peripheral blood mononuclear cells
drawn from all samples, and the blood was collected on day 1 of MI (acute phase), after 4-6
days (subacute phase), and after 6 months (chronic phase). More detailed information on sam-
ples collection and diagnosis criteria can be obtained from reference [26].

Gene expression profile data of Ml
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Fig 1. The schematic representation of the computational analysis pipeline.

doi:10.1371/journal.pone.0158638.g001
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Expression Profile Pre-Processing and Screening of Differentially
Expressed Genes

To reduce unreliable information, primary data of microarray expression profiles were pre-
processed according to previous studies [7, 8]. Probes were removed for which the maximum
expression over all arrays did not reach a signal intensity of 7 on a log, scale. The probes were
removed when one probe corresponded to multiple genes. Expression values were averaged
when multiple probes corresponded to one gene [27-29]. We then retained protein-coding
genes. To identify significantly differentially expressed (SDE) genes comparing expression data
in case samples with controls, differential analysis was performed using the R ‘limma’ package.
To control the false discovery rates, the Benjamini-Hochberg multiple testing correction was
conducted. The genes with adjusted p<0.001 and >1.2-fold change were selected as SDE
genes.

Enrichment Analysis

Enrichment analysis of SDE genes (case samples versus controls) at each time point was imple-
mented in the following two steps: (1) KEGG pathway enrichment analysis for SDE genes was
performed using DAVID; and (2) KEGG subpathway (local area of the entire biological path-
way) enrichment analysis for SDE genes was implemented using the R ‘SubpathwayMiner’
package [30]. Significantly enriched pathways and subpathways were identified with a Benja-
mini-Hochberg adjusted p<0.05 (S1 Fig and S1 File). In order to show the results more clearly,
if multiple significantly enriched subpathways corresponded to an entire pathway, the subpath-
way with the minimum adjusted p value was retained.

Identification of mMiRNA-TF Co-Regulatory Motifs

MiRNA-TF co-regulatory motifs are known to play important roles in gene regulation [15,
16]. A miRNA-TF co-regulatory motif is one in which a TF and a miRNA regulate each other
and they both regulate a common target gene (S2 Fig). Starting from SDE genes (case samples
versus controls), experimentally verified regulatory relationships among miRNAs, TFs and tar-
get genes were identified as follows. First, miRNA-gene regulatory relationships supported by
strong experimental evidence (e.g. western blotting, reporter assay and qRT-PCR) were
extracted from TarBase (version 6.0) [31], miRTarBase (version 4.5) [32] and miRecords (ver-
sion 4) [33] databases. MiRNAs were mapped to mature miRNAs based on miRBase (release
21) [34]. Second, to obtain regulatory relationships of miRNA-TF, a list of 1698 unique
human TFs was retrieved from a previous study [25] and the above procedure was imple-
mented, thus the relationships between miRNAs and TFs were determined. Third, experimen-
tally confirmed TF-gene regulatory relationships were collected from TRED [35] and Transfac
(April 2012) [36] databases, and experimentally confirmed TF-miRNA regulatory relations
were retrieved from TransmiR (version 1.2) [37].

miRNA-TF Co-Regulatory Networks Construction and Analysis

MiRNA-TF co-regulatory networks were constructed by combining identified miRNA-TF co-
regulatory motifs. For each time point of MI, the miRNA-TF co-regulatory networks were then
obtained. To evaluate the importance of a node in the co-regulatory network, degree and
betweenness centrality were used as measurements. Degree of a node was the number of edges
connected to it. A node was defined as a hub using the method proposed by Yu et al [38]. For a

a,(s,t

node i in the network, the betweenness centrality (BC) was defined as BC, = g ’(( ’t))
a(s
s#iF#t )

, where

PLOS ONE | DOI:10.1371/journal.pone.0158638 July 1,2016 4/16



@’PLOS ‘ ONE

Studying Dynamic Features in Myocardial Infarction Progression

a(s, t) was the total number of shortest paths from node s to node ¢, and o,(s, t) was the number
of those paths that pass through node i. The R VennDiagram package was used to plot the
Venn diagrams for comparing miRNA-TF co-regulatory networks, and the common and spe-
cific nodes and edges in the co-regulatory networks were then analyzed.

Classification of Diagnostic Biomarkers

To examine the classification efficiency of the biomarkers in distinguishing controls from
patients, and patients with recurrent events from those without recurrent events, a classifica-
tion model based on Naive Bayes was implemented using the Weka system. Naive Bayes classi-
fier [39] is one of the most commonly used classifier which is a probabilistic statistical classifier
based on Bayes' theorem, and it has been successfully used for clustering and classification in
biomedical research [40, 41]. The area under the receiving operating curve (AUC) was used to
evaluate performance according to previous studies [41, 42]. An AUC value ranges from 0 to 1,
with 0.5 indicating random performance and 1.0 implying perfect predictive performance. The
gene expression profile data of GSE62646 mentioned above were used as training set. The gene
expression profile data of GSE48060 from the GEO database were used as an independent test
set, which included 21 normal cardiac function controls and 31 acute MI patients. Among the
31 patients, 27 had follow-up data, including five with recurrent events and 22 without any
recurrent events over 18-months follow-up. Blood samples from the 21 controls and 31
patients within 48-h post-MI were used for producing gene expression profiles.

Results
Differentially Expressed Genes

After pre-processing of the expression profiles, 8741 protein-coding genes remained for further
analysis. We then identified SDE genes (case samples of three time points versus controls)
using the R ‘limma’ package, resulting in 1970 SDE genes over all time points. A total of 1611,
1098 and 939 SDE genes for acute phase, subacute phase and chronic phase of MI were
obtained separately (S2 File), and 618 SDE genes were shared by them.

Dynamic Expression Patterns of SDE Genes

We investigated the dynamic changes in expression of the SDE genes at three time points.
First, the overall expression changes of these SDE genes were investigated. To demonstrate the
results more clearly, we only show the top 100 SDE genes. Further studies were implemented
using all SDE genes. Hierarchical clustering on standardized expression values using Cluster3.0
software [43, 44] by the city-block distance and complete linkage method was performed. As
shown in Fig 2 (shown by JavaTreeView), two main clusters were identified. Cluster A dis-
played rapid down-regulation reaching its lowest point on day 1 after M1, and then slightly
increased until 6 months. In contrast, cluster B demonstrated marked up-regulation reaching a
plateau on day 1 after MI, and then decreased slowly until 6 months.

Next, dynamic changes in expression of individual SDE genes were analyzed. We focused
on the top 1% SDE genes (six genes), and expression changes of these six genes (MLF2,
KCTD13, AKT2, GSK3A, DEDD2 and YDJC) were shown in S3 Fig. Although these six genes
all showed a rapid up-regulation after MI, the trend in changes in expression during subse-
quent time points was different. For example, MLF2 remained down-regulation until 6
months, while KCTD13 displayed decreased expression until 4-6 days and then increased
expression until 6 months.
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Fig 2. Hierarchical clustering on standardized expression values of the top 100 SDE genes. Two main clusters were identified, and each
cluster included its corresponding gene profiles (grey lines) and mean expression values (dark dots).

doi:10.1371/journal.pone.0158638.9002

Dynamically Functional Analysis of SDE Genes

To investigate dynamic functional changes affected by SDE genes over time, significantly
enriched KEGG biological pathways were identified using DAVID [45] based on SDE genes
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(case samples of three time points compared with controls) (S3 Fig). To compare the functional
changes at different times, colouring was implemented according to adjusted p values. For each
pathway, the smallest adjusted p value was coloured black, and white denoted that the adjusted
p value was not significant or the SDE genes were not enriched in this pathway. Although some
well-known and important pathways in MI were identified, including the TGF-p signalling
pathway and apoptosis, the significantly enriched biological pathways were few.

Previous studies have demonstrated that some type-specific functions tend to be distributed
in local areas of the pathway (subpathway) instead of the entire pathway, and thus subpathway
may provide more detailed explanations for pathogenesis [30, 46]. We therefore used Sub-
pathwayMiner [30] to identify significantly enriched KEGG subpathways, and 69 significant
subpathways were reported (S4 Fig). To illustrate the results more clearly, cancer pathways
were removed. As shown in Fig 3, the functional pathways were classified into three main cate-
gories. Each category had pathways in common with the others, and each category had its own
specific pathway. The first and the largest group contained early cellular reactions at the onset
of MI, including leukocyte transendothelial migration, the Toll-like receptor signaling pathway,
the NF«B signaling pathway, the chemokine signaling pathway and apoptosis, suggesting
inflammation, immune response and cell apoptosis. The second group displayed cellular
responses in the subacute phase, including the TGF-f signalling pathway, which are known to
play crucial roles in cardiac repair and remodeling [47, 48]. Finally, several pathways such as
alcoholism, glycosaminoglycan degradation, legionellosis, amyotrophic lateral sclerosis and the
Notch signaling pathway were enriched in the chronic phase of MI. Additionally, we noted
that certain pathways were shared by these three groups, such as the chemokine signaling path-
way and the VEGF signaling pathway.

Dynamic Features of Regulatory Interactions among miRNAs, TFs and
Target Genes in MI Progression

To study the dynamic features of regulatory interactions among miRNAs, TFs and target
genes, dynamic miRNA-TF co-regulatory networks for MI were constructed. For each time
point of MI, miRNA-TF co-regulatory motifs were identified (Table 1) and then they were
merged to construct the miRNA-TF co-regulatory networks (see Materials and methods). As
demonstrated in Fig 4, the network of the acute phase was the largest, and it contained 42
nodes (17 miRNAs, 11 TFs and 17 genes) and 90 edges. Among 11 TF and 17 genes, three com-
mon nodes (MYC, TP53 and SPI1) were observed. The network of the subacute phase con-
tained 37 nodes (19 miRNAs, 10 TFs and 12 genes) and 85 edges. Among 37 nodes, four nodes
(MYC, TP53, SPI1 and E2F1) were common to TFs and genes. The network of the chronic
phase only contained 27 nodes (14 miRNAs, eight TFs and eight genes) and 56 edges. Among
27 nodes, three nodes (MYC, TP53 and SPI1) were shared by TFs and genes.

For each miRNA-TF co-regulatory network, degree and betweenness centrality were calcu-
lated to evaluate the importance of a node in maintaining the overall connectivity of the net-
work (S3 File). The nodes with higher degree tended to have higher betweenness centrality.
Although the three networks shared the hub miRNA (hsa-miR-155-5p and hsa-miR-222-3p)
and hub TF (MYC, ESR1, TP53 and SPI1), the genes regulated by them and the genes regulat-
ing them were different (Fig 4). For example, the degree of hsa-miR-155-5p and MYC in the
three networks was decreased. Taking hsa-miR-155-5p as an example, its degree was 12, 10
and 7 in the three networks, respectively. Three genes (BCL6, CD68 and ICAM1) were regu-
lated by hsa-miR-155-5p in the acute phase but not subacute and chronic phases, whereas TNF
was regulated by hsa-miR-155-5p in the subacute and chronic but not acute phase. Four TFs
(JUN, MYB, NFkB1 and SPI1) regulated hsa-miR-155-5p in all the three phases, except that
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Fig 3. Dynamic changes of subpathways based on SDE genes. Significantly enriched subpathways (cancer

subpathways removed) were obtained using SubpathwayMiner. Colouring was performed based on adjusted p
values: black—the smallest adjusted p value; white—non-significant (ns, >0.05) or SDE genes were not enriched in
this pathway (NA).

doi:10.1371/journal.pone.0158638.g003

MYB was absent in the chronic phase. These results indicated that, although the different
stages after MI shared common hub miRNAs and hub TFs in their miRNA-TF co-regulatory
networks, they possessed different regulatory relationships via connection with different genes,
which might lead to the different biological processes and phenotypic characteristics.

The nodes and the edges in each miRNA-TF co-regulatory network were compared, and
common and unique nodes and edges were identified using the R VennDiagram package. As
shown in Figs 5 and 6, the network of the chronic phase was contained in the network of the
acute and subacute phases. For nodes, the three stages together enjoyed 25 nodes including
hsa-miR-155-5p, MYC and NF«xB1. Nine nodes were found only in the acute phase, and four
nodes were found only in the subacute phase. For edges, 48 common edges were found in the
three stages. 24 edges were specific for the acute phase and 15 for the subacute phase.

Furthermore, we examined the stage-specific genetic factors implicated with the develop-
ment of MI in more detail. Regulatory interactions among miRNAs, TFs and target genes in
three phases of MI were then extracted based on the specific nodes and edges (Fig 7), and regu-
latory interactions among miRNAs, TFs and target genes were analyzed. In the acute phase,
ICAM1 which was a specific gene, was specifically controlled by multiple miRNAs (miR-21-
5p, miR-17-5p and miR-155-5p) and TFs (STAT3, NFkB1, JUN, SPI1 and MYC). Meanwhile,
miR-21-5p, STAT3 and ICAM1 formed a network motif in which the nodes and the edges
were all specific. In addition, the unique node KAT2B was specifically regulated by miR-19a-
3p and miR-19b-3p. At transition stage from acute to subacute phase, three motifs (miR-155-
5p, MYB, GOLT1B; let-7a-5p, E2F1, KRAS and miR-20b-5p, ESR1, CDKN1A) were found, in
which all the edges and at least two nodes were specific. In the subacute phase, E2F1 not only
specifically regulated itself, but also modulated four specific miRNAs (miR-106a-5p, miR-
106b-5p, miR-223-3p and miR-93-5p) each other. At the transition from the subacute to
chronic phase, TNF was the only unique gene that was specifically regulated by two miRNAs
(miR-155-5p and miR-19a-3p) and four TFs (NFkB1, JUN, SPI1 and ESR1). This suggested
that certain regulators controlled the expression of certain genes during different stages of MI
progression, and this triggered the different pathological mechanisms and clinical features.

Identification of Candidate Diagnostic Biomarkers in Ml

Based on the above findings, we found that the motif composed of miR-21-5p, STAT3 and
ICAMI1 was both specific for nodes and edges, which might play important roles in MI diagno-
sis. Thus, the classification model was implemented (see Materials and methods). Since the
matched miRNA expression profiles were not available, we used the signature defined by
STAT3 and ICAM1 as inputs to the Naive Bayes model, and an AUC value of 0.880 was

Table 1. Summary of miRNA-TF co-regulatory motifs at three time points of MI.

Time point Number of motifs

1 day 36
4-6 days 38
6 months 22

doi:10.1371/journal.pone.0158638.1001

Number of nodes Number of links
miRNAs TFs Genes Total miRNA-gene miRNA-TF TF-gene TF-miRNA Total

17
19
14

11 17 42 30 22 26 22 90
10 12 37 30 26 20 26 85
8 8 27 18 17 14 17 56
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denote miRNAs, circles denote genes, and triangles denote TFs. The nodes with yellow border indicate both genes and TFs.

doi:10.1371/journal.pone.0158638.g004

obtained in the training set by applying leave-one-out cross validation analysis. The signature
was also tested in an independent test set (GSE48060), and the classification performance was
satisfactory (AUC = 0.713). In addition, we investigated the potential ability of STAT3 and
ICAM1 in predicting recurrence of MI by applying expression profiles of GSE48060. As a
result, an AUC value of 0.795 was obtained (Table 2).

Discussion

Dynamic data of a biological system could provide more valuable information in elucidating
complex gene regulation mechanisms underlying biological processes than data of single con-
ditions. In this study, we systematically investigated the dynamic features in MI progression by
integrating miRNA-TF co-regulatory networks and time-series gene expression data. Dynamic
expression patterns were analyzed and biological functions associated with each MI stage were
identified. Additionally, dynamic interplay of miRNAs, TFs and target genes were analyzed,
and a new candidate diagnostic signature defined by STAT3 and ICAM1 was identified.

We identified different biological pathways at different MI stage. For chronic phase of MI,
several pathways such as alcoholism, glycosaminoglycan degradation, legionellosis, amyotro-
phic lateral sclerosis and the Notch signaling pathway were enriched. Among these pathways,
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Acute phase Subacute phase

Fig 5. Comparison of nodes in miRNA-TF co-regulatory networks in Ml progression (acute, subacute
and chronic phases).

doi:10.1371/journal.pone.0158638.9g005

the alcoholism pathway was significantly enriched, and acute MI triggered by alcohol con-
sumption has been reported [49]. So it is possible that alcoholism is related with heart disease,
and heart disease patients may be more inclined to make dietary changes to prevent occurrence

Fig 6. Comparison of edges in miRNA-TF co-regulatory networks in Ml progression (acute, subacute and chronic phases). ‘inh’
indicated inhibition, ‘reg’ indicated regulation.

doi:10.1371/journal.pone.0158638.9006
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Fig 7. Graphical representation of dynamic regulatory interactions among miRNAs, TFs and target genes in Ml progression based on
stage-specific nodes and edges. The nodes with red symbols represented the stage-specific nodes. For example, KAT2B was the unique
gene in the acute phase, and MYB was the specific gene in the acute and subacute phases. The edges represented by solid lines were stage-
specific, while the edges represented by dotted lines were not found in corresponding stages. For example, E2F1 regulation miR-106b-5p was
specific in the subacute phase, and TNF was inhibited by miR-155-5p only in the subacute and chronic phases.

doi:10.1371/journal.pone.0158638.g007

of future infarcts. The adjusted p values of the other four pathways (glycosaminoglycan degra-
dation, legionellosis, amyotrophic lateral sclerosis and Notch signaling pathway) were margin-
ally significant. However, previous studies have shown that glycosaminoglycans are key
molecules in atherosclerosis [50] and Notch signalling is an important mediator of cardiac
repair and regeneration after MI [51]. Legionellosis and amyotrophic lateral sclerosis have
complex relationships with MI [52, 53].
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Table 2. Classification performance of the combination of STAT3, ICAM1 and single STAT3 or ICAM1 based on leave-one-out cross validation
analysis.

Inputs STAT3, ICAM1 STAT3 ICAM1
*Training set (AUC) 0.880 0.821 0.842
*Independent test set (AUC) 0.713 0.718 0.741
“Independent test set (AUC) 0.795 0.765 0.678

Note: “*’ denotes the data set for distinguishing patients with or without MI. “** indicates the data set for distinguishing Ml patients with or without recurrent
events.

doi:10.1371/journal.pone.0158638.t002

The dynamic miRNA-TF co-regulatory networks were constructed based on experimen-
tally verified regulatory relationships among miRNAs, TFs and target genes. Here, we focused
on the accuracy but not the coverage, and thus the predicted data were not used. However, the
experimentally confirmed regulatory relationships were neither complete nor unbiased, and
these data did not include time point information that might affect the accuracy of the net-
works. With an improvement of the quantity and quality of these data and the availability of
matched mRNA, miRNA and long non-coding RNA expression profiles measured at multiple
time points, the dynamic features in MI progression will be comprehensively and accurately
researched at a system level.

The classification performances of single STAT3 or ICAM1 were also tested. For distin-
guishing patients with or without MI, both single STAT3 and ICAM1 obtained lower AUC val-
ues in the training set (0.821 for STAT3 and 0.842 for ICAM1) and a bit higher AUC values in
the testing set (0.718 for STAT3 and 0.741 for ICAM1) than their combinations (Table 2). For
distinguishing MI patients with or without recurrent events, both single STAT3 and ICAM1
obtained lower AUC values (0.765 for STAT3 and 0.678 for ICAM1) than their combinations
(Table 2). Simultaneously, we noted that the dataset available for performance evaluation was
limited, and confirmation in a large independent cohort and experimental verification are war-
ranted. Additionally, gene expression profile data we used was measured from peripheral
blood mononuclear cells but not from myocardial tissues. This means that the dynamic fea-
tures we obtained may be indirectly caused by ML

Our research revealed the dynamic architecture and features in MI progression at several
levels, including expression, biological function, and regulatory interactions at the transcrip-
tional and post-transcriptional levels. Especially, a new panel of candidate diagnostic biomark-
ers defined by STAT3 and ICAM1 was identified to have discriminatory capability for patients
with or without MI, especially the patients with or without recurrent events. All these results
provide important clues for greater understanding of the dynamic regulatory mechanisms in
MI progression, and could provide new diagnostic biomarkers for MI.

Supporting Information

S1 Fig. Dynamic changes of pathways based on SDE genes. Significantly enriched pathways
were obtained using DAVID. Colouring was performed based on adjusted p values: black-the
smallest adjusted p value; white-non-significant (ns, > = 0.05) or SDE genes were not enriched
in this pathway (NA).

(TIF)

$2 Fig. A miRNA-TF co-regulatory motif. A TF and a miRNA regulate each other and they
both regulate a common target gene.
(TTF)
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S3 Fi

g. Expression changes of top 1% SDE genes (six genes). The y-axis represented stan-

dardized expression values, while the x-axis represented time points.

(TIF)

S4 Fig. Dynamic changes of subpathway based on SDE genes. Significantly enriched sub-
pathways were obtained using SubpathwayMiner. Colouring was as described above.
(EPS)

S1 File. Significantly enriched subpathways.
(XLS)

S2 File. Differentially expressed genes.
(XLSX)

S3 File. Degree and betweenness centrality of each node in the miRNA-TF co-regulatory
networks.
(XLSX)
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