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ABSTRACT

The Structure-Function Linkage Database (SFLD,
http://sfld.rbvi.ucsf.edu/) is a manually curated clas-
sification resource describing structure-function
relationships for functionally diverse enzyme
superfamilies. Members of such superfamilies are
diverse in their overall reactions yet share a
common ancestor and some conserved active site
features associated with conserved functional attri-
butes such as a partial reaction. Thus, despite their
different functions, members of these superfamilies
‘look alike’, making them easy to misannotate. To
address this complexity and enable rational
transfer of functional features to unknowns only
for those members for which we have sufficient
functional information, we subdivide superfamily
members into subgroups using sequence informa-
tion, and lastly into families, sets of enzymes known
to catalyze the same reaction using the same mech-
anistic strategy. Browsing and searching options in
the SFLD provide access to all of these levels. The
SFLD offers manually curated as well as automatic-
ally classified superfamily sets, both accompanied

by search and download options for all hierarchical
levels. Additional information includes multiple
sequence alignments, tab-separated files of func-
tional and other attributes, and sequence similarity
networks. The latter provide a new and intuitively
powerful way to Vvisualize functional trends
mapped to the context of sequence similarity.

INTRODUCTION

As current technologies generate an immense number of
protein sequences, the size of primary databases is
increasing at an exponential rate (1). As a result, the char-
acterization of protein function lags increasingly behind
data availability. This gap serves as a main motivation
for development of computational methods for protein
classification and function assignment, along with
making these data accessible and useful. To a large
extent, functional inference methodologies rely primarily
on protein sequence similarity as a proxy for function
similarity, although it is clear that addition of other
types of information improves the results (2). Indeed,
protein domain databases such as FunTree (3), PIRSF
(4), SUPERFAMILY (5), ClusTr (6), TIGRFAMs (7),
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SUPFAM (8), InterPro (9), Pfam (10), Gene3D (11) and
the Conserved Domain Database (12) utilize this prin-
ciple, sometimes combined with structural information,
to bin proteins into classes associated with particular
functions.

Because enzymes catalyze chemical transformations, the
mapping between sequence features and the molecular
roles they perform can be explicit, so that the chemistry
they catalyze provides an alternative way to describe
their relationships. Thus, other researchers classify
enzymes using approaches that are complementary to
sequence-based groupings. Examples include the Enzyme
Nomenclature Classification (EC) system (13,14), MACIE
(15), Catalytic Site Atlas (16), EzCatDB (17), KEGG (18)
and BRENDA (19), in which the main grouping criteria
are derived from their chemical reactions and/or
associated ligands.

Sequence- and chemical-centric approaches for enzyme
classification are limited, however, because sequence—
function correspondence is complex and variable.
Generally, there is no single sequence similarity threshold
for accurately grouping sequences into isofunctional
groups. This makes it hard to delineate sequence-similar-
ity boundaries to identify proteins that carry out the same
function or chemical-similarity (of the substrate or
reaction) boundaries that coincide with sequence-based
groupings. This results in, on the one hand, high rates of
misannotation (20) and, on the other hand, the definition
of many protein groups that cannot be assigned a specific
function. One approach that attempts to integrate these
conflicting concepts is based on the idea of ‘functionally
diverse’ (or ‘mechanistically diverse’) protein superfamilies
(21,22). Members of these types of superfamilies can be
highly divergent and catalyze quite different overall reac-
tions. Nevertheless, all members of such an enzyme super-
family must share a tenable evolutionary ancestor, some
conserved aspect of chemistry, and active site features. For
example, members of the superfamily might catalyze the
same partial reaction or stabilize the same type of inter-
mediate using a characteristic set of conserved residues. In
many cases, this set of residues is only a subset of those
responsible for the overall reaction; other residues are fre-
quently used as specificity determinants. Notably, there
are cases in which superfamilies are grouped into a
broader suprafamily (22), a set of evolutionarily related
enzymes whose members share similar active site architec-
ture but utilize this conserved architecture in substantially
different ways. Previous estimates for the number of
functionally diverse superfamilies suggest that they repre-
sent over a third of known enzyme superfamilies (23).
This suggests the wide applicability of grouping enzymes
based on common ancestry and shared active site features,
even when they catalyze different overall chemical
reactions.

Here, we describe the Structure—function Linkage
Database (SFLD) (24,25). This resource focuses on the
identification of specific sequence and structure attributes
reflected in protein similarity that typify specific reactions
or substrate specificities. It links enzyme sequence, struc-
ture and molecular function into a hierarchical classifica-
tion scheme, grouped by enzyme superfamilies. Each

superfamily in the SFLD is subdivided into successive
levels of increasing specificity in sequence similarity and
associated functional properties. One or more levels of
subgroups within a superfamily represent distinct subsets
defined principally by sequence similarity. Below the
subgroup level, enzyme families represent the finest classi-
fication level, in which each member is annotated to
catalyze the same reaction using the same mechanistic
strategy (Figure 1, panel A).

The SFLD is based upon a relational database imple-
mented in MySQL (http://www.mysql.com/) that follows
a carefully designed schema. The web interface is imple-
mented in the Django Application Programming Interface
(https://www.djangoproject.com/) and is professionally
maintained and extended. This interface enables both
presentation of the information for outside users and
data manipulation and updating by curators, while
ensuring data integrity.

The examination of the similarity relationships between
sequences for purposes like classification and function pre-
diction can be greatly facilitated by a unique and powerful
tool: protein sequence similarity networks (SSNs) (26-28),
in which nodes represent proteins and edges represent
sequence similarities between them, as measured by even
simple metrics such as BLAST E-values (29). Networks
provide an intuitively accessible visualization infrastruc-
ture for exploration of sequence—function relationships
and can be used as an effective complement to traditional
methods such as multiple sequence alignments (MSAs)
and phylogenetic trees (26,28). SSNs are fast to generate
and although still subject to size limitations, they can still
comprise many thousands of sequences. Thus, they can
produce a global summary of sequence similarities
across even large superfamilies. Furthermore, they can
be manipulated to aid protein classification and function
prediction. For instance, ‘coloring’ known functional at-
tributes onto the network nodes visually highlights which
proteins of unknown function may share similar func-
tional attributes. Modification of the similarity threshold
required for displaying network edges enables alternative
hypotheses for partitioning superfamily members (Figure
1, panel B). The usage of SSNs in the SFLD is supported
by Pythoscape (30), a recently described infrastructure for
creating, manipulating and integrating these networks.
SSNs can be downloaded from the SFLD for all levels
of the classification hierarchy and analyzed locally using
Cytoscape (31), a freely available cross-platform program
for complex network analysis and visualization.

DATABASE CONTENT
Classification

The SFLD is designed to make the hierarchical classifica-
tion of enzyme superfamilies and their associated data ac-
cessible to users for many applications in function
prediction, tracking evolutionary trends and providing
guidance for enzyme engineering. It includes sophisticated
tools for browsing the sequence hierarchy and list of
chemical reactions. Searching can be done by sequence
or several different external identifiers [e.g. UniProtKB
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Figure 1. Hierarchical classification in the SFLD, SSNs and their potential contribution for enzyme classification and function prediction. (A) SFLD
classification is exemplified by the enolase superfamily. (i) This superfamily is divided into seven subgroups; three of them—the enloase, mandelate
racemase and muconate cycloisomerase subgroups—are shown in this panel. As shown here for the muconate cycloisomerase subgroup only, these
subgroups are divided into families. (Note: The same name, e.g. enolase, can represent a superfamily, a subgroup, and a family.) Colored circles serve
as a legend for panels B and C. (ii) Superposition of three residues reflecting conservation of important active site machinery across all members of
the superfamily. Each color represents a different structure, one from each of the three subgroups: a dipeptide epimerase in green (PDB: 3RIT), a
mandelate racemase in magenta (PDB: IMDR) and an enolase in yellow (PDB: 7ENL). All enolase superfamily members share three metal binding
active site residues that participate in a common partial reaction, abstraction of proton, that initiates each of their different overall reactions. (iii)
Dipeptide epimerases, members of a family within the muconate cycloisomerase subgroup, share functionally important residues—three conserved in
all members of the superfamily and associated with the proton abstraction, and two additional residues (K162, K266) that also contribute to proton
abstraction. Another set of residues (upper part of panel iii, R24, ES1 and D296) are thought to participate in the specificity of some dipeptide
epimerases (35). Thus, these latter three residues differentiate these dipeptide epimerases from other families in the superfamily. The dipeptide ligand
crystallized with 3RIT is shown in cyan. (B) A representative SSN of the enolase superfamily. Each node represents all sequences that share >70%
sequence identity. Node size corresponds to the number of sequences that are represented by the node; the smallest nodes represent one sequence,
and the largest nodes represent >100 sequences. Edges between representative nodes indicate a mean BLAST E-value, between all pairs of sequences
in these nodes, <le™*. Coloring is as shown in subgroup (node border color) and family (node fill color) sub-panels in A (C) A full SSN of the
muconate cycloisomerase subgroup. Each node represents a single protein, and each edge indicates a BLAST E-value <le . Using this network
representation layout, within-cluster similarities are greater than similarities between clusters. Nodes are colored only if they are associated with
reliable evidence, i.e. better evidence than ‘inferred from electronic annotation’. Different families are color-coded (panel A). The correspondence
between function and sequence is evident in the network. Different families tend to appear in specific sequence clusters, allowing reliable (and visual)
delineation of the sequence space that corresponds to a specific function.
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(1) accession numbers]. The basic classification unit in the
SFLD hierarchy is an ‘enzyme functional domain’ (EFD),
namely a consecutive set of residues that may or may not
span the whole protein and is responsible for a biochemical
function. This means that if a single protein includes
multiple distinct domains that carry out different chemical
reactions, each EFD will be assigned to the appropriate
level(s) of the hierarchy, with each EFD perhaps belong-
ing to a different superfamily. Frequently, an EFD will be
associated with a family; but when an EFD family assign-
ment cannot be determined, it is assigned only at a
broader level, to a subgroup and/or a superfamily.

EFDs are calculated for proteins as they are added
to the database based on their matches to Hidden
Markov Models (HMMs) associated with SFLD
superfamilies, subgroups and families. These sequence
signatures are calculated from an MSA of canonical
members of the relevant subgroup or family using the
HMMER (32) package. Eighty percent of the families
and 60% of the superfamilies in the SFLD are
accompanied by a manually curated MSA and the cor-
responding HMM, depending on the depth at which a
superfamily is curated. EFDs in the SFLD are also
annotated with external database identifiers, statistics
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such as length, taxonomy and additional functional
information.

Main database categories: core and extended SFLD

The core SFLD comprises 12 manually curated function-
ally diverse superfamilies in which known functional attri-
butes have been transferred to over 345000 proteins
(Table 1). We consider the most highly curated
superfamilies in the core SFLD as a ‘gold standard
dataset’, especially intended for purposes like training
and evaluating automated methods for function predic-
tion. This set (33) has been used by us and others for
cataloguing misannotation in major public databases (20).

To address the limits of manual curation in achieving
broader coverage of the superfamily universe and to keep
pace with the increasing size of the sequence data from
genomic and community sequence projects, we have
instituted the ‘extended’ SFLD, aimed at automatic struc-
ture—function mapping of sets of related proteins via SSNs
(Table 1). These sets are not restricted to functionally
diverse superfamilies, although many fall into this
category, consistent with the focus of the SFLD. The
extended SFLD provides a shallower level of curation
than the core; very few entries include any detailed func-
tional annotation or subgroup/family assignments, except
as can be obtained from automatically retrieved links to
other public databases. Nevertheless, continuous efforts to
manually curate this section of the SFLD will eventually
move some functionally diverse superfamilies from the

Table 1. General statistics for data stored in the SFLD

extended SFLD to the core set. SSNs in the extended
SFLD provide summaries of sequence relationships
associated with many types of functional properties.
Because these networks can be produced using automatic
protocols they increase the number of superfamilies for
which some structure—function mapping can be
provided. SSNs have been valuable in providing clues
for functional inference in superfamilies [e.g. (34-36)].
Hence, users who are interested in enzymes not covered
by the core SFLD (see Common Use Cases below) may
utilize these networks for hypothesis generation and
function prediction. Examples of some biologically inter-
esting superfamilies included in the extended SFLD are
listed in Table 1. These superfamilies include enzymes
associated with human diseases and disease-related poly-
morphisms, or encoded in human pathogenic bacteria.
New superfamilies are added more often to the extended
SFLD than to the core SFLD. As a result, the list of
extended SFLD superfamilies for which networks are
available is expected to increase frequently relative to
addition of new superfamilies to the core SFLD. The
SFLD infrastructure and data are extended and updated
regularly. At some times, full or representative networks
and other data may not be available as a result. Users
should address questions to the Help Desk.

Database curation

The first step in manual superfamily curation for the core
SFLD is the collection of a set of protein sequences and

Superfamily Subgroups Families Sequences Structures Reactions

Core SFLD
Amidohydrolase 11 89 36690 385 42
Aromatic Prenyltransferase 2 0 339 17 0
Crotonase 2 27 41143 162 28
Enolase 7 20 23460 341 22
Glutathione Transferase (cytosolic) 42 0 12904 400 0
Haloacid Dehalogenase 25 22 79778 515 21
Isoprenoid Synthase Type I 14 69 16385 298 65
Isoprenoid Synthase Type II 4 8 7635 179 8
Nucleophilic Attack 6-Bladed Beta-Propeller (N6P) 3 3 31085 69 2
Peroxiredoxin 6 0 12239 154 0
Radical SAM 52 84 48 100 40 60
RuBisCO 2 2 36390 69 2
Total 170 324 348 859 2629 250

Extended SFLD*
Six-hairpin glycosidases 0 0 28 690 214 0
Ribulose-phosphate binding Barrel 0 0 25997 241 0
Metalloproteases, Zincins 0 0 21437 420 0
Cytidine deaminase-like 0 0 18803 91 0
L-Aspartase-Like 0 0 17659 99 0
Carbon—Nitrogen Hydrolase 0 0 14974 44 0
Carbohydrate Phosphatase 0 0 12278 149 0
Phosphatidylinositol Phosphodiesterase 3 5 11014 95 5
Arginase/Deacetylase 0 0 10570 168 0
Fumarylacetoacetase, C-terminal-related 0 0 10104 31 0
Ferric Reductase Domain 2 2 282 1 0
Total® 9 11 437633 4288 9

?A representative set from the extended SFLD (34 superfamilies at the time of publication).

®The total counts refer to the whole extended SFLD set.
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creation of a hierarchical classification utilizing the
SFLD’s curator interface. Collecting and analyzing the
data requires a substantial level of chemical knowledge,
as the curator must identify the partial reaction or other
chemical capabilities that serve as a common feature
conserved among all superfamily members. Starting with
published collections, where sources may include reviews,
personal communications, sequence pattern databases
[e.g. InterPro, Pfam, SCOP (37) or CATH (38)] and
Enzyme Commission (EC) information, the curator
collects a set of proteins that show preliminary agreement
with our definition of a superfamily. This draft set is used
by the SFLD protocol for automatic retrieval of func-
tional attributes from various databases. In addition to
these tabulated data, the SFLD can produce an SSN
(Figure 1, panels B and C) in which nodes have been
assigned various automatically retrieved annotations.
This allows the curator to research the correspondence
between sequence similarity and functional similarity in
the draft superfamily. Manual classification into sub-
groups and families is subsequently done using SSN
analysis and the curator’s interface. This includes incorp-
oration of structural information, MSAs, active site
residues, chemical reactions and partial reactions, and
descriptions of enzymatic mechanisms based on the litera-
ture. Finally, for all core SFLD superfamilies, the curation
is often informed through collaborative work with enzym-
ologists who are experts in the structure—function relation-
ships of these superfamilies.

Evidence codes

Each of the annotation features associated with proteins
that appear in the SFLD are accompanied by evidence
codes. These codes describe the rationale and reliability
behind the classification and annotation assignments.
They are required for evaluating the reliability and
validity of curation, allowing more accurate function
prediction for query proteins (see Common Use Cases).
Data in the SFLD represent many types and resources,
ranging from annotations from external databases, to as-
signments of conserved residues, families, subgroups and
superfamilies, to partial reaction steps. This range of
evidence necessitated creating a vocabulary of evidence
codes that are widely used and understood [following
Gene Ontology (39) definitions], such as ‘Inferred from
Electronic Annotation’ and ‘Inferred from Direct Assay’,
or SFLD specific (e.g. ‘Canonical Family Member’ or
‘Inferred from Catalytic Residues’). Descriptions of all
evidence codes and data types can be found in the
online documentation of the database.

BROWSING AND SEARCHING

The SFLD offers two distinct entry points for browsing
the classification hierarchy: ‘Browse by Superfamily’ and
‘Browse by Reaction’. Data searching can be accessed via
the ‘Search by Enzyme’ mechanism. These data gateways
offer the means to answer key user inquiries.
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Browse by superfamily

This entry point to the hierarchy allows users to study a
superfamily of interest at several levels of granularity.
Upon selecting a ‘core’ or ‘extended” SFLD superfamily,
the superfamily’s summary page is displayed, providing a
general description and relevant references, as well as stat-
istics such as the numbers of sequences, structures and
reactions currently associated with that superfamily in
the database. Users can easily navigate to the summary
pages of subgroups and/or families within the superfamily,
and at even finer levels, individual EFDs, structures and
chemical reactions.

The structure of subgroup and family pages is similar to
that of the superfamily summary page. Each level includes
download options for the SSNs (discussed in more detail
below) and tab-separated annotation files, along with
table views that can be customized (columns can be inter-
actively added or removed). In addition, users may filter
the sequences associated with a family/subgroup/super-
family to specific organism/s of interest. To enable exam-
ination of conservation within superfamily members, users
can choose to view the manually curated MSA, if avail-
able, of representative members of the superfamily,
subgroup or family. Curators choose representative
sequences for the MSA to avoid bias in sequence repre-
sentation and to ensure broad coverage of sequence diver-
sity. Importantly, the positions of the conserved catalytic
residues, where known, are highlighted in the alignment,
and an accessory table lists the roles of these residues
(‘metal binding’ etc.). An additional useful tool allows
users to align a query protein or set of proteins to the
MSA, when available.

A family page lists the overall chemical transformations
that are catalyzed by family members (including reactants)
and provides links to external databases such as
EC, IntEnz, MetaCyc (40) and BRENDA. This page
also includes an image of the active site and family-
conserved functional residues in a representative protein
structure (if available). Clicking the active site image
downloads the corresponding session file for interactive
viewing and analysis in UCSF Chimera (41), which must
be installed locally on the user’s computer. Chimera is
free for noncommercial use; it is available for all major
platforms and includes full documentation and tutorials.
The MSAs mentioned above can also be viewed in
Chimera, along with or independent of associated
structures, which enables calculating different measures
of sequence conservation, mapping conservation in the
alignment onto structures and many other types of
analysis.

Importantly, an additional entry point to superfamily
browsing is structure-centered. Each SFLD superfamily
has a table that lists the relevant protein structures,
along with all EFDs that share 95% identity with a
structurally solved protein. Related data such as reso-
lution, HET groups and whether the protein is mutated
are also supplied, along with additional links [to the
Catalytic Site Atlas, PDBSum (42) and the RCSB
PDB (43)].
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Full and representative SSNs

For those not limited by size, full SSNs can be down-
loaded for each superfamily in the SFLD. These
networks can be opened and manipulated using locally
installed Cytoscape software. In full SSNs, each node rep-
resents a unique protein sequence, and each edge repre-
sents the pairwise similarity between the connected
nodes. The network view summarizes structure—function
mappings for large sequence sets (as in some superfamilies
or subgroups within them), while allowing the user to
examine individual sequences, their functional attributes
and their similarity relationships at finer levels of the hier-
archy. All of the annotations available for each EFD are
included as node attributes in the networks (e.g. useful
attributes like family/subgroup membership, species,
and, for cloning or microbiology studies, availability of
DNA). The display properties of the nodes in Cytoscape
can be changed to indicate attribute values. For example,
nodes could be colored by taxonomy and nodes that rep-
resent proteins associated with a PDB structure could be
shown with a different shape.

SSNs are currently provided in XGMML format and
packaged with a README file describing the download
contents, and an attribute file customized for the super-
family. Another feature under development (and already
available for some SSN downloads) is the inclusion of
statistical details specific to the network, such as protein
length distributions and plots depicting the dependency
between E-value thresholds and SSN edge numbers. For
full networks, the download form allows the user to
specify the threshold for edge inclusion, i.e. the minimal
level of similarity required for displaying edges between
sequences. Setting the threshold at more stringent similar-
ity values can enable viewing of larger networks as the
number of edges governs the size limits at which
networks can be opened on a particular computer.

Whereas full networks allow detailed analysis, there is
an upper limit to the number of edges that can be viewed
in the network, due to computer memory limitations
(>250000 edges will significantly slow down a standard
laptop running Cytoscape). Thus, we are now transition-
ing to produce ‘representative’ SSNs (30) for these
sequence sets. In a representative network, each node rep-
resents a set of proteins that share a curator-defined
sequence identity level and each edge represents the
mean similarity between the connected nodes. These
networks can provide a global snapshot of the sequence
space of an entire superfamily, even tens of thousands of
sequences, owing to this method for abstracting the data.
This facilitates the elucidation of global trends and
sequence space topology for large sets of enzymes and
can be followed by a more detailed analysis using full
SSNs for smaller sets of proteins such as subgroups.
Compared to full networks, the assignment of node
attributes to representative SSNs is more complex since
an individual node can represent multiple sequences.
Thus, only a subset of the node attributes in full
SSNs are available in representative SSNs (see online
documentation).

Browse by reaction

Another entry point to the SFLD allows browsing by
reaction. This web page includes a total of 251 chemical
reactions, accompanied and sorted by EC numbers, if
available, for each reaction. Additional information
includes the associated superfamily/family for each
reaction and the number of EFDs annotated to catalyze
the reaction.

Search by enzyme

The ability to search by enzyme is described below using
several different questions that database users may ask:

‘Is my query protein sequence present in the SFLD, or,
if not present, similar to an SFLD entry?” The ‘search by
sequence’ option provides a sequence similarity search
against the SFLD database. The default search option,
‘by BLAST’ will generate two tables describing the
search hits. The first table lists the superfamilies, sub-
groups and families that the hits belong to, as well as
statistics like the number of hits and the range of E-
values and scores for these hits. Notably, if the hit is
already in the SFLD, then an SSN will be made available
for the subgroup and/or family to which the sequence
belongs. The query node in the SSN download will be
highlighted, allowing the user to see it in the wider
context of the family or subgroup. The second is a down-
loadable table of SFLD entries, accompanied by BLAST
similarity measures (E-value, score, alignment length),
EFD attributes and an option to display the pairwise
alignment between the query and the SFLD entry.
Alternatively, choosing the ‘by HMM’ search option will
run all the HMMs present in the SFLD against the
query sequence, and output a downloadable table of stat-
istically significant matches of families, subgroups or
superfamilies. For each hit, the user can also align the
query sequence with the relevant MSA. The analysis of
the MSA is facilitated by the highlighted active site pos-
itions in the aligned sequences and the query protein.

‘Can I find an existing SFLD entry using commonly
used protein identifiers and names? The SFLD can be
searched using external protein identifiers (single or com-
binations of GI numbers, UniProtKB accessions, etc.) or
structure identifiers (PDB ID), or internal identifiers (EFD
ID) or EFD name. The name allows users to find a specific
protein, but also to find any proteins sharing protein name
parts. The result table that is generated by this search can
then be sorted and filtered by the user.

‘Can I find all SFLD entries associated with a specific
organism?” Typing a scientific species name or names will
trigger a mechanism that retrieves all SFLD entries that
are mapped to that query species.

DATABASE INFRASTRUCTURE
Automatic maintenance

A fundamental requirement for high-quality databases is a
reliable maintenance mechanism that will keep identifiers
and links up to date. Python scripts keep the SFLD
updated by periodically checking references to external
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databases (e.g. verifying identifiers and links). In addition,
the RCSB PDB database is queried for new and relevant
protein structures. Notably, SSNs will be periodically
updated to reflect the current protein repository of the
database. SFLD EFD entries post the last date on which
they were manually or automatically checked.

Documentation and tutorials

The SFLD database includes substantial documentation
and tutorial sections, providing both term definitions and
detailed protocols for database usage. The documentation
includes a glossary of terms, an evidence code table and a
description of the SSNs in general, along with a detailed
description of the SSNs provided by the SFLD (including
a list of the 30 SSN node attributes and three edge
attributes). The tutorials include video introductions
with an overview of the database and a step-by-step
example describing characterization of a protein of
unknown function. A video that introduces SSNs and
their use for function prediction is also available.

COMMON USE CASES

The combination of the information available from the
SFLD via the web interface and the SSN downloads
offer a powerful tool for function prediction, discovering
misannotations and the selection of new proteins for struc-
tural or functional characterization (‘target’ selection).
A few examples are provided below.

Function prediction and addressing misannotation

The sequence of the protein GI:390523686 from
Desulfitobacterium dehalogenans originates in a whole-
genome sequencing study. According to the NCBI
database, the protein is annotated as ‘L-lysine 2,3-
aminomutase’. Of the top 100 BLAST hits (against
NCBI NR), 91 share the same name. Notably, 97 of the
100 hits share 42-46% sequence identity with the query
protein.

When using the ‘search by enzyme’ (HMM’ option),
the user is presented with the most probable family assign-
ments for this query protein (Figure 2). The highest-
scoring family is glutamate 2,3-aminomutase, followed
by L-lysine 2,3-aminomutase (these families belong to the
PLP-dependent subgroup of the Radical SAM superfam-
ily), and all HMM matches are to subgroups and/or
families in that superfamily). The ‘Align to this family’
link opens an MSA of the chosen family with the query
sequence. The results provided in Figure 2 show clearly
that in the L-lysine 2,3-aminomutase family, the aspartate
residues that bind the lysine substrate in all family
members are replaced by a lysine and asparagine in
GI1:390523686. On the other hand, these lysine and
asparagine residues are conserved throughout the glutam-
ate 2,3-aminomutase family and are associated with
binding the substrate, glutamate. Notably, a glutamate
2,3-aminomutase is ranked 18th in the BLAST hit
list. Thus, this exercise allows the user to conclude that
the annotation of GI:390523686 as a vL-lysine 2,3-
aminomutase is likely incorrect. Instead, the SFLD data
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provide evidence that this protein is more likely a glutam-
ate 2,3-aminomutase. By extension, the close homologs to
this protein sequence in the BLAST results from NCBI
that are annotated as L-lysine 2,3-aminomutases are also
likely to be incorrect.

Studying sequence—function relationships using SSNs

Clicking the PLP-dependent subgroup (Figure 2) and
downloading the PLP-dependent subgroup SSN, using
an E-value cutoff of 1e7%°, produces a *XGMML’ file
that can be imported into Cytoscape. Since each family
is automatically colored differently by the functional as-
signment in the SFLD, the relationship between the query
protein and the different families can be easily visualized.
Compared to BLAST results, which simply list pairwise
similarities between the query and other proteins, the
network view allows simultaneous appreciation of add-
itional dimensions of data, namely the similarities
among all the other proteins as well as to the query. The
network visualization also supports the suggested associ-
ation between GI:390523686 and the glutamate
2,3-aminomutase family (Figure 2). Using the Cytoscape
software, users can customize coloring of nodes, node
shape, edge representation and many other properties
using the network and attribute files downloaded from
the SFLD. Cytoscape also supports generation of high-
quality network figures, such as in Figures 1 and 2, for
publication.

Target selection

SSNs can also be used for target selection efforts, aimed at
determination of new functions (e.g. substrate specificities)
in a superfamily of interest [e.g. (35,44)]. In Figure 2, the
presence of SSN clusters that are not assigned to a family
(examples highlighted with black arrows) suggests there
may be additional, perhaps unknown, reaction families
in this subgroup. The network context facilitates
studying these clusters. For instance, choosing all bacterial
proteins (by the ‘“Type of life’ attribute), that have DNA
available or potentially meaningful genomic context [links
to MicrobesOnline (45) and the SEED (46) are available]
can help in pinpointing specific targets that may be useful
for subsequent wet-lab experimentation.

DISCUSSION

The SFLD database aims at providing a reliable resource
of enzyme classification that integrates both sequence and
functional criteria into a hierarchy designed to assign
functional properties only at the level (superfamily,
subgroup, family) at which conservation patterns and
their associated functional features can be inferred with
confidence. Thus, if a new sequence appears to have
only those residues conserved that allow its assignment
to a superfamily and subgroup, but not to a reaction-
specific family, it is only assigned at the superfamily and
subgroup levels. This practice is useful for avoiding
misannotation of specific function from overly-simple in-
ference of orthology (20). Based on careful curation of
superfamilies and the utilization of tools that allow
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Figure 2. Searching by sequence in the SFLD. The screenshot at the top shows the query sequence, GI:390523686. Choosing ‘search’ (with the
HMM option) compares all SFLD HMMs against the query sequence. The table of results (middle panel) lists all the classification levels (family/
subgroup/superfamily) for which a relevant hit was found. The two top families are glutamate 2,3-aminomutase and L-lysine 2,3 aminomutase.
Clicking the ‘Align to this family’ button leads to a list of the active site residues that appear in the family, and to an MSA of the family with the
query included as the bottom sequence (red ellipse). As explained in the text, although the protein is annotated in GenBank as L-lysine 2,3
aminomutase, evaluation of the MSA suggests that the characteristic active site residues for that function are not conserved in the query (indicated
by the red arrows below the bottom panel). Instead, this analysis supports the annotation of this sequence as a glutamate 2,3-aminomutase. The user
can also download an SSN of the relevant subgroup, here thresholded at 1e™®3, which includes the two above-mentioned families. In the figure,
L-lysine 2,3-aminomutases are shown in cyan, glutamate 2,3-aminomutases in red and arginine aminomutases in green. The query protein is rep-
resented by a blue circle and arrow. This network perspective also supports the annotation of the query protein as a glutamate 2,3-aminomutase.
Two examples of clusters that do not include any annotated proteins are indicated by black arrows, hinting at potentially new functional families in
this subgroup. A few of the white-colored sequences of unknown function that can potentially be annotated as L-lysine 2,3-aminomutases are

indicated with a green arrow.

database expansion and updates, we strive to cover an
increasing portion of the enzyme world. Specifically, inte-
gration of the SFLD with the powerful capabilities of
networks (28) will allow us to expand the extended
SFLD more quickly than can be achieved by manual
curation. As the list of superfamilies in the extended
SFLD grows, we invite groups working on those
enzymes to contact us as we are interested in forming col-
laborations with experimentalists to improve our
annotations.

While the classification model described here works well
for the majority of data entered into the database, the
complexity of structure—function mapping in some
superfamilies can pose special challenges. For instance,
there are chemical reactions that are catalyzed by

residues in distinct subunits of heterodimers, complicating
association of functional residues to sequence data.
Other cases involve multidomain proteins that are not
well accommodated by our current definition of EFDs.
Hence, we continue to extend the database schema to
adequately curate complex biological examples.

SSNs serve as a powerful tool for both curation and
analysis. Nevertheless, several caveats for the use of
SSNs are important to avoid their over- or too simple
interpretation. For example, SSNs from the SFLD are
created using full-length sequences. In some cases, the
EFD is only a small segment of a multidomain protein.
Thus, an edge in an SSN may represent the similarity
between any (or all) regions of the sequences represented
by the connected nodes, even parts outside the EFD. It is


structure-function

important for the users to identify the parts of sequences
that contribute to the similarity scores to be sure they
capture relevant features like active site motifs. This can
be achieved, in part, by using thresholds for viewing the
networks that are statistically significant, thereby ensuring
some confidence in the underlying alignments on which
the network connections are based [see (26) for further
discussion of network validation and issues for their
use]. Additional caveats of SSNs are described in the
online documentation.

The future directions of the SFLD involve four main
areas. First, the automated superfamily expansion
protocol will be optimized and deployed. Second, we
intend to facilitate function prediction for metagenomics
research by placing these sequences of unknown function
into the context provided by superfamily SSNs to aid their
annotation (28). Third, we intend to supply more infor-
mation about the genomic context, i.e. operons and/or
nearby genes, of query proteins. This will aid identification
of new pathways or involvement of query enzymes in bac-
terial operons. Last, we intend to make the chemical
reaction information more integrated and searchable.
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