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Abstract: It is a widely known that heat stress induces a reduction in milk production in cows and
impairs their overall health. Studies have shown that taurine protects tissues and organs under
heat stress. However, there have yet to be studies showing the functions of taurine in mammary
alveolar cells-large T antigen (MAC-T) (a bovine mammary epithelial cell line) cells under heat
shock. Therefore, different concentrations of taurine (10 mM, 50 mM, and 100 mM) were tested to
determine the effects on heat-induced MAC-T cells. The results showed that taurine protected the
cells against heat-induced damage as shown by morphological observations in conjunction with
suppressed the translocation and expression of heat shock factor 1 (HSF1). Moreover, taurine not
only reversed the decline in antioxidase (superoxide dismutase (SOD) and glutathione peroxidase
(GSH-PX)) activities but also attenuated the accumulation of malondialdehyde (MDA). Meanwhile,
mitochondrial damage (morphology and complex I activity) resulting from heat exposure was
mitigated. Taurine also alleviated the rates of cell apoptosis and markedly depressed the mRNA
expressions of BCL2 associated X, apoptosis regulator (BAX) and caspase3. Furthermore, compared
with the heat stress (HS) group, the protein levels of caspase3 and cleaved caspase3 were decreased
in all taurine groups. In summary, taurine improves the antioxidant and anti-apoptosis ability of
MAC-T cells thereby alleviates damage of cells due to heat insults.
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1. Introduction

With the global temperature continuously rising, the negative impact of the green-
house gas emissions on animal husbandry is increasingly intensified [1]. Heat stress, as
a major environmental stressor, brings major challenges to the dairy industry [2], with
previous studies reporting that heat stress not only decreases the milk production but
also impairs the health of cows, including by increasing somatic cell counts and metabolic
disorders occurrence [3,4]. Therefore, heat stress causes great economic loss to the dairy
industry [5,6]. Meanwhile, the metabolism of mammary epithelial cells is also changing
dramatically [7]. In one study, it was found that, compared with a thermoneutral group,
there were 2716 markedly differently expressed genes in the bovine mammary epithelial
cells of the heat-treated group [8]. Accumulating evidence indicates that heat stress is
associated with a change in cell junction [9], decreasing cell viability, increasing oxidative
stress, and increasing cell apoptosis [10]. Therefore, it is of vital significance to identify
effective means to mitigate the damage caused by heat stress.

A variety of research has been directed toward enhancing the functions of the mam-
mary gland under high ambient temperatures to steadily maintain the lactation of the
mammary epithelial cells [11,12]. Taurine is recognized to be a beta-amino ethanesulfonic
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acid, which can be found to exist as a free state in all animal tissues. Moreover, taurine
has many biological and pharmacological functions [13] and is considered to be a strong
antioxidant. Extensive research has shown that taurine improves antioxidant levels, such
as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), as well as catalase
(CAT) [14,15]. Previous studies have also focused on the importance of taurine in terms of
its anti-apoptosis effect, with one study indicating taurine markedly hampered increases in
the expression of Bax, Caspase9, Caspase3, Cytochrome c (Cyt-c) and P53 in broiler aortic
endothelial cells under heat shock [16]. Furthermore, the taurine additive has been reported
to have anti-inflammatory effects [17,18], as well as treating intractable diseases, such as
Alzheimer’s disease [19]. Thus, taurine appears to be an attractive candidate for use as a
cytoprotector and heat-induced mitigators; therefore, it seems to be a reasonable hypothesis
that taurine may attenuate heat-induced dysfunction in cow mammary epithelial cells.

However, to the best of our knowledge, no report has yet documented any effects
of taurine in mammary alveolar cells-large T antigen (MAC-T) cells under heat exposure.
Therefore, the aim of this study was to investigate the effects of taurine supplementation on
the expressions of genes and proteins related to oxidative stress and apoptosis under control
and heat stress conditions in order to investigate the roles of taurine and its mechanism of
action in mitigating heat-induced damage caused to MAC-T cells.

2. Materials and Methods
2.1. Chemicals

Taurine (suitable for cell culture, meets USP testing specifications) was purchased
from Sigma Chemical Co. (St. Louis, MO, USA).

2.2. Cell Culture and Treatment

MAC-T (a bovine mammary epithelial cell line) cells (a gift from associate researcher
G. Xing, Jiangsu Academy of Agricultural Sciences) were incubated in Dulbecco’s modified
Eagle’s medium (DMEM)/Ham’s F-12 medium (Hyclone, Logan, UT, USA) with 10%
fetal bovine serum (FBS) (ScienCell, Carlsbad, CA, USA) and 200 U/mL of penicillin and
streptomycin (Hyclone, Logan, UT, USA). The cells were cultured at 37 ◦C in a humidified
atmosphere containing 5% CO2.

The cells were divided into five groups through randomization: A control (C) group,
heat stress (HS) group, low taurine (HS + LTau) group, moderate taurine (HS + MTau)
group, and high taurine (HS + HTau) group. After the cells reached 70% confluence, prior to
heat treatment, they were cultured for 24 h under DMEM/F12 with serum-free conditions.
Then, the HS group was cultured at 42.5 ◦C for one hour and recovered at 37 ◦C for another
12 h; the taurine groups were pretreated with 10 mM, 50 mM, 100 mM of taurine for two
hours followed by culturing at 42.5 ◦C for one hour and recovery at 37 ◦C for 12 h. The C
group was continuously cultured in 37 ◦C and received no taurine treatment.

2.3. Cell Viability

Cell viability was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) medium (KeyGEN BioTECH, Nanjing, China). The MAC-T cells were
seeded in 96-well plates prior to incubating for one hour or not at 42.5 ◦C; then, the cells
were recovered at 37 ◦C for different amounts of time. Additionally, the cells were treated
with various concentrations of taurine (0, 10, 50, 100, and 200 mM) for two hours and then
cultured for another 12 h. According to the instruction, 50 µL of the 1 × MTT solution
(1:4 diluted with dilution buffer) was added to each well, and the cells were maintained
for four hours at 37 ◦C containing 5% CO2. Then, 150 µL of dimethyl sulfoxide (DMSO)
(Sigma, St. Louis, MO, USA) was added, and the plates were oscillated before measuring
the OD at 550 nm using a microplate reader.
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2.4. Ultrastructural Observation

The MAC-T cells were seeded into six-well plates and treated as described above. Then,
2 mL of 2.5% glutaraldehyde fixative was added into each well. The cells were scraped
gently and collected into the centrifuge tubes. Then, the samples were removed from the
fixing solution and rinsed three times with phosphate buffer (PBS) before administering
1% osmium tetroxide for postfixing. After dehydration, infiltration, and embedding, the
samples were cut into ultrathin (60–80 nm) sections and stained with uranyl acetate and
lead citrate. Then, the samples were observed with a transmission electron microscope
(HT7700, Hitachi, Tokyo, Japan).

2.5. Detection of Mitochondrial Complex I Activity

Mitochondrial complex I activity was estimated via the colorimetric method using
commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The de-
termination consisted of three steps: Background control determination, total activity
determination, and non-specific activity determination. Mitochondrial proteins were ex-
tracted with a mitochondrial protein extraction kit (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China), and complex I activity was quantified in the mitochondria.

2.6. Antioxidant Capacity Measurement

The cells were cultured in six-well plates for 48 h prior to heat-induced treatment;
then, they were treated and harvested. The oxidative parameters (SOD, GSH-PX, and
MDA) were detected using the corresponding commercial kits (Nanjing Jiancheng Bioengi-
neering Institute, Nanjing, China). Furthermore, the protein concentration was detected
using a protein assay kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) in
accordance with the manufacturer’s instructions. Then, we used a microplate reader to
measure the absorbance of each well.

2.7. Detection of Apoptosis

Cell apoptosis was assessed using an Annexin V-fluorescein isothiocyante (FITC)
/propidium iodide (PI) apoptosis detection kit (Absin Biochemical Company, Shanghai,
China). According to the manufacturer’s recommendation, the cells were treated as indi-
cated before being harvested and then washed twice with cold PBS. Following this, 300 µL
of 1 × binding buffer (1:9 diluted with binding buffer) was added to suspend the cells. The
cells were stained with 5 µL of Annexin V-FITC and 5 µL of PI in each tube. Before the
analysis, we added 200 µL of the 1× binding buffer to each well. Finally, cell apoptosis was
analyzed with a FACS Calibur (BD Biosciences, Bedford, MA, USA) flow cytometer (FCM),
and 1 × 104 cells were detected for each tube at minimum. The results were analyzed using
FlowJo software.

2.8. RNA Isolation and Quantitative Real-Time PCR (qPCR)

The total RNA was extracted with a Trizol reagent (Invitrogen, Carlsbad, CA, USA)
and reversed transcribed with a PrimeScript RT reagent (Takara, Tokyo, Japan). The purity
of the total RNA and cDNA was measured by a nanodrop spectrophotometer. Primers
were designed by the National Center for Biotechnology Information (NCBI) Primer-
BLAST and synthesized by a commercial corporation (Sangon Biotech, Shanghai, China),
as shown in Table 1. Ribosomal protein S15 (RPS15), ribosomal protein S9 (RPS9), and
ubiquitously expressed prefoldin like chaperone (UXT) were used as housekeeping genes.
The mixtures (cDNA products, premix EX Taq, primers, ROX, and water) were performed
in a quantstudio 5 real-time PCR instrument (Applied Biosystems, Carlsbad, CA, USA)
using a SYBR premix EX Taq kit (Takara, Tokyo, Japan). The 2−∆∆Ct method was applied
to calculate the relative mRNA abundance.
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Table 1. Sequences of primers for the real-time PCR assay.

Genes GenBank Number Primer Sequence (5′-3′)

RPS9 NM_001101152.2
Forward: TCTTGGTTTCCAGAGCGTTG
Reverse: ATACTCGCCGATCAGCTTCA

UXT NM_001037471.2
Forward: CGCTACGAGGCTTTCATCTCT
Reverse: CGAGTGGTTAGCTTCCTGGAG

RPS15 NM_001024541.2
Forward: CAAGATGGCGGAAGTGGAAC
Reverse: GTAGCTGGTCGAGGTCTACG

BAX NM_173894.1
Forward: CTGAGCGAGTGTCTGAAGCG
Reverse: ACAGCTGCGATCATCCTCTG

BCL2 NM_001166486.1
Forward: AGGCTGGGACGCCTTTG
Reverse: GGGCTTCACTTATGGCCCAG

Caspase3 XM_015473877.2
Forward: TGGCGAAATGCAAAGAACGG
Reverse: TGTGAGCGTGCTTTTTCAGC

HSF1 NM_001076809.1
Forward: AGCACGCCCAGCAACAGAAAG
Reverse: CCGCCGTCGTTCAGCATCAG

HSP90 NM_008302.3
Forward: GATGGAAGAGGAGGAGGTGGAGAC
Reverse: AGGGCGTCAGACGAGTTTGAAATC

2.9. Immunofluorescent Staining

The cells were cultivated in six-well plates 48 h before treatment. After heat exposure,
they were washed two times with PBS and fixed in 1 mL 4% paraformaldehyde for 15 min.
After permeabilizing and blocking, primary antibody: Heat shock factor 1 (HSF1) (dilution
1:200, Proteintech, Wuhan, China) was added, and the samples were incubated for 12 h
at 4 ◦C. After three washes with PBS, the cells were incubated with a secondary antibody
for 50 min at room temperature. Then, after washing again, the nucleus were stained
with 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) for 10 min. Subsequent imag-
ing and analysis of the samples were performed using a fluorescence microscope (Zeiss,
Oberkochen, Germany).

2.10. Western Blotting Assay

The protein expressions of HSF1, heat-shock protein 90 (HSP90), caspase3, and cleaved
caspase3 were examined via western blot assay. The cells were lysed with RIPA buffer
for 30 min on the ice and centrifugated at 12,000 rpm for 10 min at 4 ◦C. Then, the
supernatants were collected as the total protein solution. Proteins were determined using
a BCA protein quantification kit (Nanjing Jiancheng Bioengineering Institute, Nanjing,
China) according to the manufacturer’s instructions. Proteins were denatured by heating.
Then, the lysates were separated, transferred, and blocked by 5% milk. In accordance
with the antibody instructions, membranes were incubated overnight at 4 ◦C with the
following primary antibodies: HSF1 (1:1000, Proteintech, Wuhan, China), HSP90 (1:2000,
Proteintech, Wuhan, China), caspase3 (1:400, Proteintech, Wuhan, China). The membranes
were washed three times, and then the secondary antibodies were added for 30 min and
diluted at a ratio of 1:3000. The protein bands were detected with a luminescent image
analyzer (Fujifilm, Tokyo, Japan) using an enhanced chemiluminescence (ECL) substrate
(Thermo Scientific, Waltham, MA, USA). Finally, western blotting results were quantified
using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

2.11. Statistical Analysis

All measurements were performed in triplicate, and all data was expressed as the
mean± standard error of the mean (SEM). Statistical analysis was performed with one-way
ANOVA followed by the least significant difference (LSD) method for multiple comparisons.
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All statistical tests were carried out by SPSS 21.0 (IBM, New York, NY, USA), with p < 0.05
considered as statistically significant. * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results
3.1. Cell Viability and Change in Cell Morphology of Mammary Epithelial Cells after
Heat-Induced Treatment

In order to explore the most appropriate time point for treating the MAC-T cells, the
cells were exposed to heat shock for one hour, and recovered at 37 ◦C for different durations.
As shown in Figure 1A, the cell viability gradually decreased within 12 h recovery time,
causing about a 40% decrease in cell viability (p < 0.001). However, the cell viability almost
fully recovered at 24 h. In addition, when the cells were treated with 0–200 mM taurine
(Figure 1B) for two hours followed by cultivation for another 12 h, no significant impact
of the cell viability was observed up to 200 mM taurine (Figure 1C). Hence, we treated
the cells at 12 h recovery time with three different doses of taurine (10 mM, 50 mM, and
100 mM) to investigate the effects of taurine on heat-induced MAC-T cells.
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Figure 1. Effects of taurine supplementation on the cell viability and cell morphology of mammary
alveolar cells-large T antigen (MAC-T) cells. (A) cell viability induced by heat shock on MAC-T cells,
(B) chemical structure of taurine, (C) cell viability when treated with different concentrations of
taurine for two hour and then recovered for another 12 h, and (D) phase-contrast micrographs of
MAC-T cells were exposed to heat stress with and without taurine. Magnification 200×. * p < 0.05,
** p < 0.01, and *** p < 0.001.

Cell morphology was also observed with an inverted light phase-contrast microscope.
Cells in the C group had a normal shape. In contrast, some cells exhibited abnormal cell
junction and shape in the HS group, which coalesced into a mass. Interestingly, 50 mM
and 100 mM taurine protected the morphology of the MAC-T cells against heat-induced
alteration (Figure 1D).

3.2. Taurine Alleviates Heat Shock Response in MAC-T Cells

Moreover, we researched whether taurine played a role in the heat-induced treatment
that triggered the heat shock response of MAC-T cells. As shown in Figure 2A, the heat
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shock response of the cells was activated for essential survival under heat exposure. The
transcriptions of HSF1 and HSP90 were significantly enhanced. Then, we studied the
translocation of HSF1 from the cytoplasm to the nucleus, and Figure 2B indicated that
cells in the C group exhibited low levels of HSF1, while the cells in the HS group showed
higher levels of HSF1 in both the cytoplasm and the nucleus, and taurine suppressed
the translocation of HSF1. In addition, the mRNA expression levels and protein levels
of HSF1 were increased in the HS group compared with the C group, while they were
markedly decreased in all taurine groups. The change in the mRNA expression abundance
of HSP90 was consistent with that of HSF1; however, the protein expression of HSF90 was
not significant between groups (Figure 2E).
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3.3. Taurine Relieves Structural Damage and the Decline in the Complex I Activity of
Mitochondria under Heat Shock

In addition, to further study the function of taurine on the intracellular structure of
heat-induced MAC-T cells, ultrastructural alterations were observed using a transmission
electron microscope. As shown in Figure 3A, the C group displayed a complete struc-
ture and rich cristae in the mitochondria. The mitochondrial morphology was markedly
changed under heat stress, with observations such as the swollen structure of the mito-
chondria with the loss of the cristae in the HS group. Furthermore, 10 mM and 50 mM of
taurine effectively attenuated the structural damage done to the mitochondria. Moreover,
mitochondrial complex I activity was suppressed (p < 0.05) by heat exposure, and was
markedly elevated in the HS + LTau group (p < 0.05) (Figure 3B).
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3.4. Taurine Enhances Antioxidant Capacity of Heat-Induced MAC-T Cells

To investigate whether taurine can affect the antioxidant capacity of MAC-T cells
induced by high-temperature, some antioxidant parameters were detected in this study.
Our results showed that the MDA level was significantly higher in the HS group than in
the C group (p < 0.01), and the activities of SOD and GSH-PX were reduced in the HS group
compared to in the C group (p < 0.01). The MAC-T cells in the taurine groups exhibited
lower levels of MDA than in the HS group (p < 0.01) (Figure 4B). In addition, there was no
marked difference in the SOD activity between the HS and HS + LTau groups; however, the
activities of SOD in the HS + MTau group and HS + HTau group were significantly higher
than in the HS group (Figure 4A). Similarly, pretreatment with 10mM taurine reversed
the activities of GSH-PX in the HS-induced MAC-T cells, while the other two groups
showed no effect (Figure 4C). In summary, heat stress associated with oxidative damage
was effectively declined by taurine.

Cells 2021, 10, x FOR PEER REVIEW  8 of 13 
 

 

group compared to in the C group (p < 0.01). The MAC‐T cells in the taurine groups ex‐

hibited lower levels of MDA than in the HS group (p < 0.01) (Figure 4B). In addition, there 

was no marked difference  in the SOD activity between the HS and HS + LTau groups; 

however, the activities of SOD in the HS + MTau group and HS + HTau group were sig‐

nificantly higher than in the HS group (Figure 4A). Similarly, pretreatment with 10mM 

taurine reversed the activities of GSH‐PX in the HS‐induced MAC‐T cells, while the other 

two groups showed no effect (Figure 4C). In summary, heat stress associated with oxida‐

tive damage was effectively declined by taurine. 

 

Figure 4. Taurine improved the activities of antioxidant enzymes and the antioxidant capacity of heat‐induced MAC‐T 

cells. (A) the activity of superoxide dismutase (SOD), (B) malondialdehyde (MDA) production, and (C) glutathione pe‐

roxidase (GSH‐PX) activity. ** p < 0.01, and *** p < 0.001. 

3.5. Taurine Reduces Cell Apoptosis Induced by Heat Shock 

We next investigated whether taurine could also relieve the level of cell apoptosis in 

heat‐induced MAC‐T cells. The rates of cell apoptosis were detected with an Annexin V‐

FITC/PI detection kit, and the results were shown in Figure 5A. The ratio of cell apoptosis 

increased markedly when the MAC‐T cells were treated with heat shock (p < 0.001). The 

10 mM, 50 mM, and 100 mM of taurine treatments all significantly alleviated cell apoptosis 

in  the  heat  shock‐induced MAC‐T  cells.  In  addition,  compared  to  the HS  group,  the 

mRNA  abundance  of  BCL2  associated X,  apoptosis  regulator  (BAX)  (a  pro‐apoptosis 

marker), caspase3 (a pro‐apoptosis marker), and the ratio of BAX/BCL2 apoptosis regula‐

tor (Bcl‐2) were markedly decreased in all taurine groups (Figure 5C,E,F), while there was 

no significant difference with the C group. Furthermore, compared with the HS group, 

the protein expressions of caspase3 and cleaved caspase3 declined with all taurine treat‐

ments—but at varying degrees (Figure 5G). Therefore, taurine may play an anti‐apoptotic 

role by rescuing cells under heat exposure. 
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(A) the activity of superoxide dismutase (SOD), (B) malondialdehyde (MDA) production, and (C) glutathione peroxidase
(GSH-PX) activity. ** p < 0.01, and *** p < 0.001.

3.5. Taurine Reduces Cell Apoptosis Induced by Heat Shock

We next investigated whether taurine could also relieve the level of cell apoptosis
in heat-induced MAC-T cells. The rates of cell apoptosis were detected with an Annexin
V-FITC/PI detection kit, and the results were shown in Figure 5A. The ratio of cell apoptosis
increased markedly when the MAC-T cells were treated with heat shock (p < 0.001). The
10 mM, 50 mM, and 100 mM of taurine treatments all significantly alleviated cell apoptosis
in the heat shock-induced MAC-T cells. In addition, compared to the HS group, the
mRNA abundance of BCL2 associated X, apoptosis regulator (BAX) (a pro-apoptosis
marker), caspase3 (a pro-apoptosis marker), and the ratio of BAX/BCL2 apoptosis regulator
(Bcl-2) were markedly decreased in all taurine groups (Figure 5C,E,F), while there was no
significant difference with the C group. Furthermore, compared with the HS group, the
protein expressions of caspase3 and cleaved caspase3 declined with all taurine treatments—
but at varying degrees (Figure 5G). Therefore, taurine may play an anti-apoptotic role by
rescuing cells under heat exposure.
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Figure 5. Taurine pretreatments attenuated cell apoptosis in MAC-T cells under heat exposure. (A) effects of taurine
on apoptosis in MAC-T cells induced by heat shock analyzed via flow cytometry. (B) cell apoptosis rates. (C) mRNA
abundance of BCL2 associated X, apoptosis regulator (BAX). (D) mRNA abundance of BCL2 apoptosis regulator (Bcl-2).
(E) the ratio of BAX/Bcl-2. (F) mRNA abundance of caspase3. (G) the protein expression of caspase3 and cleaved caspase3
were determined by Western blotting. All data are presented as the mean ± SEM. * p < 0.05; ** p < 0.01; *** p < 0.001.

4. Discussion

Earth’s increasing temperature has had a major impact on the dairy industry, includ-
ing reducing productivity [20,21], increasing metabolic disorders prevalence, and even
enhancing mortality [22]. Furthermore, heat stress induces oxidative stress, apoptosis, and
other series of events in cow mammary epithelial cells in vitro [23,24]. Many studies have
focused on identifying additives that can relieve the damage caused by heat shock. Taurine
was first isolated from ox bile, which has a wide variety of biological and pharmacological
activities [13]. Many previous studies have shown taurine as a kind of antioxidant [25], a
nutritional supplementation [26], that is strong when focused on minimizing the severity of
various diseases caused by oxidative damage and many kinds of stress [19,27,28]. Although
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there are many studies on taurine, there have been none—until now—investigating its
molecular mechanism in bovine mammary epithelial cells under heat stress. This study
was thus the first to clarify the effects of taurine pretreatments in heat-induced MAC-T
cells, which were cultivated at 42.5 ◦C for one hour and recovered at 37 ◦C for 12 h.

Previous cell culture-based studies have investigated that the cell viability of heat-
induced bovine mammary epithelial cells (BMECs) is the lowest when cells are recovered
for 12 h at 37 ◦C [24], which is consistent with the results of our present study. Furthermore,
it has been indicated that a considerable additional dosage of taurine has been used from
1 to 100 mM concentrations [29]. In this study, we used 0–200 mM of taurine to study
taurine’s effects on cell viability and found that pretreatment with taurine became toxic
when the concentration reached 200 mM. Therefore, this study was designed to study the
dosages of 10 mM, 50 mM, and 100 mM.

When cells survive under heat exposure, their heat shock response is activated. The
overexpression of heat shock protein (HSP) is triggered by HSF1. HSF1, which separates
with HSPs (HSP90 for the most part), enters the nucleus and induces the expression of
downstream heat shock element regulatory genes [30]. Our data indicated that the heat
stress upregulated the mRNA expression abundance of HSF1 and HSP90. With the different
recovery times, the expression level fluctuated [31]. Furthermore, the translocation of HSF1
from the cytoplasm to the nucleus also increased in the MAC-T cells under heat shock. In
contrast, all the different taurine supplementation levels reduced the translocation of HSF1
and suppressed the mRNA abundance and protein levels of HSF1. However, taurine had
no effect on the protein expression of HSP90. These findings were consistent with the study
of Belal in terms of the role of taurine in the mRNA and protein expression levels of HSP90
in liver tissue [32]. Future studies are needed to identify the levels of other HSPs under
heat stress and further determine the effects of taurine. The present study indicated that
taurine improved the thermotolerance of the MAC-T cells by reducing the translocation
and the protein level of HSF1 in order to prevent the expression of downstream heat shock
element regulatory genes in heat-induced MAC-T cells.

It is widely accepted that mitochondrial functions depend on the integrity of mi-
tochondria. Mitochondrial calcium influx is triggered when it suffers an attack. Then,
the mitochondrial nucleases are activated to indiscriminately degrade all mitochondrial
polynucleotides [33]. In this study, ultrastructural observation showed that heat exposure
could damage the mitochondrial structure, but, when the cells were pretreated with dif-
ferent concentrations of taurine, this damage was relieved. Moreover, the mitochondrial
complex I activity in the HS + LTau group was elevated to resist mitochondrial dysfunc-
tion. These results were supported by those of Zhuang, studying in chronic heat-stressed
broilers [34], and Jong, studying cardiomyocytes [35].

Meanwhile, the present study provided insight into the role of taurine as an antiox-
idant. The steady-state concentrations of pro-oxidants and antioxidants are disturbed,
which induces oxidative stress in cells [36]. Traditionally, SOD and GSH-PX are the main
antioxidant defense systems in cells and are associated with the antioxidant capacity of
cells [37]. Heat stress has been considered to decrease the activities of SOD [23,24] and
GSH-PX [34], while MDA (a last product of lipid peroxidation) levels have been increased
under heat shock in many previous studies [23,24,38]. Consistently, taurine can rescue
oxidative stress by restoring the activity of SOD and decreasing the level of MDA in the
present study. Interestingly, compared with the HS group, taurine significantly decreased
the levels of GSH-PX only in the HS + LTau group [39], which suggested that it perhaps
depended on the taurine dosage. Several studies have proposed that taurine decreases
oxidative stress by forming a conjugate (5-taurinomethyluridine) with a key uridine moiety
in the wobble position of mitochondrial tRNALeu (UUR), the deficiency of which leads to
the defective assembly of respiratory chain complex I, resulting in the cell undergoing ox-
idative stress; this then indicates that taurine played a vital role in attenuating the oxidative
stress [35,40].
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It is demonstrated that heat stress can trigger oxidative stress [23,24], and exposure to
oxidative stress induces a wide series of responses, such as apoptosis and, finally, necro-
sis [41,42]. In the present study, the taurine pretreatment groups exhibited significantly
declined the rates of apoptosis when compared with the HS group. The mRNA expression
levels of BAX and caspase3 were markedly lower than those of the HS group. Moreover,
the ratio of BAX/Bal-2 was decreased significantly. Furthermore, the protein levels of
caspase3 and cleaved caspase3 in the HS + LTau, H S+ MTau, and HS + HTau groups were
decreased when compared with those of the HS group. These results were line with the
studies of Kai Liu in porcine kidney-15 cells [43] and Yan Li in PC12 cells [29]. Based on
the above investigations, it could be concluded that taurine directly rescued mammary
epithelial cells by decreasing the rates of apoptosis in order to maintain the capacity of the
mammary glands to synthesize and store milk.

5. Conclusions

In general, heat stress significantly enhanced the translocation and expressions of HSF1
and the mRNA abundance of HSF90, to the point that a heat stress response was triggered.
Furthermore, heat exposure–induced damage done to the mitochondria as well as oxidative
stress were activated in the MAC-T cells. Then, exposure to oxidative stress induced the
cell apoptosis. On the one hand, taurine effectively inhibited the translocation of HSF1
and the mRNA and the protein levels of HSF1 in order to improve the thermotolerance of
the MAC-T cells. On the other hand, taurine relieved damage done to the mitochondrial
structure and the decline in complex I activity, thereby rescuing the antioxidants activities.
Finally, taurine reversed the rates of apoptosis in the HS-induced MAC-T cells (Figure 6).
Therefore, this study provided useful evidence that taurine, as a novel natural additive,
could possibly be used in cow feed under heat exposure.
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Abbreviations

BMECs bovine mammary epithelial cells
MAC-T mammary alveolar cells-large T antigen, a bovine mammary epithelial cell (BMEC) line
MTT measuring 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
PI propidium iodide
DAPI 4′,6-Diamidino-2-phenylindole dihydrochloride
RPS9 ribosomal protein S9
UXT ubiquitously expressed prefoldin like chaperone
RPS15 ribosomal protein S15
HSF1 heat shock transcription factor 1
HSP90 heat shock protein 90
BAX BCL2 associated X, apoptosis regulator
BCL2 BCL2 apoptosis regulator
SOD superoxide dismutase
GSH-PX glutathione peroxidase
MDA malondialdehyde
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