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Cognitive decline is a major concern in the aging population. It is normative to
experience some deterioration in cognitive abilities with advanced age such as related
to memory performance, attention distraction to interference, task switching, and
processing speed. However, intact cognitive functioning in old age is important for
leading an independent day-to-day life. Thus, studying ways to counteract or delay the
onset of cognitive decline in aging is crucial. The literature offers various explanations
for the decline in cognitive performance in aging; among those are age-related gray
and white matter atrophy, synaptic degeneration, blood flow reduction, neurochemical
alterations, and change in connectivity patterns with advanced age. An emerging
literature on neurofeedback and Brain Computer Interface (BCI) reports exciting results
supporting the benefits of volitional modulation of brain activity on cognition and
behavior. Neurofeedback studies based on real-time functional magnetic resonance
imaging (rtfMRI) have shown behavioral changes in schizophrenia and behavioral
benefits in nicotine addiction. This article integrates research on cognitive and brain
aging with evidence of brain and behavioral modification due to rtfMRI neurofeedback.
We offer a state-of-the-art description of the rtfMRI technique with an eye towards its
application in aging. We present preliminary results of a feasibility study exploring the
possibility of using rtfMRI to train older adults to volitionally control brain activity. Based
on these first findings, we discuss possible implementations of rtfMRI neurofeedback
as a novel technique to study and alleviate cognitive decline in healthy and pathological
aging.

Keywords: real-time functional magnetic resonance imaging, aging, cognition, neurofeedback, emotion

INTRODUCTION

Age-Related Cognitive Decline and Underlying Brain Mechanisms
Given current demographic developments with adults over the age of 65 years representing
the fastest growing segment of the population in the USA and other industrialized nations
(Census, 2012), cognitive decline in aging is of increasing societal and economic relevance,
in addition to its relevance to individual lives (Williams and Kemper, 2010). It is usual, with
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interindividual variation (Ram et al., 2011), to experience some
deterioration in cognitive abilities with advanced age. These
age-related cognitive deficits are typically characterized by slow
processing speed (Eckert et al., 2010), increased difficulty in
encoding and retrieving memories (Wilckens et al., 2012),
increased forgetfulness (Gazzaley et al., 2005), reduced ability to
selectively attend to or ignore irrelevant information (Prakash
et al., 2009), increased distraction to interference (Wais et al.,
2012), and reduced task switching abilities (Buchler et al., 2008).
This change in cognitive functioning constraints older adults’
independence and quality of life (Logsdon et al., 2002). Thus,
studying ways to counteract or delay the onset of cognitive
decrement in aging is crucial.

Recent research initiatives address cognitive decline and
brain aging, such as the ‘‘Healthy Brain Initiation’’ by the
American Association of Retired Persons1 and the Alzheimer’s
Association2 in the US, and the ‘‘Healthy Brain’’ initiative
by the Brain Foundation3 in Australia. These initiatives have
targeted the creation of standardized assessment tools and
the implementation of lifestyle directives (e.g., related to
nutrition and physical activity) to allow for direct comparison
across research studies and to inform interventional strategies
towards maintenance and promotion of cognitive functioning
in older adults or delay of cognitive decline until later in
life. There is also a growing market for computer-based
trainings, memory tapes, and computer games offered to the
lay public. These products claim enhancement of cognitive
performance through training (Casel, 2002). However, most
of these current approaches target training of behavioral
aspects of cognitive aging without consideration of brain
processes.

With the recent advancement in neuroimaging technology,
and especially developments in functional magnetic resonance
imaging (fMRI), understanding of functional brain changes
that underlie age-related cognitive decline has tremendously
increased (Li et al., 2015). For instance, aging has been shown
to be associated with greater involvement of frontal and
parietal regions and reduced activation of occipital regions
during attention (Cabeza et al., 2004), visual perception (Davis
et al., 2008), working memory (Park et al., 2003), language
(Grossman et al., 2002), and emotion processing (Williams
et al., 2006). These findings have been discussed in the context
of proposed models of brain aging, such as the hemispheric
asymmetry reduction in older adults (HAROLD; Cabeza, 2002),
the posterior–anterior shift in aging (PASA; Davis et al.,
2008), the compensation-related utilization of neural circuit
hypothesis (CRUNCH; Reuter-Lorenz and Cappell, 2008), and
the scaffolding theory of aging and cognition (STAC; Goh
and Park, 2009). According to the HAROLD model, older
compared to younger adults show greater bilateral brain
activity in prefrontal cortex (PFC) for specific cognitive tasks.
Similarly, the CRUNCH model proposes that older adults have
lower neural efficiency than younger adults. That is, older

1http://www.aarp.org/health/brain-health/
2http://www.alz.org/publichealth/2013-report/index.html
3http://brainfoundation.org.au/healthy-brain

compared to younger adults recruit more brain regions (e.g.,
frontal or bilateral brain regions) for cognitive operations.
The PASA model of aging states that older adults during
task engagement show increased activations of PFC coupled
with decreased activation of the occipital cortex leading to
a shift in brain activity pattern from the posterior part of
the brain to the anterior part. Similarly, STAC suggests that
an increasing use of frontal brain regions with age during
cognitive processing is an indication of an adaptive brain.
The theory proposes that, to counter the deterioration of
neural structures and functions with age, the brain develops
compensatory neural circuits to achieve a particular cognitive
goal.

An independent emerging literature has generated exciting
results that support the benefits of volitional modulation of
activity in specific brain regions and networks on cognition and
behavior. In particular, a number of studies have shown that
individuals can learn to voluntarily control different components
of the electroencephalographic (EEG) spectrum, resulting in
specific behavioral change (Kotchoubey et al., 2001; Kubler et al.,
2001; Fuchs et al., 2003; Murase et al., 2004; Birbaumer, 2006;
Strehl et al., 2006). EEG based neurofeedback has advantages of
high temporal resolution, affordability and portability, but it has
disadvantages related to its low spatial resolution, and its inability
to access deeper brain regions. It also suffers from computational
complexity of the inverse problem in determining the source
of activations from the surface EEG signals. However, recent
developments in real-time fMRI (rtfMRI; Weiskopf, 2012; Sulzer
et al., 2013; Stoeckel et al., 2014) have overcome some of the
limitations of the EEG based technique due to fMRI’s high spatial
resolution and its capacity for whole brain coverage.

In this article, we offer a state-of-the-art description of the
neurofeedback technique with a particular focus on rtfMRI in
its application to cognitive aging. To the best of our knowledge,
no research to date has used rtfMRI in the context of studying
and counteracting cognitive decline in older adults. We start by
outlining current empirical evidence on cognitive and behavioral
benefits of rtfMRI in young healthy adults as well as patients.
We then discuss the application of this novel technique in the
context of aging research, supported by preliminary data from
our group. The article concludes with a discussion of future
research directions using rtfMRI and related neurofeedback
training techniques, such as EEG and functional near-infrared
spectroscopy (fNIRS), towards preservation of cognitive function
and delay of cognitive decline in aging.

Volitional Modulation of Brain Activity via
rtfMRI
Neurofeedback is a procedure by which humans or animals
can learn to modulate neural activity in one or more brain
region(s) (Birbaumer et al., 2013). The mechanism underlying
neurofeedback learning is still not completely understood, but
several different mechanisms, including, operant conditioning
and skill learning, have been proposed (Sitaram et al., in press).
For example, via rtfMRI neurofeedback training, volitional
increase or decrease of Blood Oxygenation Level Dependent
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(BOLD) response in a circumscribed brain area or network of
regions can be attained by the subjects.

Overview of the rtfMRI System
More than a decade ago, the first fMRI based Brain Computer
Interface (BCI) approach was implemented (Posse et al., 2003).
Figure 1 depicts the rtfMRI neurofeedback system. It is a closed-
loop system that uses the BOLD signal from one circumscribed
brain region or a network of brain regions, in real-time, to
calculate and present feedback (e.g., visual, auditory, or tactile)
to participants (e.g., Caria et al., 2007; Sitaram et al., 2007; Rota
et al., 2009; Ruiz et al., 2013a). The rtfMRI system comprises
of the following subsystems (see Figure 1): (A) participant, (B)
signal acquisition, (C) online signal analysis, and (D) feedback.

An echo planar imaging (EPI) sequence (Bandettini et al.,
1992) is used to acquire functional images of the brain (see
Figure 1B). Online computation procedures with the data in the
k-space such as distortion correction, averaging of the signal,
and image reconstruction are performed on the scanner’s image
reconstruction computer. Once the image is reconstructed and
pre-processed, it is exported to the signal analysis subsystem (see
Figure 1C). The signal analysis subsystem is implemented using
the Turbo Brain Voyager (TBV) software (Brain Innovations,
Maastricht, Netherlands). TBV retrieves the reconstructed image
and performs data processing that includes 3Dmotion correction
and real-time statistical analysis using the general linear model.
TBV allows the user to draw regions of interest (ROIs) on the
functional images. The BOLD values pertaining to these ROIs are
exported to aMatlab script (Mathworks, Natwick,MA,USA) that
calculates the feedback, which is then presented to the participant
inside the scanner (see Figure 1D).

Diverse modalities of feedback can be employed, including
verbal, auditory, tactile, monetary, or a combination of these,
but visual feedback has been predominantly used in research.
Visual feedback of the brain activity can be provided to the
participant in the form of a graphically animated thermometer
with bars of the thermometer changing in proportion to the
percent BOLD changes in the ROIs. The majority of rtfMRI
studies reported in the literature applied continuous feedback
(i.e., feedback provided to a participant within one repetition
time, TR, of the EPI sequence). For example, Caria et al. (2007)
showed that participants were able to self-regulate anterior insula
when trained with continuous feedback with a delay of 1 TR (i.e.,
1.5 s), while participants who received sham feedback did not
learn to self-regulate. This finding demonstrated the importance
of contingent feedback to learn to self-regulate neural activity.
However, intermittent feedback (i.e., feedback provided to a
participant after a number of TRs of the EPI sequence) has also
been used successfully (Yoo and Jolesz, 2002; Johnson et al.,
2012).

Typical Design of rtfMRI Studies
A typical rtfMRI study consists of a number of neurofeedback
training sessions, in which a participant learns to regulate
(increase or decrease) the BOLD signal in a particular ROI.
Typically, a neurofeedback training run consists of two types

of conditions, namely baseline and regulation, although there
is no general rule in this regard. In the majority of current
studies, participants were instructed to remain in a resting state
during the baseline blocks and to find a cognitive strategy that
helps them to achieve self-regulation in the regulation blocks.
However, there are also studies where participants were not given
any instructions to use a cognitive strategy, but were trained with
just real-time feedback or reward (Shibata et al., 2011; Sepulveda
et al., 2016).

Types of rtfMRI Neurofeedback
Approaches
The current literature generally differentiates between three
types of rtfMRI neurofeedback approaches, namely, single-ROI
based neurofeedback (Caria et al., 2007), functional connectivity
based neurofeedback (Liew et al., 2015) and network pattern
based neurofeedback (Shibata et al., 2011). Development of these
approaches occurred independent of each other and temporally
overlapped. The suitable rtfMRI neurofeedback approach for a
specific study is selected based on the study’s hypothesis.

Single-ROI Based Neurofeedback
Single-ROI based neurofeedback approach is a more
conservative rtfMRI approach than the other two approaches.
In this approach, individuals learn to volitionally regulate the
BOLD signal from one circumscribed brain area. Feedback
is calculated as a linear combination of the signal amplitude
in the target ROI (e.g., motor cortex for a motor task) and a
task-unrelated reference ROI (e.g., auditory cortex for a motor
task). The reference area is used to subtract the global (whole-
brain) increase in the BOLD signal due to general arousal,
task-unrelated factors, or BOLD fluctuations caused by head
motion. An example equation (Equation 1) for calculating
feedback using this approach is as follows:

Feedback = (ROI1Regulation − ROI1Baseline)
− (ROI2Regulation − ROI2Baseline) (1)

where ROI1 is the target brain area and ROI2 is the reference
brain area.

Functional Connectivity Based Neurofeedback
In general, a brain function can hardly be conceived to
involve only one single brain region (Sporns et al., 2005).
Rather, the brain is considered to work by coordinating activity
across distributed brain regions to execute a task. Functional
connectivity is defined as the statistical dependency between two
or more remote neurophysiological events (Friston, 2011). It
represents the connectivity between two or more brain regions
that share functional properties. There are two methods of
computing functional connectivity. The first method involves
estimation of statistical correlation between the BOLD time-
series of two ROIs using the Pearson, sample, or population
correlation coefficient. Functional connectivity neurofeedback
using this first method can be calculated either by including the
correlation measure in the standard ROI feedback equation (e.g.,
Equation 2; Ruiz et al., 2012), or by subtracting correlations of the
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FIGURE 1 | Overview of an real-time functional magnetic resonance imaging (rtfMRI)-based neurofeedback system that comprises the following
subsystems. (A) Participant in the MRI scanner. (B) Signal acquisition (fMRI data) using an echo planar imaging (EPI) pulse sequence. (C) Online analysis and
computation of the neurofeedback based on the Blood Oxygenation Level Dependent (BOLD) response. (D) Visual feedback via the scanner projection system. This
figure is adapted from Birbaumer et al. (2013). The rtfMRI system presented in this figure was developed at the Institute of Medical Psychology and Behavioral
Neurobiology, University of Tübingen, Germany.

two ROIs in the baseline condition from those in the regulation
condition (e.g., Equation 3; Liew et al., 2015).

Feedback = (TOT_BOLDRegulation − TOTBOLDBaseline)

×(1+ EC) (2)

Feedback = ECRegulation − ECBaseline (3)

where TOT_BOLD is the total BOLD signal in the two ROIs (i.e.,
TOT_BOLD = (BOLD in ROI1 + BOLD in ROI2) and EC is the
Pearson’s linear correlation coefficient derived from the BOLD
time-series of these two ROIs.
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A sliding window of eight data points, i.e., the current time
point and seven data points before the current data point
from each ROI, is used to compute the correlation coefficient.
The limitation of this method is that it does not provide any
information about the causality or the direction of information
flow, between the two ROIs. This limitation is addressed by
the second method of computing functional connectivity, in
that it estimates effective connectivity using Granger causality
(GC; Granger, 1969) or dynamic causal modeling (DCM; Friston
et al., 2003) There is evidence that use of DCM allows training
of effective connectivity between two ROIs to influence the
directionality of functional interactions (Koush et al., 2013).

Network Pattern Based Neurofeedback
Compared to the single-ROI based or the functional connectivity
based approaches, the pattern classification approach provides
greater sensitivity for detection and modulation of an entire
brain network involved in a specific function (Haynes and
Rees, 2006; Lewis-Peacock and Norman, 2014; Haynes, 2015).
In this approach, spatial and temporal patterns of activity of
multiple brain regions involved in a function are computed in
real-time and presented as feedback to the participant. There
are several different pattern classification techniques that have
been applied to fMRI data, including Linear Discriminant
Analysis (LDA; LaConte et al., 2003), Naïve Bayes (Pereira
et al., 2009), Support Vector Machine (SVM; LaConte et al.,
2005), Neural Networks (Hanson et al., 2004), Canonical
Variates Analysis (Mourão-Miranda et al., 2006), and Fisher
Linear Discriminant (Shaw et al., 2003). SVM is one of the
methodologies widely used to predict the brain state based
on the BOLD signal. There is evidence that SVM provides
higher classification accuracy than the other methods of pattern
classification (LaConte et al., 2003, 2005; Shaw et al., 2003;
Strother et al., 2004; Martínez-Ramón et al., 2006). SVM is
less sensitive to preprocessing steps when compared with LDA
(i.e., high classification accuracy), which is useful in real-time
applications (LaConte et al., 2005). SVM is a binary classification
algorithm that estimates a hyper-plane in a multi-dimensional
space to discriminate between two tasks (Schölkopf and Smola,
2002). BOLD signals from two different conditions (e.g., left and
right hand movement imagery) are fed into the SVM algorithm
and a classificationmodel is generated based on this information.
Based on this generated classification model, SVM predicts the
possible condition that a particular preprocessed BOLD signal
belongs to.

There are currently two approaches of performing the
online pattern classification: subject-dependent classification
and subject-independent classification (Rana et al., 2013).
The majority of current studies used the subject-dependent
classification approach, in which classification models are
tailored to a specific participant’s brain signals. Some studies
have shown impressive results using this approach in healthy
adults (Shibata et al., 2011; Sitaram et al., 2011; deBettencourt
et al., 2015). However, this technique only led to very limited
advancement in the field of neurorehabilitation. Themain reason
for this limitation is that classification models are not sufficiently
generic to be used across participants due to interindividual

variations in structural and functional brain characteristics,
which may even be exaggerated in clinical population and
may become more pronounced in aging (Meunier et al., 2014).
This limitation of the subject-specific classification constitutes
a hindrance for its application in patients and older adults.
In contrast, the subject-independent classifier approach can be
applied to healthy as well as patient populations without the need
to collect subject-specific data to generate the classifier model.
In addition, it can be adapted to the idiosyncrasies of individual
brain size, shape, and activation patterns. Thus, the subject-
independent approach has the potential to facilitate training
of patients to correct and tune their abnormal brain activity
towards normalcy and appears to have promise for applications
in aging.

Evidence for Cognitive and Behavior
Modification Using rtfMRI Neurofeedback
The rtfMRI neurofeedback approach represents a new tool for
studying the relation between brain activity, cognition, and
behavior. Importantly, unlike in conventional neuroimaging
approaches where cognition and behavior are the independent
variables and brain activity is the dependent variable, in
rtfMRI, brain activity constitutes the independent variable
while cognition and behavior serve as the dependent variables.
Neurofeedback using rtfMRI has been used to train individuals
in volitional regulation of BOLD signals in different brain
regions or in connectivity among multiple regions, to determine
cognitive and behavioral effects of learned self-regulation. In
this endeavor, neurofeedback effects have been documented in
pain modulation, in reaction times, and linguistic and emotional
processing in young healthy and/or patient populations
(deCharms et al., 2005; Rota et al., 2009; Ruiz et al., 2013a;
Scharnowski et al., 2015).

In the early days of rtfMRI, studies were focused on
evaluating effects due to self-regulation in a single, circumscribed
brain area (i.e., single-ROI neurofeedback approach). This
nascent field originally applied, and attempted to optimize,
this more parsimonious methodology. A number of studies
were conducted using volitional brain regulation of single
areas such as the insula, amygdala, visual cortex, anterior
cingulate, or motor cortex to understand their impact on
cognition, perception, and emotion (e.g., Caria et al., 2010;
Shibata et al., 2011; Paret et al., 2014; Gröne et al., 2015).
For example, Posse et al. (2003) conducted the first rtfMRI
study in emotion-related brain areas. Participants were trained
to modulate amygdala activity using a self-inducing mood
paradigm that included sad and neutral emotional states. All
participants in this study were able to successfully achieve sad
mood. Further, mood self-ratings were positively associated
with BOLD response in amygdala. However, in this study,
the self-induction task was performed in the presence of
emotional faces during the entire experiment and the study
lacked a control group (CG). Thus, it was not clear whether
the observed correlation was due to the amygdala self-
regulation or due to the presentation of emotional faces,
or a combination of both. Caria et al. (2010) observed
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significant modification in valence ratings related to aversive
picture stimuli associated with up-regulation of anterior insula
in individuals trained with contingent feedback, while the
effect was not observed in individuals trained with sham
feedback. This study provided further support for cognitive
and behavioral modification induced by learned self-regulation
and the importance of contingent feedback in neurofeedback
training.

Some rtfMRI studies examined cognitive and behavioral
effects using functional connectivity based neurofeedback. This
was based on the rationale that a brain function works via
coordination of distributed brain regions to execute a task.
This development was also informed by emerging evidence
that abnormal connectivity of brain areas was associated
with abnormal brain functioning in neuropsychiatric disorders
such as schizophrenia (Friston and Frith, 1995; Honey et al.,
2005), autism (Just et al., 2007), Alzheimer’s Disease (AD;
Wang et al., 2007; Zhang et al., 2010), and Attention Deficit
Hyperactivity Disorder (ADHD; Konrad and Eickhoff, 2010).
Use of the connectivity approach was also spurred by evidence
that learned volitional control of a single brain area in
healthy adults lead to changes in functional connectivity across
brain regions (Hamilton et al., 2011; Lee et al., 2011; Zotev
et al., 2011; Ruiz et al., 2013a,b). For example, a study in
schizophrenia patients found that learned self-regulation of a
single brain ROI modulated brain connectivity in an entire
network (Ruiz et al., 2013b), supporting the use of rtfMRI as
a tool to enhance brain connectivity. However, enhancement
of functional connectivity between various brain areas in this
early study was observed as a by-product of single-ROI based
neurofeedback training but was not the result of direct training
of brain connectivity.

Thus, following up on these initial findings, studies using
rtfMRI based connectivity neurofeedback demonstrated that
enhancement of functional connectivity between two brain
areas was possible and resulted in cognitive and behavioral
modifications. Kim et al. (2015), for example, showed improved
efficacy in reducing cigarette smoking via learned self-regulation
of connectivity between four brain regions related to craving
(i.e., anterior cingulate cortex, medial PFC, posterior cingulate
cortex, and precuneus). Similarly, a study from our lab
found evidence for direct enhancement of brain functional
connectivity (Ruiz et al., 2012). In particular, healthy adults
were trained to increase functional connectivity between
inferior frontal gyrus (Broca’s area) and superior temporal
gyrus (Wernicke’s area), which resulted in an enhanced
priming effect in a semantic priming task (Sass et al.,
2009).

In parallel to the other two neurofeedback approaches, the
field explored the use of rtfMRI in the context of pattern
classification based neurofeedback. The first study used SVM
algorithm for binary classification in the context of real-
time feedback on motor and cognitive states (LaConte et al.,
2007). Sitaram et al. (2011) implemented a mapping technique
for pattern classification of multiple emotional brain states
in real-time. Shibata et al. (2011) demonstrated perceptual
learning by inducing spatial patterns of activity in the primary

visual cortex. In this study, pattern feedback was used to
train participants to self-induce brain activity pertaining to
one of three Gabor patch gratings (differing by 60◦ from
one another), without participants’ awareness of the target
grating. Behavioral data collected after the neurofeedback
training showed improved sensitivity to the target grating as
compared to the other two gratings. This finding suggested
that induction of activity patterns in the primary visual
areas was sufficient for perceptual learning. A study by
deBettencourt et al. (2015) further showed improved sustained
attention and reduced frequency of lapses in attention using
closed-loop neurofeedback. Neurofeedback was provided to
participants based on their level of attention to pictures of
faces and scenes in a Go-NoGo task. Task difficulty was
anti-correlated with the level of attention detected by the
pattern classification algorithm. Pattern classification algorithm
captured a widely distributed network of brain activity associated
with top-down attentional control. The same pattern of activity
was enhanced by neurofeedback training, which improved
participants’ attentional vigilance.

The above brief review of the current literature on rtfMRI
demonstrates the potential that this technique has to study
cognitive and behavioral modulation via brain activation. That is,
learned self-regulation of a brain region, functional connectivity
of two brain areas, or a network of brain areas can serve as
independent variables in determining the effect of volitional
control on cognition and behavior. Our summary also highlights
the promise this novel approach offers for brain-behavior
interventions. Importantly, to date, this exciting new tool has
not yet been applied to aging research. In the remaining sections
of this article we show that the use of rtfMRI in older adults is
feasible and we propose that it constitutes a powerful technique
to study cognitive function and the aging brain.

Feasibility of Applying rtfMRI
Neurofeedback in Aging Research
We conducted a pilot study to determine the feasibility of
using rtfMRI neurofeedback in research with older adults. In
particular, we examined a neurofeedback training scheme in
the context of an emotion perception paradigm in a sample of
eight adults aged 61 years and older. Our study was based on
evidence that aging is associated with emotional changes (Ebner
et al., 2006; Blanchard-Fields, 2007; Scheibe and Carstensen,
2010; Ebner and Fischer, 2014). For example, apathy increases
with age and is associated with cognitive decline (Brodaty
et al., 2010) and constitutes one of the central causes of
suffering of close relatives (Benoit et al., 2008) leading to
poor quality of life (Yeager and Hyer, 2008). Also, aging is
accompanied by less effective use of some emotion-regulatory
strategies (Winecoff et al., 2011; Opitz et al., 2012), and
increased difficulty in the perception of emotions in others
(Ruffman et al., 2008; Ebner et al., 2010). This age-related
decline has the potential to negatively impact emotional well-
being and quality of social relationships (Ruffman et al., 2012),
putting older adults at increased risk for social isolation and
reduced health (Cornwell and Waite, 2009; Norman et al.,
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2011). Research suggests that alterations in brain function
associated with affective processing contribute to these emotional
changes in aging (Williams et al., 2006; Samanez-Larkin
and Carstensen, 2011; Winecoff et al., 2011; Ebner et al.,
2012).

Our study particularly focused on volitional control of the
anterior insula, a region in the limbic system that is crucially
involved in affective processing such as evaluation and arousal
(Berntson et al., 2011). Anterior insula function appears to be
impacted by aging. In particular, there is evidence of dampened
anterior insula activity in older adults, with effects on affective
processing (Castle et al., 2012). Previous rtfMRI studies have
shown that it is possible to train young adults (Caria et al., 2007,
2010) and schizophrenia patients (Ruiz et al., 2013a) to self-
regulate anterior insula with contingent feedback, modulating
affective processing.

Based on this evidence, we aimed to examine whether
older adults could learn to self-regulate anterior insula with
contingent rtfMRI neurofeedback and whether learned self-
regulation could lead to behavioral modification in this age
group. We used a single-ROI rtfMRI approach to train
older adults to either up-regulate anterior insula (experimental
group; EG) or primary auditory cortex (CG), a brain region
not specifically associated with affective processing (Pavuluri
et al., 2007; Tracy and Robins, 2008). Eight older adults
(mean age: 66 ± 5.18 years; five women) participated in
the study. Five participants were randomly assigned to the
EG and three to the CG. The experiment consisted of six
rtfMRI sessions conducted over a period of a couple of
weeks. In the first and the last rtfMRI session, participants
engaged in a facial emotion recognition task (for similar
paradigms, see Ebner and Johnson, 2009; Ebner et al., 2012).
Each participant undertook 18–20 neurofeedback training runs
distributed among four rtfMRI based neurofeedback training
sessions.

The study took place at the Advanced Magnetic Resonance
Imaging and Spectroscopy (AMRIS) facility of the McKnight
Brain Institute (MBI), where brain imaging was conducted
on a 3.0 Tesla, 32-channel Philips whole-body human
MR scanner. As depicted in Figure 2, an rtfMRI based
neurofeedback training run consisted of alternating baseline
and up-regulation blocks, each lasting 30 s. There were
six up-regulation and six baseline blocks in total per run.
Participants were suggested to use imagery to recall emotionally
relevant experiences. Neurofeedback was provided to them
visually in the form of a thermometer. During up-regulation
blocks, the graphical thermometer was presented over a
green background and the bars in the thermometer were
changed based on the up-regulation of BOLD signal that
the participant achieved relative to the BOLD signal in
the preceding baseline block. Increase in the number of
bars of the thermometer represented more successful up-
regulation performance by the participant. During the baseline
block, the feedback bar remained stationary over a blue
background.

Figure 3 shows an example rtfMRI run in a single subject
showing the up-regulation of BOLD response in the right and

FIGURE 2 | Schematic illustration of the experimental neurofeedback
paradigm used in our feasibility study. An rtfMRI-based neurofeedback
training run consisted of alternating baseline and up-regulation blocks,
repeated six times. Each block was 30 s long.

left anterior insula, overlaid on an average EPI brain image.
A moderate increase in BOLD signals in both left and right
insula was observed during regulation blocks as compared to
baseline blocks. ROI analysis (Poldrack, 2007) was conducted
using BOLD values extracted from two rectangles, each of size
5× 5 voxels (∼15 mm2

× 15 mm2).
Figure 4 depicts results regarding older adults’ ability

to self-regulate a circumscribed brain area with contingent

FIGURE 3 | An example rtfMRI run showing the up-regulation of BOLD
response in the predetermined regions of interest (ROIs) of right
(green rectangle) and left (red rectangle) anterior insula, overlaid on a
mean EPI brain image. Mean BOLD signals were extracted from each of the
two ROIs and are presented overlaid on baseline (blue bars) and up-regulation
(green bars) blocks. A moderate increase in BOLD signal in both left and right
insula (higher amplitude) was observed during regulation blocks as compared
to baseline blocks.
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FIGURE 4 | Percentage change in BOLD signal for each run across all
six fMRI sessions. Average percentage change in bilateral anterior insula
cortex (A) for both the experimental (blue) and the control (red) groups.
Average percentage change in bilateral primary auditory cortex (B) for both
the experimental (blue) and the control (red) groups. Percentage change in the
BOLD signal is calculated by comparing change in the BOLD signal during the
regulation block to the previous baseline block. A positive value of the
percentage change in BOLD signal indicates up-regulation of BOLD signal.

neurofeedback training. Participants in both the EG (see
Figure 4A) and the CG (see Figure 4B) were able to up-
regulate activity in anterior insula and primary auditory cortex,
respectively, in the initial neurofeedback training sessions as
reflected in positive values of the percentage change in the
BOLD signal. Participants in the EG were able to achieve
up-regulation of BOLD signal in the anterior insula for
the first two training session (T2 and T3). However, their
performance diminished in the fourth and fifth training session
(T4 and T5). In the last session (T6), participants in the
EG were able to up-regulate in six out of eight rtfMRI
runs. A somewhat similar pattern of findings was observed
in the CG (see Figure 4B): CG participants were able to up-
regulate BOLD signal in the primary auditory cortex in the
first two training sessions (T2 and T3). However, in later
sessions, control participants were not able to maintain their
performance.

Despite this dip in performance in the last two training
sessions, participant in the EG (but not participants in the
CG) performed relatively better in the post-training session
compared to the pre-training session. Further, this self-
regulation training lead to behavioral modification. In particular,
there was an effect on participants’ cognitive flexibility in the
EG, but not in the CG. Cognitive flexibility was measured
with the dimensional change card sort test (DCCS; Zelazo,
2006) from the cognitive test battery in the NIH toolbox

FIGURE 5 | Dimensional change card sort (DCCS) scores were
significantly increased from pre-training to post-training in the
experimental group (EG). No effect was observed for the control group
(CG). This result suggests a positive effect of self-regulation of bilateral anterior
insula on older adult’s cognitive flexibility. Error bars represent the standard
deviation in DCCS scores.

(Heaton et al., 2014). As shown in Figure 5, the EG
but not the CG showed a significant increase (T = −3.9,
one tailed; p = 0.008) in cognitive flexibility post-training
(8.31 ± 0.8) compared to pre-training (7.6 ± 0.63). This
behavioral modification was specific to self-regulation training
of the anterior insula, as it was not observed in the auditory
cortex CG.

Possible factors that could have led to the dip in self-
regulation performance observed in our study participants
during the course of the training may have been related to the
dual-task conflict inherent in the approach or increased fatigue as
the study progressed. During neurofeedback training, to achieve
self-regulation, participants have to apply a cognitive strategy to
get positive feedback and simultaneously they have to evaluate
the feedback presented to them. Therefore, participants have
to switch between two tasks, which is cognitively demanding,
particularly for older adults. Factors related to motivation and
attention could also have affected task performance in the course
of the study. Before every session start, participants responded
to the short version of the Positive Affect and Negative Affect
Scale (PANAS; Watson et al., 1988) to assess current mood.
Figure 6 depicts the average ratings for three different aspect
of participants’ current mood with possible relevance to the
learning process, namely, novelty/motivation (comprised the
adjectives interested, excited, inspired, enthusiastic, determined;
see Figure 6A), attention (comprised the adjectives alert,
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FIGURE 6 | Average Positive Affect and Negative Affect Scale (PANAS) score for three different aspect of participants’ current mood with possible
relevance to the learning process, namely, novelty/motivation (comprised the adjectives interested, excited, inspired, enthusiastic, determined),
attention (comprised the adjectives alert, attentive, active) and frustration (comprised the adjectives distressed, downhearted, upset, frustrated,
irritable) across all fMRI sessions for both the experimental (blue) and the control (red) groups. Scores for novelty, attention and frustration were calculated
by averaging across the rating of respective adjectives. Error bars represent the standard deviation in the scores for novelty, attention and frustration across the
group. Results from a linear regression analysis are represented by the solid blue and red lines for the experimental and the CGs, respectively. A gradual linear
downward trend was observed in the ratings of novelty (A) and attention (B) across the sessions in both groups. However, a minute increase was observed in the
ratings of frustration (C) in the later sessions for participants in both groups. High positive correlation coefficients (D) between up-regulation performance (i.e., %
change in BOLD signal in bilateral anterior insula for the EG and in bilateral primary auditory cortex for the CG) and the PANAS scores were observed for novelty and
attention, indicating that reduced motivation and attention levels might have led to reduced self-regulation performance. In contrast, a negative correlation was
observed between PANAS scores for frustration and up-regulation performance in both groups, indicating that frustration did not affect participants’ self-regulation
performance.

attentive, active; see Figure 6B) and frustration (comprised the
adjectives distressed, downhearted, upset, frustrated, irritable; see
Figure 6C). A linear regression analysis showed a downward
trend in the rating of novelty/motivation (EG: y=−0.8X + 18.4,
R2
= 0.84; CG: y = −0.4X + 16.73, R2

= 0.12) and attention
(EG: y = −0.37X + 12.2, R2

= 0.86; CG: y = −0.48X + 11.5,
R2
= 0.32) for both the EG and the CG with duration

in the study. Also, we observed high correlations (Pearson’s
correlation) between the percentage change in the BOLD signal
for both target ROIs (i.e., bilateral anterior insula for EG and

bilateral primary auditory cortex for CG) and the rating of
novelty/motivation (EG: r= 0.73 and CG: r= 0.51) and attention
(EG: r = 0.23 and CG: r = 0.67). In contrast, we observed
a positive trend in the rating of frustration for both the EG
(y = 0.41X + 4.2, R2

= 0.67) and the CG (y = 0.05X + 5.1,
R2
= 0.017; see Figure 6D). The correlation between the

percentage change in the BOLD signal for both target ROIs and
the ratings of frustration, however, were negative for both the
EG (r = −0.4) and the CG (r = −0.16). Thus, low motivation
and reduced attention levels may have resulted in reduced self-
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regulation performance as the training progressed. Supporting
this explanation is our finding that participants’ ability to up-
regulate the anterior insula activity improved in the last session,
in which the task was novel again since participants performed
the self-regulation task along with the emotion perception
task.

After every run, participants indicated what strategies they
had used in order to control the thermometer bar. We
explored these self-reports and found that the kind of strategies
participants used did not differ across sessions in which they
were more vs. less successful in up-regulation of brain activity.
For example, participants in both groups reported the use of
emotionally charged imagery during regulation blocks (e.g.,
thinking about a sick friend, an annoying colleague at work,
spending quality time with family and friends, or engaging in
hobbies). Participants did not appear to change their strategies
when they experienced no up-regulation success, even though
they had been instructed to change strategies if those did
not result in positive feedback. During the neurofeedback
training, older adults needed to assess their performance
continuously based on the feedback provided to them and
simultaneously change their strategy to improve up-regulation of
brain activity. It is possible that lower levels of cognitive flexibility
associated with age resulted in less ability of our older study
participants (compared to young participants used in previous
research) to switch from an unsuccessful to a more successful
strategy.

Another reason for relatively less successful up-regulation
in our older adults than is typically reported in the literature
with young adults could be that the present study design
used longer intervals between training sessions due to logistic
reasons. All neurofeedback training sessions were conduct
on the weekends and thus extended the total duration of
the experiment to four weeks for six rtfMRI sessions. Thus,
it is possible that the total amount of training that our
participants received was sufficient, but that the interval
between training sessions was too extended for full skill
transfer.

Taken together, the results from our study support feasibility
of the rtfMRI neurofeedback approach in healthy older
adults. In addition to evidence of older adults’ ability to
volitionally up-regulate targeted brain regions, we observed
improvement in cognitive flexibility scores of older adults.
The potential of this novel technique in aging research will
be discussed next as will be challenges that this line of
work has to overcome in future applications with older
populations.

Studying Healthy and Pathological Aging
via rtfMRI Based Neurofeedback
There is ample evidence that alterations in structural and
functional brain aging are associated with decline in cognitive
function (Grady, 2012). The complexity of neural activity and
cognitive functions, however, makes exact mapping between
brain and behavior extraordinarily difficult, and so these
relations remain largely speculative, although they are ultimately

testable. Some of the proposed explanations for the decline in
cognitive performance are age-related gray and white matter
atrophy (Good et al., 2001), synaptic degeneration (Toth
et al., 2012), low blood perfusion (Liu et al., 2012), and
change in whole-brain connectivity (Ferreira et al., 2016)
such as disconnectedness or dysfunctionality of brain networks
(Tomasi and Volkow, 2012). As summarized above, several
neurofeedback studies have shown that it is possible to obtain
volitional control over a circumscribed region or networks
of regions, with cognitive and behavioral effects (Shibata
et al., 2011; Ghaziri et al., 2013; Ruiz et al., 2013a; Kim
et al., 2015). In the rtfMRI approach, we constitute brain
activity as the independent variable while cognition and
behavior serve as the dependent variables. Thus, rtfMRI is
a novel tool that can help us to test these proposed brain
structural and functional explanations of cognitive decline in
aging.

Aging is typically associated with overall decrease in gray
matter. Some evidence suggests that the overall decrease in gray
matter does not necessarily lead to cognitive decline; rather
small decrease in gray matter in specific brain areas such as
the insula (Good et al., 2001; Sowell et al., 2003), dorsolateral
PFC (Grieve et al., 2005), and medial PFC (Uylings and de
Brabander, 2002) may underlie age-related cognitive decline.
A neurofeedback study on young adults showed significant
increase in gray matter and white matter connectivity in areas
related to attention (e.g., the intraparietal sulcus and the middle
frontal gyrus) along with enhanced performance in visual and
auditory attention after 13 weeks of neurofeedback training
(Ghaziri et al., 2013). Thus, it is possible to increase gray
matter in a particular brain area via neurofeedback training
in young adults. The use of neurofeedback training in aging
could similarly result in reduced rate of gray matter atrophy
or even increase in gray matter in specific areas of the brain
with possible effects on improved cognitive functioning in
aging.

A number of studies have suggested that the aging brain
has the potential to re-organize neural activity to compensate
for anatomical and physiological change such as proposed
in HAROLD (Cabeza, 2002) and PASA (Davis et al., 2008).
This re-organization of brain activity is considered to be
a compensatory mechanism by the aging brain to counter
physiological deficit. In particular, these effects are observed
in high-preforming when compared with low-preforming older
adults in various domains of cognition such as episodic memory
retrieval (Madden et al., 1999; Grady, 2002), episodic memory
encoding (Logan and Buckner, 2001; Stebbins et al., 2002),
working memory (Dixit et al., 2000; Reuter-Lorenz et al., 2000),
perception (Grady et al., 1994; Grady, 2002), and inhibitory
control (Nielson et al., 2002). Important questions that have
not been answered yet are why some but not other older
adults show this compensatory neural re-organization, and to
what extent it is possible to train low-preforming older adults
to use compensatory neural re-organization for performance
improvement. As mentioned earlier, rtfMRI studies have
demonstrated increase in connectivity between two brain areas
or a network of regions using neurofeedback training (Koush
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et al., 2013; Kim et al., 2015). This raises the possibility
that rtfMRI based neurofeedback training could be used in
older adults to enhance compensatory neural re-organization
towards performance improvement. This would importantly
inform current models of aging and significantly advance
scientific understanding of neural mechanisms in the aging
brain.

There is evidence of some qualitative similarity between
cognitive decline in pathological and in healthy aging, even
though pathological and healthy brain aging differ in the
rate and extent of the cognitive decrements (Walhovd et al.,
2014). Both AD and Parkinson’s disease (PD) are characterized
by memory difficulties, slowed processing speed, impaired
attention, visuoperceptual/visuospatial dysfunction, and
dysexecutive syndrome (Weiner et al., 2013; Todorova et al.,
2014). Neuroimaging evidence further supports disturbed
functional connectivity between the frontal and parietal lobes
in AD patients (Wang et al., 2007; Zhang et al., 2010), and
dysfunction of cortico-striatal functional connectivity in PD
(Kwak et al., 2010). Neurofeedback training studies have
reported improvement in memory (Berman and Frederick,
2009) and verbal comprehension (Becerra et al., 2012) in
AD patients. These studies used EEG based neurofeedback.
Recently rtfMRI based neurofeedback has been used to
train PD patients. Patients learned to increase activity in
the supplementary motor area (SMA) and subsequently
improved their speed of finger tapping (Subramanian
et al., 2011); but see Buyukturkoglu et al. (2013) for a
contradictory finding. Thus, there is some initial evidence
suggesting neurofeedback training success in pathological
aging.

Challenges in Using rtfMRI Based
Neurofeeback in Aging Populations
Evidence of neurofeedback success in young adults and clinical
populations summarized throughout this article, combined with
the feasibility data of healthy older adults from our group,
suggest that rtfMRI based neurofeedback may be a potential
tool to study the aging brain and to inform development
of interventions to maintain cognitive function and defray
cognitive decline in older adults. This exciting new approach
to the study of cognitive and brain aging, however, also faces
challenges.

For example, in our feasibility study participants received
contingent rtfMRI neurofeedback, but were only able tomaintain
moderate levels of BOLD up-regulation in the anterior insula or
the primary auditory cortex, respectively. As discussed, possible
explanations for these moderate levels of self-regulation found
in our study may come from fatigue and lack of novelty when
older adults engage in training sessions that are highly cognitively
demanding. Future studies need to apply conditioning paradigms
like shaping to improve self-regulation success (Peterson, 2004).
In shaping, small changes towards the desired behavior are
rewarded, which leads to gradual change across successive trials.
Thus, the new method would change the baseline BOLD value
after each TR so that any gradual change towards the desired

BOLD signal value is rewarded. The dual-task conflict that
may underlie relatively lower self-regulation performance in
older adults also needs to be addressed in future studies in
the attempt to reduce the cognitive demand in neurofeedback
training. One alternative could be to reduce the frequency
at which feedback is presented, as this would reduce the
overall cognitive load of continuous evaluation of feedback.
Also, due to logistic reasons in our feasibility study, we had
to conduct the neurofeedback training on the weekends. This
extended the total duration of the experiment to a couple
of weeks for six rtfMRI sessions, which is longer than a
typical rtfMRI study. Thus, it is possible that the total amount
of training that our participants received was sufficient, but
that the interval between training runs was sub-optimal for
learning.

The issue of slow learners, which may particularly apply to
older adults, can be addressed in future research by increasing
the number of training sessions, e.g., 13 weeks of neurofeedback
training (Ghaziri et al., 2013). However, greater numbers of
training sessions will drastically increase the cost of conducting
a study to the extent where this approach would not be feasible
anymore as clinical intervention given the high costs for MRI.
Therefore, development of less cost-intensive neurofeedback
training methods based on cheaper modalities such as EEG or
fNIRS is crucial. However, each of these alternative modalities
comes with a set of limitations. For example, both EEG and
fNIRS cannot be used for self-regulation of deeper brain region
(e.g., anterior insula, amygdala), which are particularly relevant
for emotion processing and thus will limit domains of study
for these techniques. A useful approach for future research is
to start neurofeedback training with rtfMRI and later transition
to cheaper modalities. Along these lines, a technique called
‘‘EEG Finger-Print’’ was developed (Meir-Hasson et al., 2014).
In this approach, advanced signal processing to remove artifacts
and machine learning algorithms are applied on EEG data
acquired simultaneously with fMRI to find EEG features that
can predict specific deeper brain activity. With this approach,
an experiment can be designed in which older adults initially
learn self-regulation of a circumscribed brain region or network
of brain regions by using rtfMRI based neurofeedback training.
During the rtfMRI training, simultaneous EEG recordings will
be conducted to determine the neuroelectric components that
correlate with the volitional control of the ROIs. Using the EEG
Finger-Print technique, the EEG neural-correlates of volitional
control of deeper brain region could be identified. The identified
EEG pattern can be used to continue neurofeedback training
via EEG without fMRI. This would make long neurofeedback
training studies cost-effective and more flexible (i.e., portable,
convenient system). The EEG Finger-Print technique could also
target older adults who have implanted stents, pacemakers, or
other metallic implants in their body and hence are unable to
participate in MRI experiments. This would allow test of a more
representative sample of older adults.

Another factor that could influence learning in older adults
pertains to the way instructions are given and the type of
feedback. According to Knowles’ theory of adult learning
(Knowles, 1984), older adults learn better if they are aware of the
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background of the topic. Also, readiness to learn and motivation
to attain new information are critical factors, which is in line
with the current study showing that lower motivation levels
reduced the performance in self-regulation. Therefore, in future
studies, it will be important to instruct older adults in a way
that keeps them motivated and provides them with background
information pertaining to the study. For example, information
can be presented to older adults in a manner that is personally
relevant to them (Zurakowski et al., 2006). In this context, it is
also necessary to explore new ways of providing feedback apart
from traditional feedback modalities such as the use of virtual
reality where feedback can be associated with certain events in
the virtual world and may thus be more intuitively processed and
eventually more effective.

CONCLUSION

Age-related cognitive decline is of increasing societal, political,
and economic concern, and dramatically affects individual lives.
Improvement of neuroimaging techniques has advanced the
investigation of cognitive decline in aging with a particular focus
on brain processes underlying age-related change. Although this
research field has benefited greatly from recent advancements
in imaging technology, there are still a number of unresolved
issues such as pertaining to age-related change in brain structure
and function underlying inter-individual variation of cognitive
decline in aging or validation of proposed theories of aging
related to loss of gray matter in certain regions of the brain
as well as hypoactivation of brain areas or networks. We
propose that rtfMRI neurofeedback offers a potent tool to study
cognitive decline processes towards development of effective
training and intervention protocols in aging. Preliminary results
of our feasibility study suggest that it is possible for older

individuals to volitionally control a circumscribed brain area
and that neurofeedback training of anterior insula is associated
with increased cognitive flexibility, supporting benefits of this
technique in use with older adults. However, this nascent field
faces some challenges that need to be overcome for advanced
application in aging. We hope that this article will spur research
in unexplored areas of cognitive aging, towards development of
effective intervention programs to promote cognitive health in
older adults.
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