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A B S T R A C T   

Background: To explore the role of vaginal microbiota and metabolomics in the progression of 
cervical dysplasia. 
Methods: The patient group consists of female patients with low-grade, high-grade cervical 
dysplasia, and cervical cancer. Normal cervix samples from health volunteers were used as 
controls. The metabolic fingerprints of cervicovaginal lavage were analyzed using liquid 
chromatography-mass spectrometry, while the vaginal microbiota was examined through 16S 
rRNA sequencing. Bioinformatic analysis was adopted to investigate the interplay between hosts 
and microbes. The vaginal metabolic and microbiota profiles of 90 female patients with cervical 
dysplasia and 10 controls were analyzed to discover the biological characteristics underlying the 
progression of cervical cancer. 
Results: We found that Valyl-Glutamate, N, N′-Diacetylbenzidine, and Oxidized glutathione, which 
were involved in oxidative stress response, were discriminators to distinguish the normal cervix, 
invasive cervical carcinomas, and CIN3 from others. Cervical carcinoma was characterized by a 
large variety of vaginal microbes (dominated by non-Lactobacillus communities) compared to the 
control. These microbes affected amino acid and nucleotide metabolism, producing metabolites 
with cervical carcinoma and genital inflammation compared to the control group. 
Conclusions: This study revealed that cervicovaginal metabolic profiles were determined by cer-
vical cancer, vaginal microbiota, and their interplays. ROS metabolism can be used to discrimi-
nate normal cervix, CIN3, and invasive cervical carcinoma.   

1. Introduction 

Cervical carcinoma is the fourth most diagnosed cancer globally in women [1]. Although HPV infection is the main cause of cervical 
carcinogenesis, over 90 % of HPV infections are transient and cleared by immune responses. Merely 0.6–3% of patients with persistent 
HPV infection develop carcinoma [2], indicating that persistent infection is essential for the development of high-grade CIN and 
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cervical cancer. Consistently, cervicovaginal microbiota reportedly play a substantial role in the persistence or regression of virus 
infection and disease progression [3]. 

Vaginal microbiota forms a layer of protection to reduce pathogen infection, thereby maintaining the hemostasis of the cervico-
vaginal microenvironment [4]. Consequently, microbial dysbiosis significantly contributes to the progression of cervical neoplasia and 
cervical carcinogenesis [5]. Epidemiological studies have revealed that the diversity of the non-Lactobacillus-dominated vaginal 
microbiome is closely associated with HPV infection [6–10]. A meta-analysis of cross-sectional and longitudinal studies also revealed 
that women with a non-Lactobacillus-dominant vaginal microbiome or a L. iners-dominant vaginal microbiome had 2–3 times higher 
odds of high-risk HPV prevalence and cervical neoplasia, as well as 3–5 times higher odds of prevalent HPV (95 % CI) than women with 
by a L. crispatus-dominant vaginal microbiome [11]. 

Microbial metabolites in the vaginal microenvironment, such as lactic acid, exert antitumor effects. For example, the L. crispatus- 
dominated microbiota produces high levels of D-lactate, which inhibits carcinoma cell growth [12]. Moreover, vaginal lactobacilli 
exhibit cytotoxic effects on cervical tumor cells independent of pH and lactic acid in vitro [13]. Therefore, increasing attention has 
been paid to the metabolites in the microenvironment [14]. Combined with advances in metabolomics, it is well accepted that the 
metabolites of vaginal microbiota form a bridge between microbes and the host [15]. Metabolites, such as H2O2 and bacteriocin, have 
been implicated in CIN and carcinogenesis. However, comprehensive profiling studies of the microbial metabolism in the cervico-
vaginal microenvironment are still lacking. Here, we aim to elucidate the metabolomic profiles of cervicovaginal lavage and vaginal 
microbiota in normal, low- and high-grade CIN and carcinoma patients. Finally, bioinformatic analysis was applied to investigate the 
interaction between vaginal microbes and their hosts. 

2. Materials and methods 

2.1. Patients 

According to the histological examination of colposcopy-directed biopsy samples or cervical conization tissues,100 non-pregnant 
female patients out of 200 patients diagnosed at Central Southern University Xiangya Hospital from January to October 2021 were 
recruited. Patients with following situations were excluded from the study: active menstruation; recent use (within the previous 
month) of antibiotics (n = 20), antifungals or antivirals (n = 3); current or recent (within the previous 2 weeks) vaginal infection 
(including bacterial vaginosis)(n = 23), vulvar infection, urinary tract, or sexually transmitted infections (such as chlamydia, 
gonorrhea, trichomoniasis, or genital herpes) (n = 11); HIV-positive (n = 2); recent use (within 48 h before the visit) of douching 
substances, vaginally applied medications, feminine deodorant sprays, or vaginal lubricants (n = 9); sexual intercourse (less than 48 h 
before the visit) (n = 5); a diagnosis of type I or II diabetes (n = 16); body mass index (BMI)≥30 (n = 11). The participants were 
grouped as follows: cervix without neoplasia (N group, n = 10), cervical intraepithelial neoplasia I (CIN 1 group, n = 15), CIN 2 (n =
25) group, CIN 3 (n = 25) group, and invasive cervical carcinoma (ICC, n = 25) group. 

All of the details were obtained and verified via pelvic examination by an experienced physician, medical records questionnaires, 
and follow-up by telephone calls. The study was approved by the ethics committee of Xiangya Hospital of Central South University 
(Approval No.: 202101030), and written informed consent from each participant was obtained. 

2.2. Sample collection 

Vaginal swabs and cervicovaginal lavage (CVL) samples were collected during the first visit before any operations including 
colposcopy examination and conization by an experienced gynecological clinician. The clinician inserted a speculum without the use 
of lubricant and obtained a vaginal swab by swabbing the lateral walls of the upper vaginal cavity in the direction of 5–6 o’clock. The 
swab was promptly stored in a sterile Eppendorf tube. Subsequently, 10 mL of sterile 0.9 % saline solution was used to collect CVL 
samples. Both the vaginal swab and CVL samples were immediately placed on ice and were then frozen at − 80 ◦C within 30 min. CVLs 
were thawed on ice and subsequently centrifuged at 700×g for 10 min at 4 ◦C. DNA was extracted from vaginal swabs using the 
PowerSoil DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA) following the manufacturer’s instructions. CVL samples and 
extracted DNA were aliquoted and stored at − 80 ◦C for further analysis. 

2.3. Vaginal microbiota 

DNA from vaginal swabs was extracted as described before [6]. PCR amplification from genomic DNA was performed using barcode 
primers and TksGflex DNA polymerase (Takara). The V3–V4 (or V4–V5) variable regions of 16S rRNA genes were amplified by uni-
versal primers, 343 F and 798 R (or 515F and 907R for V4–V5 regions) to analyze bacterial diversity [16]. Library sequencing and data 
processing were performed with OE Biotech Co., Ltd. (Shanghai, China). 

The Shannon–Weaver index was calculated at both the species and genus levels to assess bacterial diversity using the R package 
vegan [17]. Furthermore, the Bray-Curtis dissimilarity indices were computed at the species level using the R and package vegan, 
following the square root transformation and Wisconsin double standardization of reads [17]. To assess the between-sample (β) di-
versity, multivariate analysis of variance (MANOVA) was conducted using the Bray-Curtis distances [17]. Additionally, principal 
co-ordinate analysis (PCoA) was executed based on the Bray- Curtis dissimilarity matrix to visualize β diversity [17]. The present study 
employed Orthogonal Partial Least-Squares-Discriminant Analysis (OPLS-DA) and Partial Least-Squares-Discriminant Analysis 
(PLS-DA) to differentiate the metabolites that exhibit inter-group variations [16]. To mitigate the risk of overfitting, the model’s 
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reliability was assessed using 7-fold cross-validation and 200 Response Permutation Testing (RPT) iterations [16]. The Variable 
Importance of Projection (VIP) scores derived from the OPLS-DA model were used to rank the relative contribution of each variable 
toward group discrimination [16]. The statistical significance of differential metabolites between groups was assessed using a 
Two-tailed Student’s t-test. Differential metabolites were selected based on VIP values greater than 1.0 and p-values less than 0.05. 

2.4. Cervicovaginal metabolomics 

The ACQUITY UPLC I-Class ultra-performance liquid chromatography in tandem with IMS Q-TOF high-resolution mass spec-
trometry (LC-MS) was used for the analysis. The extract was gradually eluted from a C18 column (Waters UPLC BEH C18–2.1 × 100 
mm, 1.7 μm) using water and methanol containing 0.1 % formic acid (FA). The analytical method was optimized based on compound 
polarity or hydrophilicity [12]. The MS analysis was performed under positive and negative ion scanning modes, with a scan range of 
50–1000 amu. The variability of extraction and instrumentation was was validated based on the recovery and internal standards [18]. 
A technical replicate was created by pooling a composite sample comprising a small volume of each experimental sample with 
extracted water samples as blanks [18]. To monitor instrument stability, these control samples were evenly distributed among the 
injections. 

The LC-MS data were analyzed using Progenesis QI V2.3 (Nonlinear, Dynamics, Newcastle, UK) for baseline filtering, peak 
identification, integral, retention time correction, peak alignment, and normalization [12]. The primary parameters utilized were 5 
ppm precursor tolerance, 10 ppm product tolerance, and 5 % product ion threshold [12]. Compounds were identified by screening 
various databases, including the Human Metabolome Database (HMDB), Lipidmaps (V2.3), METLIN, EMDB, PMDB, and self-built 
database with the precise mass-to-charge ratio (M/z), secondary fragments, and isotopic distribution [16]. After extraction, the 
data were processed by peak elimination with a missing value (ion intensity = 0) in over 50 % of groups, zero substitution with half of 
the minimum value, and screening based on the qualitative results of the compound [16]. Compounds with the scores below 36 (out of 
60) were considered imprecise and were subsequently eliminated. The data matrix consisted of positive and negative ion data [16]. 

K-means clustering was adopted to assess the overall change trend of metabolites between groups. Using the geometric space 
generated by metabolite matrixes that exhibited significant differences between groups, patients were categorized into clusters based 
on proximity criteria utilizing the k-means algorithm [12]. The algorithm comprises the following steps: 1) Placing K points into the 
space represented by the patients being clustered, which represent initial group centroids; 2) Assigning each patient to the group with 
the closest centroid; 3) Recalculating the positions of the K centroids once all patients have been assigned [12]. Repeat Steps 2 and 3 
until the centroids reach immobility, thereby grouping patients into homogenous groups to maximize heterogeneity across the groups 
[12]. The optimal number of clusters is determined by the solution that yields the highest Calinski-Harabasz index value [18]. To 
evaluate the internal quality of the clusters, the stability of the optimal solution was assessed by computing Jaccard bootstrap values 
through 100 iterations [18]. A high degree of stability is indicated by average Jaccard similarities of 0.85 or greater [12]. 

2.5. Statistical analyses 

The microbiota was categorized into Lactobacillus-dominant (LD) or non-Lactobacillus-dominant (NLD) based on a threshold of 80 
% relative abundance of Lactobacillus [19]. The status of genital inflammation was presented by the infiltration of pro-inflammatory 
cells, which were divided into low and high infiltration groups based on the leucocyte number per high power field (HPF), where 5–25 
cells/HPF was classified as low infiltration and over 25 cells/HPF as high. The data were logged for statistical analysis. Receiver 
Operating Characteristics (ROC) analysis was used to identify the metabolites that differentiated patients in the ICC group from those 
in the control group [18]. The discriminatory power of the metabolites was evaluated based on the Area Under the Curve (AUC) values, 
with AUC values greater than 0.8 as strong discriminators [18]. An analysis of variance (ANOVA) was employed to examine the 
demographic variables among patient groups, including age, vaginal pH levels, and metabolite concentrations. Fisher’s exact test was 
used for categorical variables such as smokers’ number and inflammation status. P-values <0.05 were considered statistically different. 
All the data was uploaded online for public access. 

3. Results 

3.1. Cervical cancer patients exhibited different metabolite profiles from control and CIN patients 

We characterized the cervicovaginal metabolomes of non-pregnant individuals from normal cervix group (N group) (n = 10), 
women with cervical intraepithelial neoplasia 1 (CIN1 group) (n = 15), CIN2 group (n = 25), CIN3 group (n = 25), and newly 
diagnosed invasive cervical carcinoma (ICC group) (n = 25) using a global metabolomic approach. Participants were grouped based on 
the histology of colposcopy-directed biopsy samples or conization tissues, which were evaluated by two pathologists with specialized 
training. Supplementary Table S1 provides a comprehensive overview of the patient’s characteristics and demographic information. 
Differences in age, status of genital inflammation, and liquid-based cytology descriptions were found between the groups (p < 0.05). 

A total of 1723 compounds were identified in our metabolome dataset, including 3 hydrocarbons, 7 alkaloids and derivatives, 47 
phenylpropanoids and polyketides, 48 nucleosides, 61 aromatics, 110 heterocyclic compounds, 433 organic acids and derivatives, 576 
lipids and lipid-like molecules, 435 xenobiotics, and 2 partially characterized molecules. 

The Partial Least Squares-Discriminate Analysis (PLS-DA) of the cervicovaginal lavage (CVL) samples of various groups revealed 
that the global metabolomic profiles of ICC patients were distinct from those of other groups in principal component 1 (PC1) and PC2 
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Fig. 1. Cervicovaginal metabolites are associated with cervical lesions. A. Partial least squares-discriminant analysis (PLS-DA) of cervicovaginal 
lavage (CVL) samples from different groups illustrated that global metabolomic profiles of ICC patients were distinct from other groups on principal 
component 1 (PC1) and PC2 (MANOVA, Wilk’s lambda test, p = 0.006). B. 1465 ± 155 metabolites in ICC patients, 1538 ± 190 in the N group 
(Mann-Whitney U test, p = 0.08), 1554 ± 133 in CIN 1 (Mann-Whitney U test, p = 0.056), 1515 ± 144 in CIN 2 (Mann-Whitney U test, p = 0.211) 
and 1500 ± 165 in CIN 3 (Mann-Whitney U test, p = 0.308), with no significant difference in the number of the metabolites between groups. C. 
Metabolomic heatmap showing that metabolites in cervical carcinoma form a unique cluster different from other groups. D. The unique metabolites 
in the ICC group were lipids and organic acids or were related to the carbohydrate digestion and absorption pathways. 
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(Fig. 1A; MANOVA, Wilk’s Lambda test, p = 0.006). Furthermore, Fig. 1B indicates that the number of distinct metabolites in the N and 
CIN 1-CIN 3 groups was similar to that in the ICC group. There were 1465 ± 155 metabolites in ICC patients, 1538 ± 190 in the N 
group (Mann-Whitney U test, p = 0.08), 1554 ± 133 in CIN 1 (Manne-Whitney U test, p = 0.056), 1515 ± 144 in CIN 2 (Manne- 
Whitney U test, p = 0.211), and 1500 ± 165 in CIN 3 (Manne-Whitney U test, p = 0.308) groups (Fig. 1B). 

Furthermore, we found that metabolite distribution was the primary source of differences in metabolic profiles. To assess metabolic 
profiles, we compared the shared and unique metabolites among groups. Our analysis revealed that 86 % (1481/1723) of the identified 
metabolites were shared by all the groups. The ICC group exhibited the highest number of unique metabolites (n = 11), followed by 6 
in the N group, 3 in the CIN 1 group, and one each for the CIN 2 and 3 groups (Supplementary Fig. S1). The unique metabolites for the 
ICC group were lipids and organic acids as revealed by a heatmap of the metabolites (Fig. 1C). These unique lipids and acids were 
mainly involved in carbohydrate digestion and absorption (Fig. 1D) (Supplementary Tables S2–S5). 

Fig. 2. Cervicovaginal metabolites trend from normal to CIN and then to ICC patients. A total of 421 metabolites were selected using the k-means 
clustering algorithm with significant differences among groups (ANOVA, p < 0.05), and divided into 9 clusters with different change trends among 
groups. B. Metabolites in cluster 2, showing a sharp decrease from N to CIN 1 and no change in further progression, included 120 metabolites mainly 
related to protein digestion and absorption or carbohydrate metabolism, including propanoate and pentose-glucuronate interconversions; C, Cluster 
3, consisting of 75 metabolites from phenylalanine and pyrimidine metabolism pathways exhibited a definite increase in ICC compared to all the 
other groups; D, 18 metabolites showing higher concentrations in CIN3 group than the others in Cluster 7, mainly from the purine meta-
bolism pathway. 
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3.2. Specific metabolites were identified as potential biomarkers of normal, CIN, and ICC 

To explore the association between patients and cervicovaginal metabolome, we detected the trend of changes in distinctive 
metabolites across all the groups using the k-means clustering algorithm. A total of 421 metabolites with significant differences among 
groups (ANOVA, p < 0.05) were selected and divided into 9 clusters according to different change trends (Fig. 2A). Cluster 2 showed a 
sharp decrease from N to CIN 1, containing 120 metabolites that are related to protein digestion and absorption, as well as carbo-
hydrate metabolism including propanoate and pentose-glucuronate interconversions (Fig. 2B). Cluster 3, consisting of 75 metabolites 
from phenylalanine and pyrimidine metabolism pathways, exhibited a definite increase in ICC (Fig. 2C). Moreover, 18 metabolites, 
which are mainly involved in the purine metabolism pathway, exhibited higher concentrations in the CIN3 group than in Cluster 7, 
(Fig. 2D). Distinctively, Cluster 5 containing 58 metabolites showed a continuous decreasing trend from the normal to CIN and ICC 
groups, indicating the possible changes in the metabolic spectrum of ICC (Fig. S) 

Given the distinct metabolomes observed among the patient group, we proceeded to examine the respective signatures of these 
groups through the receiver operating characteristic (ROC) analysis. As illustrated in Fig. 3, the specific metabolite, Valyl-Glutamate, 
distinguished the normal samples from the others with an AUC value of 0.865(Fig. 3E), which is lower in normal patients (Fig. 3A). 
Moreover, using ROC analysis, we identified N, N′-Diacetylbenzidine and oxidized glutathione as discriminators that distinguish ICCs, 
with AUC values of 0.847 and 0.842, respectively (Fig. 3F–G). Notably, the concentrations of these metabolites were significantly 
higher in the ICC group (Fig. 3B–C). 4-Hydroxydebrisoquine, whose concentrations were higher in the CIN3 group (Fig. 3D), was a 
discriminator that differentiates the CIN3 group from the others with a value of 0.827 (Fig. 3H). 

3.3. Vaginal microbiota in cervical cancer patients differs from control and CIN patients 

Following 16S RNA sequencing, a principal coordinate analysis (PCoA) with the Bray-Curtis dissimilarity index was conducted to 
identify significant differences in bacterial composition between carcinoma samples and controls (Fig. 4A) (permutational multi-
variate analysis of variance, MANOVA, p = 0.001). The presence of greater bacterial diversity in carcinoma patients was confirmed by 
a high Shannon-Wiener index at the species level compared to N, CIN 1, CIN 2, and CIN 3 (Fig. 4B) (pairwise Wilcoxon rank-sum test, p 

Fig. 3. Specific metabolites were identified as potential biomarkers of normal, CIN and ICC. A. concentration of Valyl-Glutamate in the normal and 
the others (p = 0.0002); B–C. concentrations of N,N′-Diacetylbenzidine and Oxidized glutathione in the ICCs and the others (p1<0.0001, 
p2<0.0001); D. concentration of 4-Hydroxydebrisoquine in the CIN3 patients and the others (p < 0.0001); E. ROC of Valyl-Glutamate in the normal 
and the others (AUC = 0.865, p = 0.0006); F-G. ROC of N,N′-Diacetylbenzidine and Oxidized glutathione in the ICCs and the others (AUC1 = 0.847, 
p < 0.0001, AUC2 = 0.842, p < 0.0001); H, ROC of 4-Hydroxydebrisoquine in the CIN3 patients and the others(AUC = 0.827, p < 0.0001). 
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< 0.001). Similarly, high microbial diversity in patients with cervical carcinoma has been reported. We next identified different 
microbes in the patients at the genus and species level. Compared to the N group, The Lactobacillus community was dominated in the N 
group, however, its proportion was diminished with the progression of cervical dysplasia. The diversity of metabolites in the ICC group 
was the greatest, with non-Lactobacillus taxa such as Prevotellaceae, Streptococcaceae, and Atopobiaceae being the dominant ones 
(Fig. 4C). At the species level, Lactobacillus crispatus was dominant in the N group, but it was less abundant in the patient groups, with 
complete depletion in the ICC group. In contrast, the abundance of L. johnsonii and L. iners was higher in the ICC group (ANOVA, p <
0.001) (Fig. 4D). 

3.4. Vaginal microbiota is associated with cervicovaginal metabolites 

Cervicovaginal microbiota directly affects the cervicovaginal microenvironment through metabolite production that is crucial for 
cervicovaginal health. We investigated whether the discrepancies in vaginal microbiota accounts for the observed variations in the 
metabolome dataset. By the PLS-DA plots of the samples based on microbiota composition, we observed that the metabolomes of 
patients contained Lactobacillus-dominated (LD) vaginal microbiota, forming a distinct cluster from the non-Lactobacillus-dominated 
(NLD) microbiota (Fig. 5A). This difference was particularly pronounced on PC1, which accounted for 21.1 % of the variation in the 
dataset and was statistically significant according to the Mann-Whitney U test (p = 0.002). As shown in Fig. 5C, the metabolome 
dataset was clustered into two clusters by LD and NLD, and the metabolites enriched in NLD were also enriched in the ICC group. These 
metabolites were involved in linoleic acid metabolism and pyrimidine metabolism pathways (Fig. 5B), providing evidence of the 
regulation of the profiles of cervicovaginal metabolites by the cervicovaginal microbiome. 

We then assessed the relationship between the 20 differential metabolites and the 20 validated differential species using Spear-
man’s correlation. We found that the taxa enriched in carcinoma, such as Streptococcus, Prevotella and Gardnerella, were positively 
correlated with the metabolites enriched in carcinoma, such as aflatoxin B1 and 4-hydroxydebrisoquine but were negatively correlated 
with the metabolites enriched in controls, such as hellicoside and 2-hydroxyphenethylaimine. These metabolites enriched in 

Fig. 4. Vaginal microbiota in cervical cancer patients differed from control and CIN patients. A. PCA based on the Bray-Curtis dissimilarity index of 
bacterial composition between carcinoma samples and controls in different groups, MANOVA, p = 0.001; B. Shannon-Wiener index of ICC at the 
species level compared to N, CIN 1, CIN 2 and CIN 3, respectively (pairwise Wilcoxon rank-sum test, p < 0.001); C. compared to the N group, the 
dominance of Lactobacillus communities decreased with the progression of cervical dysplasia, and he ICC group had the highest diversity of mi-
crobes, which was dominated by non-Lactobacillus taxa such as Prevotellaceae, Streptococcaceae, and Atopobiaceae; D. Lactobacillus crispatus was 
dominant in the N group and decreased in patient groups, with complete depletion in the ICC group. By contrast, the abundance of L. johnsonii and 
L. iners was higher in the ICC group (ANOVA, p < 0.001). 
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carcinoma reliably distinguished carcinoma from controls. Consistently, the species enriched in control samples were positively 
correlated with the metabolites from control samples, while negatively correlated with metabolites enriched in carcinoma. These 
results revealed a homogenous metabolic interplay between the vaginal microbiota and the host (Fig. 5D), providing the evidence for 
metabolites as the indicators of cervical carcinoma. 

3.5. The inflammatory microenvironment is related to metabolites in the cervicovaginal microenvironment and vaginal microbiota 

Given the pivotal role of inflammation in tumor progression, we further examined the potential correlation between the cervi-
covaginal metabolome and genital inflammation, which is primarily characterized by the infiltration of pro-inflammatory immune 
cells. As shown in Fig. 6A, the genital inflammation status, was significantly different between the high and low groups, according to 
the metabolome (MANOVA, Wilk’s lambda test, p = 0 0.001) both on PC1 and PC2 (Mann-Whitney U test, p = 0.002). Based on the 
high and low status of genital inflammation, the metabolome revealed two clusters of patients(Fig. 6B), and the patients with high 
status of genital inflammation exhibited higher concentrations of metabolites related to the biosynthesis of unsaturated fatty acids 
(Fig. 6C). 

Vaginal microbiota impacts cervical neoplasia and carcinoma via inflammation caused by non-Lactobacillus species. To better 
understand the relationship between microbiota and inflammation in cervical dysplasia progression, we analyzed the correlation 
between the high status of genital inflammation and LD microbiota and between the low status of inflammation and NLD microbiota. 
The results indicated that oxidized glutathione was positively correlated with adenosine monophosphate, N-acetyl-D-glucosamine 6- 
phosphate, and 3′-AMP, all drastically elevated in the ICC group (Fig. 6D). 

4. Discussion 

Metabolic profiling of cervicovaginal lavages provides great insight into the interplay between the host and vaginal microbiota. 
Four detected metabolites, namely, oxidized glutathione, aflatoxin B1, 4-hydroxydebrisoqunie, and trimeprazine, can reliably 
distinguish ICC patients from healthy individuals. The reduction in the abundance of vaginal Lactobacillus species is associated with the 
microenvironment where immunosuppressors and oxidation products accumulate. Our study also revealed that the metabolic profiles 
of CVL samples are influenced by vaginal microbiota and genital inflammation and represent fundamental differences between normal 
cervix and cervical carcinoma, deepening the understanding of the interplay of microbes and hosts in cervical carcinogenesis and 
providing predictors of patients’ status. 

Vaginal microbiota is known to be closely related to genital inflammation [20] and cervical carcinogenesis [21]. A decrease in the 
abundance of vaginal Lactobacillus species was associated with the risk of cervical neoplasia and cervical cancer. However, the un-
derlying biological and molecular mechanisms remain understudied. 

Metabolic dysregulation is a hallmark of different diseases [15], and previous studies have revealed metabolic biomarkers of 
cervical cancer in plasma [22], feces [23], urine [24], and tumor tissues [25]. Host epithelium, filtrating immune cells, and microbes 
directly interact with each other in the cervicovaginal microenvironment. However, the metabolome of the cervicovaginal micro-
environment of the healthy cervix, cervical neoplasia and cancer have not been comprehensively explored. 

Oxidative damage is related to the pathogenesis of cervical cancer, and epidemiological studies have shown that the serum of 
cervical cancer patients contains high levels of oxidative markers. Aflatoxins are well-known mutagens and carcinogens that are 
recognized biomarkers of cancer risk in humans. Carvajal et al. found out that the presence of aflatoxin B1 led to a six-fold increase in 
the risk for cervical cancer [26,27], (OR 6.1, 95 % CI = 1.4–25.4), which is consistent with our study. 

We observed high levels of nucleic acid and energy metabolites, such as 3′-UMP, cyclic pyranopterin monophosphate, guanosine 
monophosphate, 3′-AMP, adenosine monophosphate, and 2′-deoxyguanosine 5′-monophosphate, in the CVL samples of the ICC group 
compared to N and CIN groups. This could be explained by enhanced DNA synthesis and degeneration caused by increased cell 
proliferation and necrosis in the tumor microenvironment. Adenosine monophosphate and cyclic pyranopterin monophosphate are 
effective immune inhibitors [27]. Hence, enrichment of nucleic acids in the cervicovaginal microenvironment might be an emerging 
hallmark of cancer metabolism [15]. 

The present study identified communities characterized by enriched microbial genera such as Gardnerella, Prevotella, Streptococcus, 
and Atopobium and by the depletion of Lactobacillus [18]. These enriched genera are commonly observed in BV patients [28–31], 
indicating the important role of microbiota in carcinogenesis. This result points to a way to prevent cervical carcinoma by increasing 
Lactobacillus in the cervicovaginal microenvironment. 

We are not aware of any published studies investigating the mechanism underlying the interaction between vaginal bacteria and 
hosts, except for those reported in clinical studies. Additionally, comprehensive profiling studies of the metabolic processes in the 
cervicovaginal microenvironment relevant to the microbiome are lacking. Our study was designed to elucidate the metabolomic 
profiles of cervicovaginal lavage and vaginal microbiota in normal cervix, cervical intraepithelial neoplasia, and carcinoma patients. 

Fig. 5. Vaginal microbiota influencing the cervicovaginal metabolome. A. PLS-DA plots based on microbiota composition and metabolomes for 
patients with Lactobacillus-dominated (LD) vaginal microbiota formed a cluster significantly different from the metabolomes from patients with 
non-Lactobacillus dominance (NLD) PC1 (Mann-Whitney U test, p = 0.002); B. Metabolomic heatmap showing two clusters according to LD and 
NLD; C. Metabolites enriched in NLD were also enriched in the ICC group, and were related to linoleic acid metabolism and pyrimidine metabolism 
pathways; D. Spearman’s correlation between the 20 differential metabolites and the 20 validated differential species. 
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The sample size per group in this study was relatively small, which may compromise the statistical power. However, we believe that 
the inclusion of the consecutive tissues in separate groups renders our results reliable. Another limitation lies in the mass spectroscopy 
technique itself as some rare metabolites might be missed, which can be addressed in a future study with improved metabolomics 
coverage. 

Collectively, the cervicovaginal metabolome and microbiome demonstrated that metabolic fingerprinting of the cervicovaginal 
microenvironment could be a reliable discriminator of individuals with cervical dysplasia and ICC. Moreover, our analysis revealed 
that non-Lactobacillus communities were enriched in cervical carcinoma, and that differential species and metabolites were corre-
lated. In conclusion, the complex host-microbe interplay in the cervicovaginal microenvironment generates unique metabolic fin-
gerprints that could be exploited for diagnosis and therapeutics to ultimately improve women’s health. 
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