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Abstract

“Resting-state” functional magnetic resonance imaging (rs-fMRI) is widely used to

study brain connectivity. So far, researchers have been restricted to measures of

functional connectivity that are computationally efficient but undirected, or to effec-

tive connectivity estimates that are directed but limited to small networks. Here, we

show that a method recently developed for task-fMRI—regression dynamic causal

modeling (rDCM)—extends to rs-fMRI and offers both directional estimates and scal-

ability to whole-brain networks. First, simulations demonstrate that rDCM faithfully

recovers parameter values over a wide range of signal-to-noise ratios and repetition

times. Second, we test construct validity of rDCM in relation to an established model

of effective connectivity, spectral DCM. Using rs-fMRI data from nearly 200 healthy

participants, rDCM produces biologically plausible results consistent with estimates

by spectral DCM. Importantly, rDCM is computationally highly efficient,

reconstructing whole-brain networks (>200 areas) within minutes on standard hard-

ware. This opens promising new avenues for connectomics.
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1 | INTRODUCTION

“Resting-state” functional magnetic resonance imaging (rs-fMRI) has

long been used to examine the functional organization of the brain

during unconstrained cognition when no specific experimental manip-

ulations are present (Biswal, Van Kylen, & Hyde, 1997; Biswal, Yetkin,

Haughton, & Hyde, 1995). Specifically, resting-state fMRI has rev-

ealed spontaneous (endogenous) fluctuations in the blood oxygen

level dependent (BOLD) signal that are highly structured across the

brain (Fox et al., 2005; Greicius, Supekar, Menon, & Dougherty, 2009;

Raichle et al., 2001). Over the last two decades, rs-fMRI has become

one of the most vibrant fields in neuroimaging (for reviews, see Smith

et al., 2013; van den Heuvel & Hulshoff Pol, 2010) and now plays a

central role in disciplines such as connectomics (Craddock et al., 2013)

and network neuroscience (Bassett & Sporns, 2017). This is partly due

to its practical simplicity, which renders rs-fMRI amenable to subject

populations that may otherwise struggle to adhere to complex cogni-

tive tasks, such as neuropsychiatric patients, elderly people, or infants.

So far, rs-fMRI data has been analyzed predominantly in terms of

functional connectivity, which represents statistical interdependencies

among BOLD signal time series from spatially distinct regions of the

brain (Friston, 2011). The simplest way to assess functional connectiv-

ity is by computing Pearson's correlation coefficient between the

respective BOLD signal time series. Other measures of functional con-

nectivity include partial correlation, coherence, mutual information,

and independent component analysis (for a comprehensive review,

see Karahanoglu & Van De Ville, 2017).

Regardless of the exact approach, these statistical techniques

have revealed a number of large-scale networks of correlated tempo-

ral patterns in the resting brain. These resting-state networks (RSNs)

are characterized by fairly coherent time courses across its set of

inherent components, whereas time courses are sufficiently distinct

between networks (Beckmann, DeLuca, Devlin, & Smith, 2005; Fox &

Raichle, 2007; Smith et al., 2009). The most prominent RSN is argu-

ably the default mode network (DMN) which is also frequently

referred to as the task-negative network (Raichle et al., 2001;

Shulman et al., 1997). The DMN was initially discovered as a consis-

tent set of brain regions that showed deactivations across various

attention-demanding, goal-oriented, nonself-referential tasks (for a

comprehensive review, see Raichle, 2015). By now, it is clear that the

DMN can also be active in specific goal-oriented paradigms such as

autobiographical tasks (Spreng, 2012), thinking about others and one-

self, or remembering the past and planning the future (Buckner,

Andrews-Hanna, & Schacter, 2008). Since the discovery of the DMN,

similar patterns of resting-state coherence have been identified in

most cortical systems, giving rise to other RSNs such as the dorsal

attention network (DAN; Corbetta & Shulman, 2002; Fox, Corbetta,

Snyder, Vincent, & Raichle, 2006), salience network (SAN; Dosenbach

et al., 2007; Menon & Uddin, 2010), and central executive network

(CEN; Spreng, Sepulcre, Turner, Stevens, & Schacter, 2013; Spreng,

Stevens, Chamberlain, Gilmore, & Schacter, 2010). All RSNs persist

even during sleep and under various forms of anaesthesia (Picchioni,

Duyn, & Horovitz, 2013; but see Tagliazucchi & Laufs, 2014), and

show high heritability (Fornito et al., 2011; Glahn et al., 2010),

suggesting that they might represent fundamental organizing princi-

ples of the human brain.

Importantly, mapping the macroscopic functional connectome

from rs-fMRI data has not only shed light on the organizational princi-

ples in the healthy human brain, but also in disease. Aberrant resting-

state functional connectivity has been observed in most psychiatric

and neurological disorders (Baker et al., 2019; Buckholtz & Meyer-

Lindenberg, 2012; Bullmore & Sporns, 2009; Fornito, Zalesky, &

Breakspear, 2015; Stam, 2014). For example, psychiatric diseases

including schizophrenia (Baker et al., 2014; Friston, Brown,

Siemerkus, & Stephan, 2016; Lui et al., 2015), depression (Greicius

et al., 2007; Wang, Hermens, Hickie, & Lagopoulos, 2012), and autism

(Courchesne et al., 2007; Hahamy, Behrmann, & Malach, 2015) have

all been associated with pathological alterations in resting-state func-

tional connectivity.

Despite these profound contributions to our understanding of

the organizing principles of the human brain, measures of functional

connectivity essentially describe statistical properties of the data and

do not reveal how the data were caused or generated. As such, func-

tional connectivity does not directly capture mechanisms at a latent

level of neuronal interactions. Furthermore, measures of functional

connectivity are undirected and thus do not capture asymmetries in

reciprocal connections. This is problematic because asymmetries

in the coupling among brain regions have been repeatedly found both

in terms of anatomy (Felleman & Van Essen, 1991; Markov

et al., 2014) and function (Frässle et al., 2016; Gazzaniga, 2000; Step-

han, Marshall, Penny, Friston, & Fink, 2007; Zeki & Shipp, 1988).

In contrast, effective connectivity refers to directed interactions

among brain regions and can be assessed by exploiting a generative

model of the latent (hidden) neuronal states and how these give rise

to the observed measurements (Friston, 2011). One of the most

widely used generative modeling frameworks for inferring effective

connectivity from fMRI data is dynamic causal modeling (DCM;

Friston, Harrison, & Penny, 2003), and variants of DCM have been

established to model the resting state, including stochastic DCM

(Daunizeau, Friston, & Kiebel, 2009; Li et al., 2011) and spectral DCM

(Friston, Kahan, Biswal, & Razi, 2014). While capable of more mecha-

nistic accounts of functional integration during the resting state, these

models are restricted to relatively small networks due to computa-

tional limitations.

We recently introduced a novel variant of DCM for fMRI—termed

regression dynamic causal modeling (rDCM; Frässle, Lomakina,

et al., 2018; Frässle et al., 2017)—that differs from previous DCMs in

several aspects. Most important, rDCM is computationally highly effi-

cient and scales gracefully to very large networks including hundreds

of nodes, paving the way for whole-brain effective connectivity ana-

lyses (Frässle et al., 2021). Furthermore, the model can exploit struc-

tural connectivity information to constrain inference on directed

functional interactions or, where no such information is available, infer

optimally sparse representations of whole-brain connectivity patterns.

While rDCM was initially designed to work with experimentally con-

trolled perturbations (i.e., task data), the current implementation can,
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in principle, also by applied to rs-fMRI data. However, this has not

been tested thoroughly so far. Here, we assess the face validity and

construct validity of rDCM for inferring effective connectivity during

the resting state. To this end, we conducted comprehensive simula-

tion analyses and compared rDCM against spectral DCM as an alter-

native and well-established generative model of rs-fMRI data for small

networks. This comparison made use of a large empirical resting-state

fMRI dataset acquired by the Bipolar-Schizophrenia Network on

Intermediate Phenotypes (B-SNIP) consortium (Tamminga

et al., 2013). Finally, we showed that rDCM gracefully scales to large

networks with more than 200 areas and enables fast inference on

whole-brain effective connectivity patterns from rs-fMRI data at the

time-scale of minutes.

2 | METHODS AND MATERIALS

2.1 | Regression DCM

2.1.1 | General overview

Regression DCM (rDCM) is a novel variant of DCM for fMRI that

enables effective connectivity analyses in large (whole-brain) net-

works (Frässle, Lomakina, et al., 2018; Frässle et al., 2017). This can be

achieved by applying several modifications and simplifications to the

original DCM framework. In brief, these include (i) translating state

and observation equations from time to frequency domain using the

Fourier transformation (under stationarity assumptions), (ii) replacing

the nonlinear biophysical model of hemodynamics with a linear hemo-

dynamic response function (HRF), (iii) applying a mean field approxi-

mation across regions (i.e., connectivity parameters targeting different

regions are assumed to be independent), and (iv) specifying conjugate

priors on neuronal (i.e., connectivity and driving input) parameters and

noise precision. These modifications essentially reformulate the linear

DCM in the time domain as a Bayesian linear regression in the fre-

quency domain, resulting in the following likelihood function:

p y θ,τ,Xjð Þ=
YR

r =1

N Yr ;Xθr ,τ
−1
r IN×N

� �

Yr = e2πi
m
N−1

� � ŷr
T

X = ŷ1, ŷ2,…, ŷR , ĥû1, ĥû2,…, ĥûK
h i

θr = ar,1,ar,2,…,ar,R,cr,1,cr,2,…,cr,K½ �

ð1Þ

Here, Yr is the dependent variable in region r that is explained as

a linear mixture of afferent connections from other regions and direct

(driving) inputs. Specifically, Yr is the Fourier transformation of the

temporal derivative of the measured signal in region r. Furthermore, yr

represents the measured BOLD signal in region r, X is the design

matrix (comprising a set of regressors and explanatory variables), uk is

the kth experimental input, and the hat symbol denotes the discrete

Fourier transform (DFT). Additionally, θr represents the parameter

vector comprising all connections ar,1, …, ar,R and all driving input

parameters cr,1, …, cr,K targeting region r. Finally, τr denotes the noise

precision parameter for region r and IN × N is the identity matrix (where

N denotes the number of data points). Choosing appropriate priors on

the parameters and hyperparameters in Equation (1) (see Frässle

et al., 2017) results in a generative model that can be used for infer-

ence on the directed connection strengths and inputs.

Under this formulation, inference can be done very efficiently by

(iteratively) executing a set of analytical Variational Bayes (VB) update

equations concerning the sufficient statistics of the posterior density.

In addition, one can derive an expression for the negative (variational)

free energy (Friston, Mattout, Trujillo-Barreto, Ashburner, &

Penny, 2007). The negative free energy represents a lower-bound

approximation to the log model evidence that accounts for both

model accuracy and complexity. Hence, the negative free energy

offers a sensible metric for scoring model goodness and thus serves

as a criterion for comparing competing hypotheses (Bishop, 2006).

We have recently further augmented rDCM by introducing sparsity

constraints into the likelihood of the model in order to allow auto-

matic pruning of fully connected network structures (Frässle, Lom-

akina, et al., 2018). Notably, the present article focuses on the original

implementation of rDCM without sparsity constraints. A comprehen-

sive description of the generative model of rDCM, including the math-

ematical details of the neuronal state equation underlying the

likelihood function in Equation (1), can be found elsewhere (Frässle,

Lomakina, et al., 2018; Frässle et al., 2017).

2.1.2 | Application to resting-state data

While rDCM was originally designed to work with experimentally con-

trolled perturbations (i.e., task data), it is also possible to fit the model

to rs-fMRI data. This can be achieved by “switching off” driving inputs

(i.e., setting all input parameters ci,j to zero in the absence of experi-

mental inputs uk) and, in order to explain activity in any given region,

relying on measured data (in the Fourier domain) in regions from

which afferent connections are received; compare the likelihood func-

tion in Equation (1). This means that, in contrast to stochastic variants

of DCM, the generative model does not explicitly represent endoge-

nous fluctuations in neuronal activity and has no concept of stochastic

“innovations” or similar ways noise can drive neuronal activity intrinsi-

cally. Instead, endogenous fluctuations of BOLD signal in any given

region are explained as a linear mixture of intrinsic fluctuations from

other regions. Hence, while the model can still account for regional

endogenous fluctuations of the BOLD signal during the resting state,

the current formulation of rDCM blurs the strict separation between

(latent) state and (measured) observation levels that is otherwise a

characteristic feature of DCMs. This formulation renders rDCM con-

ceptually similar to a multivariate autoregressive model in the fre-

quency domain (compare the discussion in Frässle et al., 2017).

It is worth emphasizing that we do not wish to portray the current

formulation of rDCM as a theoretically optimal treatment of “resting
state” fMRI data; instead, it should be seen as offering a pragmatic

solution for enabling whole-brain directed connectivity estimates
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from rs-fMRI data. Specifically, while the derivation of rDCM (see

Frässle et al., 2017 for details) enhances algebraic tractability and

computational speed, the ensuing loss of separation between state

and observation levels represents a conceptual limitation, for example,

with regard to separating state and observation noise (see Section 4).

In previous work, we have shown that, despite its inherent simplifica-

tions, rDCM works well in application to task data (Frässle, Lomakina,

et al., 2018; Frässle et al., 2017, 2021). In this study, we examine the

face validity and construct validity of rDCM in its specific application

to rs-fMRI data. Concerning face validity, we investigate whether the

particular formulation of rDCM allows for veridical inference on effec-

tive connectivity, using simulated BOLD data fluctuations that were

generated by means of a deterministic generative model with stochas-

tic driving inputs and regional hemodynamic variability (see below).

With regard to construct validity, we apply rDCM to empirical fMRI

data and compare the results to those obtained by spectral DCM

(Friston, Kahan, Biswal, & Razi, 2014), an alternative and established

model of effective connectivity for rs-fMRI data.

2.2 | Synthetic data

First, we evaluated the face validity of rDCM in simulation studies by

generating synthetic rs-fMRI data for which the ground truth (i.e., the

data-generating parameter values) were known. In particular, we

assessed model parameter recovery in four different linear DCMs and

evaluated performance as a function of the repetition time (TR) and

signal-to-noise ratio (SNR) of the synthetic data. Each of the models

comprised four regions, yet differed with regard to the degree of spar-

sity of the network architecture (Figure 1a). More precisely, Model

1 represented a full network where all regions were connected via

reciprocal connections, Model 2 comprised 75% of all possible connec-

tions, Model 3 comprised 50% of all possible connections, and Model

4 was the sparsest network with only 25% of all connections present.

Please note that this simulation work was restricted to a small network

with only four regions in order to allow comparability of rDCM with

spectral DCM (Friston, Kahan, Biswal, & Razi, 2014), which represents

an alternative variant of DCM for rs-fMRI data (see below).

F IGURE 1 Pipeline for simulation studies on regression DCM (rDCM). (a) Model space for the simulation studies dedicated to assessing the
face validity of rDCM for resting-state data. Four different network structures were utilized that varied in their degree of sparsity. Model
1 represents a fully connected model where all regions are coupled via reciprocal connections (i.e., 12 connectivity parameters), Model
2 represents a network with 75% of all connections present (i.e., 9 connectivity parameters), Model 3 represents a network with 50% of all
connections present (i.e., 6 connectivity parameters), and Model 4 represents the sparsest network with only 25% of all connectivity present
(i.e., 3 connectivity parameters). (b) Regional endogenous fluctuations were generated from an AR(1) process and then utilized as driving inputs in
the respective model. Specifically, we here used a classical deterministic DCM to generate synthetic data. Model parameters were sampled from
their prior distributions and then utilized to generated synthetic BOLD signal time series that resembled the characteristic amplitudes and slow
fluctuations observed during the resting state. Measurement noise, generated from another AR(1) process, was added on top of the predicted
BOLD signal time series
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For each model, synthetic fMRI data were then generated to

resemble the characteristic amplitude and low-frequency fluctuations

seen in resting-state BOLD signal time series. To this end, we

followed an established procedure described in previous work

(Friston, Kahan, Biswal, & Razi, 2014; Razi, Kahan, Rees, &

Friston, 2015) and implemented in the MATLAB function

DEM_demo_induced_fMRI.m as part of SPM12 (version R7487,

Wellcome Centre for Human Neuroimaging, London, UK, http://

www.fil.ion.ucl.ac.uk). In brief, endogenous neuronal fluctuations were

generated independently for each region by using an AR(1) process

with an autoregression coefficient of 1/2. The endogenous neuronal

fluctuations were scaled to a standard deviation of 1/4. These values

were previously identified by Friston, Kahan, Biswal, and Razi (2014)

as producing realistic BOLD signal changes. Region-wise endogenous

fluctuations were then utilized as driving inputs to a classical deter-

ministic DCM (Friston et al., 2003). Similarly, measurement noise was

generated independently for each region from another AR(1) process

and added on top of the simulated BOLD signal time courses. Hence,

synthetic resting-state fMRI data were thus generated using a genera-

tive model that was different from both rDCM and spectral DCM.

This established procedure ensured a fair basis for the comparison

between rDCM and spectral DCM by avoiding any obvious biases

towards one or the other DCM variant. Synthetic resting-state fMRI

data were simulated to mimic an experiment of 10 minutes duration.

Importantly, BOLD signal time series were generated under a variety

of different signal-to-noise ratios (SNR = [0.5 1 3]) and repetition

times (TR = [2 s, 1 s, 0.5 s]) in order to evaluate the performance of

rDCM as a function of data quality and sampling rate, respectively.

Here, SNR was defined as the ratio between the standard deviation of

the signal and the standard deviation of the AR(1)-type measurement

noise (i.e., SNR = σsignal/σnoise).

For each of the four models and each combination of SNR and

TR, 20 different sets of observations (“synthetic subjects”) were gen-

erated. To this end, the generating (“true”) parameter values of each

simulation were sampled from the prior distributions of the endoge-

nous parameters. Values of connectivity parameters too close to zero

(i.e., jai,jj < 0.05) were discarded and re-sampled in order to ensure

sufficient information transfer between regions. Notably, the sampling

procedure also included hemodynamic parameters. In other words, in

our simulations, the synthetic BOLD signal time series displayed vari-

ability in the hemodynamic response across both regions and subjects.

This allowed us to test whether rDCM can faithfully recover “true”
connectivity parameters in the context of biologically realistic hemo-

dynamic variability, despite the method's simplistic assumption of a

fixed HRF (Frässle et al., 2017).

Examples of endogenous fluctuations and ensuing synthetic

BOLD signal time series are shown in Figure 1b. Note that, as a result

of the low-pass filtering of the hemodynamic response function, the

BOLD signal is much smoother than the underlying endogenous fluc-

tuations. The resulting BOLD signal time series are biologically realis-

tic and show the characteristic slow (low-frequency) fluctuations

typically observed during the resting state.

Based on the synthetic data, model inversion was performed by

making use of the function tapas_rdcm_estimate.m from the rDCM tool-

box as implemented in the Translational Algorithms for Psychiatry

Advancing Science (TAPAS) toolbox (www.translationalneuromodeling.

org/tapas). Model parameter recovery was then assessed by computing

(i) the root-mean-squared-error (RMSE) and (ii) the Pearson's correla-

tion coefficient (r) between the inferred and the generating (“true”)
parameter values in order to quantify how much the estimated poste-

rior parameter values differed from the ground truth.

2.3 | Empirical data

Second, we examined the construct validity of rDCM in relation to

spectral DCM. For this, we applied both models to an empirical rs-

fMRI dataset and compared the results. Specifically, we made use of a

large dataset collected by the Bipolar-Schizophrenia Network on

Intermediate Phenotypes (B-SNIP-1) consortium, with one measure

being rs-fMRI (Tamminga et al., 2013, 2014). Overall, participants with

psychosis (including schizophrenia, schizoaffective disorder, and psy-

chotic bipolar I disorder), their first-degree relatives, and demographi-

cally matched healthy participants were collected for the B-SNIP-1

dataset.

2.3.1 | Participants

The data utilized in the present study were acquired by the B-SNIP-1

consortium as part of a large cross-sectional study of intermediate

phenotypes in psychosis (Tamminga et al., 2013). The B-SNIP-1 con-

sortium included five sites in the United States: (i) Baltimore,

(ii) Chicago, (iii) Dallas, (iv) Detroit and Boston, and (v) Hartford. The

sites used identical study protocols, and considerable effort was taken

to harmonize recoding and testing conditions across sites by utilizing

identical stimulus presentation and recording equipment. Further-

more, experimenters across sites were cross-trained and frequently

monitored to ensure comparable data collection procedures. A

detailed study description is provided elsewhere (Tamminga

et al., 2013, 2014).

The current methodological study is a precursor to a broader pro-

ject that evaluates the clinical utility of whole-brain directed connec-

tivity estimates in the context of the psychosis spectrum, using the

BSNIP-1 data. However, applying rDCM to these clinical questions

requires an initial assessment of its face and construct validity in the

context of resting-state fMRI data. A natural choice of dataset for

assessment of construct validity was the healthy control sample of

the B-SNIP-1 dataset, as it was acquired under the same conditions as

the patient dataset. Healthy participants were recruited from the local

communities. They were without lifetime psychotic disorders and had

no first-degree relatives with a history of psychotic or bipolar disorder

according to the Family History Research Diagnostic Criteria

(Andreasen, Endicott, Spitzer, & Winokur, 1977). Overall, 459 healthy
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participants were assessed by the B-SNIP-1 consortium. For the cur-

rent study, only those participants were included that had: (i) a com-

plete data set comprising all relevant demographical information and

neuroimaging data and (ii) sufficiently high data quality of the fMRI

measurements (exclusion criteria related to data quality are listed

below). This yielded a final sample of 196 healthy participants that

were included in our study (80 females, 116 males; age:

38.3 ± 12.5 years; age range: 15–64 years). The study protocol was

approved by the institutional review board at each local site. All par-

ticipants provided written informed consent prior to inclusion and

after they obtained a complete description of the study.

2.3.2 | Experimental procedure

While in the MR scanner, participants were asked to fixate on a small

cross presented on the screen, and to remain alert with eyes open and

head still. These instructions were designed to help prevent partici-

pants from falling asleep, provide an experimental control over visual

inputs and eye movements, and reduce head movements. Head

movements were further restricted by having participants' heads

placed in a custom-build head-coil cushion.

2.3.3 | Data acquisition

Structural and functional MRI data were acquired at the five sites of

the B-SNIP-1 consortium. These included the University of Maryland

School of Medicine (Baltimore), Commonwealth Research Center at

Harvard Medical School (Boston), University of Illinois Medical Center

(Chicago), University of Texas Southwestern Medical Center (Dallas),

and Olin Neuropsychiatry Research Center at the Institute of Living

(Hartford). Participants were scanned on 3 Tesla MR scanners of dif-

ferent manufacturers, including GE Signa, Siemens Trio, Philips

Achieva, and Siemens Allegra. For comprehensive details on data

acquisition parameters across the different sites, see Supporting Infor-

mation S1.

2.3.4 | Data preprocessing

Preprocessing of the MR data was performed using fMRIPrep (version

1.4.1; Esteban et al., 2019) which is based on Nipype (version 1.2.0;

Gorgolewski et al., 2011) and was specifically designed for automated

high-quality preprocessing in the context of large-scale datasets. We

here utilized the standard preprocessing pipeline from fMRIPrep,

which comprised the following steps.

The T1-weighted (T1w) anatomical image was corrected for

intensity nonuniformity (INU) with N4BiasFieldCorrection (Tustison

et al., 2010), distributed with ANTs 2.2.0 (Avants, Epstein,

Grossman, & Gee, 2008), and used as T1w reference throughout the

workflow. The T1w reference was then skull-stripped with a Nipype

implementation of the antsBrainExtraction workflow. Brain tissue

segmentation of cerebrospinal fluid (CSF), white matter (WM), and

gray matter (GM) was performed on the brain-extracted T1w image

using fast (Zhang, Brady, & Smith, 2001), distributed with FSL 5.0.9

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). Volume-

based spatial normalization to the MNI standard space was performed

through nonlinear registration with antsRegistration (ANTs 2.2.0),

using brain-extracted versions of both T1w reference and T1w tem-

plate (MNI152NLin2009cAsym; Fonov, Evans, McKinstry, Almli, &

Collins, 2009).

Functional images were preprocessed by first generating a refer-

ence volume (BOLD reference) and its skull-stripped version by making

use of a custom methodology of fMRIPrep. Head-motion parameters

with respect to the BOLD reference (transformation matrices, and six

corresponding rotation and translation parameters) were estimated

before any spatiotemporal filtering using mcflirt (Jenkinson, Bannister,

Brady, & Smith, 2002). Slice-timing correction was performed to

account for differences in acquisition timing across slices. A deforma-

tion field to correct for susceptibility distortions was estimated based

on the fieldmap-less approach in fMRIPrep (Wang et al., 2017). This pro-

cedure utilizes the T1w reference from the same subject as the

undistorted target in a nonlinear registration scheme. To maximize the

similarity between T2* contrast of the EPI scan and the T1w reference,

the intensities of the latter are inverted. To regularize the optimization

of the deformation field, displacements are constrained to be nonzero

only along the phase-encoding direction and the magnitude of displace-

ments is modulated with an average fieldmap template (Treiber

et al., 2016). Based on the estimated susceptibility distortion, unwarped

BOLD images were calculated for a more accurate co-registration with

the anatomical reference by resampling functional images onto their

original, native space through a single, composite transform to correct

for head-motion and susceptibility distortions. This was followed by co-

registration to the T1w reference using flirt (Jenkinson & Smith, 2001)

with the boundary-based registration cost function (Greve &

Fischl, 2009), implemented in FSL 5.0.9 (Jenkinson et al., 2012). Co-

registration was configured with nine degrees of freedom to account

for remaining distortions in the BOLD images. The corrected and cor-

egistered functional images were then normalized into MNI standard

space (MNI152NLin2009cAsym; Fonov et al., 2009) by making use of

the warps obtained from the spatial normalization of the T1w reference

(see above).

2.3.5 | Estimation of confound regressors

From the functional images, fMRIPrep computes several time series of

potentially confounding influences that can be used subsequently

(during the extraction of BOLD signal time series) as confound regres-

sors to correct for variance of no interest. Here, we will focus only on

those confound regressors that were utilized in the present analysis;

for a comprehensive list of all confound regressors estimated by

fMRIPrep, see elsewhere (Esteban et al., 2019).

In brief, framewise displacement (FD) and DVARS (Power, Barnes,

Snyder, Schlaggar, & Petersen, 2012) were calculated by making use
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of their implementations in Nipype, following the definitions by

Power et al. (2014). Furthermore, three global signals were extracted

within the CSF, WM, and a whole-brain mask. Additionally, the head

motion estimates (translation and rotation) obtained during

preprocessing were utilized as confound regressors. The confound

regressors derived from head motion estimates and global signals

were expanded with the inclusion of temporal derivatives and qua-

dratic terms for each (Friston, Williams, Howard, Frackowiak, &

Turner, 1996; Satterthwaite et al., 2013). Furthermore, frames that

exceeded a threshold of 0.5 mm for FD or 1.5 for standardized

DVARS were annotated as motion outliers and marked using a stick

regressor. Finally, regressors encoding a discrete cosine set with a

128 s cut-off were utilized for high-pass filtering.

2.3.6 | Exclusion criteria

In addition to fMRIPrep, we utilized MRIQC (version 0.15.1; Esteban

et al., 2017) for quality control of the neuroimaging data. Specifically,

we ran MRIQC with the default parameters, with the exception of the

FD threshold being adjusted to 0.5 mm. Participants were excluded

from further effective connectivity analysis if any of the following

image quality metrics derived by MRIQC were above/below the speci-

fied threshold. For the structural images, exclusion criteria were

defined as: (i) “QI1” >0.005, (ii) “overlap_tpm_csf” <0.1,

(iii) “overlap_tpm_gm” <0.3, and (iv) “overlap_tpm_wm” <0.45. In

brief, “QI1” represents the proportion of artifact-corrupted voxels as

assessed using the algorithm described by Mortamet et al. (2009). Fur-

thermore, “overlap_tpm_*” represents the overlap between the tissue

probability maps (TPMs) estimated from the anatomical image and the

corresponding maps from the MNI152NLin2009cAsym template. For

the functional images, exclusion criteria were specified as: (i) “aqi”
>0.025, and (ii) “fd_perc” >20.0. In brief, “aqi” is AFNI's mean quality

index computed by the 3dTqual routine, and “fd_perc” represents the
percentage of scans with a FD above the FD threshold with respect

to the entire time series. A full description of the metrics is available

from https://mriqc.readthedocs.io/en/latest/measures.html.

2.3.7 | Time series extraction: small networks

To evaluate the construct validity of rDCM in application to resting-

state fMRI data, we examined functional integration during the resting

state from two perspectives: modes and nodes in rs-fMRI (Friston,

Kahan, Razi, Stephan, & Sporns, 2014). First, we examined effective con-

nectivity among key intrinsic networks of the human brain (i.e., modes).

Specifically, we investigated the established anticorrelations between

the task-negative DMN, engaged during rest and internally directed

tasks, and task-positive networks, engaged during externally oriented

tasks. These anticorrelations have been proposed to serve as a funda-

mental characteristic of endogenous or spontaneous fluctuations during

the resting state (Fox et al., 2005; Raichle, 2015; Smith et al., 2009; but

see section 4 and Fox, Zhang, Snyder, & Raichle, 2009).

To this end, we selected in a first step four modes of interest, com-

prising the DMN (Buckner et al., 2008; Raichle, 2015), DAN (Corbetta &

Shulman, 2002; Fox et al., 2006), SAN (Dosenbach et al., 2007; Menon &

Uddin, 2010), and CEN (Spreng et al., 2010; Spreng et al., 2013). Masks

for each of the four RSNs were created by making use of previously

published templates of those RSNs (Shirer, Ryali, Rykhlevskaia, Menon, &

Greicius, 2012) and are displayed in Figure 2a.

In a second step, we investigated effective connectivity during

the resting state not only at the level of entire networks, but at the

level of the regional components (nodes) of those networks. To this

end, we restricted ourselves to the DMN, DAN, and SAN, in line with

previous work on the hierarchical organization of RSNs by Zhou

et al. (2018). Consistent with Zhou et al. (2018), we subdivided the

three key intrinsic networks as follows: For the (core) DMN, we iden-

tified four regions: posterior cingulate cortex (PCC), anterior medial

prefrontal cortex (aMPFC), and left and right angular gyrus (lAG and

rAG). For the DAN, we identified 6 regions: left and right frontal eye

fields (lFEF and rFEF), left and right inferior frontal gyrus (lIFG and

rIFG), and left and right inferior parietal sulcus (lIPS and rIPS). For the

SAN, we identified five regions: dorsal anterior cingulate cortex

(dACC), left and right anterior insula (lAI and rAI), and left and right

anterior prefrontal cortex (lPFC and rPFC). This yielded a total of

15 regions of interest (ROIs) from which BOLD signal time series were

extracted. Again, we utilized the templates provided by Shirer

et al. (2012) as masks for the respective ROIs (Figure 2b). More specif-

ically, we utilized the respective masks that had been obtained by Shi-

rer et al. (2012) by sub-dividing modes into their subcomponents.

Delineating the components of the intrinsic networks allowed for

a more fine-grained analysis of effective connectivity during the rest-

ing state and for disentangling functional integration within and

between networks. It also served as a more challenging test scenario

for rDCM given the increase in network size and, thus, number of free

connectivity parameters. Having said this, the resulting network sizes

are still an order of magnitude smaller than what is possible using

rDCM. However, for the assessment of construct validity, we deliber-

ately restricted ourselves to relatively small networks in order to allow

for a comparison between rDCM and spectral DCM (but see below

for an application of rDCM to rs-fMRI data from a whole-brain net-

work with more than 200 regions).

For either of the two analysis pipelines (i.e., “modes” and “nodes”),
BOLD signal time series were extracted as the first eigenvariate of all

voxels within the respective mask. Time series were mean centered

and confound-related variance was removed (by regression using all

nuisance regressors included in the first-level GLM).

2.3.8 | Time series extraction: whole-brain
network

Finally, to demonstrate that rDCM can infer effective connectivity pat-

terns during the resting state at the whole-brain level, we utilized the

Human Brainnetome atlas as a whole-brain parcellation scheme (Fan

et al., 2016). The Brainnetome atlas represents a connectivity-based
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parcellation derived from diffusion weighted imaging (DWI) data. In

brief, the atlas comprises 246 distinct parcels (123 per hemisphere),

including 210 cortical and 36 subcortical regions. Due to signal drop-

outs in the raw functional images (especially in inferior temporal regions

near the skull base), BOLD signal time series could not be extracted for

all regions defined by the Brainnetome atlas. Overall, 221 regions could

be extracted in all participants. However, in order to ensure inter-

hemispheric consistency of the network, we further reduced this set by

excluded regions that were present in only one hemisphere.

This yielded a total of 212 brain regions from which sensible

BOLD signal time series could be obtained in every participant. As for

the small-network analyses, BOLD signal time series were then

extracted as the first eigenvariate of all voxels within the respective

mask. Time series were mean centered and confound-related variance

was removed (by regression using all nuisance regressors included in

the first-level GLM).

2.3.9 | rDCM analysis

The extracted BOLD signal time series from the previous step were then

utilized for subsequent effective connectivity analyses using rDCM. For

this, we constructed fully connected networks where all modes/regions

were coupled to each other via reciprocal connections. This yielded a

total of 16 free parameters for the 4-mode network and 225 free

parameters for the 15-node network (all possible inter-regional connec-

tions and inhibitory self-connections), as well as 18,260 free parameters

for the whole-brain network (all inter-regional connections present in

the structural connectome of the Brainnetome atlas and inhibitory self-

connections) to be estimated. Again, model inversion was performed by

utilizing the routine tapas_rdcm_estimate.m from the rDCM toolbox as

implemented in TAPAS. For the small networks, parameter estimates

obtained with rDCM were then compared to those obtained by spectral

DCM (SPM12; version R7487), using the identical BOLD signal time

series. To this end, two analyses were performed: First, we assessed the

consistency of parameter estimates at the group level by computing the

Pearson's correlation between the group-averaged posterior parameter

estimates of the two DCM variants. Second, we studied the consistency

of parameter estimates at the individual level (rather than at the group

level) by computing, for each connection separately, the Pearson's corre-

lation across the individual posterior parameter estimates of the two

DCM variants. Significance of associations was quantified by a threshold

of p <.05. Note that, for the whole-brain network, no comparison

between rDCM and spectral DCM was possible.

3 | RESULTS

3.1 | Simulations

3.1.1 | Face validity

First, we performed comprehensive simulation studies to assess the

face validity of rDCM for modeling resting-state fMRI data. To this

F IGURE 2 Masks for the empirical analysis of the B-SNIP-1 resting-state data. (a) Masks comprising four key intrinsic networks (i.e., modes)
of the resting state. Specifically, we included the default mode network (DMN; yellow), dorsal attention network (DAN; orange), salience network
(SAN; red), and the central executive network (CEN; purple). (b) Masks comprising 15 subcomponents of three key intrinsic networks (DMN, DAN,

and SAN) of the resting state. For the DMN (blueish colors): posterior cingulate cortex (PCC), anterior medial prefrontal cortex (aMPFC), and left
and right angular gyrus (lAG and rAG). For the SAN (yellowish colors): dorsal anterior cingulate cortex (dACC), left and right anterior insula (lAI and
rAI), and left and right anterior prefrontal cortex (lPFC and rPFC). For the DAN (reddish colors): left and right frontal eye fields (lFEF and rFEF), left
and right inferior frontal gyrus (lIFG and rIFG), and left and right inferior parietal sulcus (lIPS and rIPS). All masks were taken from the templates
published in Shirer et al. (2012)
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end, we tested whether rDCM can recover generating (“true”) param-

eter values in four different four-region networks (Figure 1) under var-

ious settings of SNR and TR of the synthetic data.

Overall, model parameter values could be recovered faithfully

over a wide range of SNR and TR settings, for all four network archi-

tectures (Figure 3a, Table 1, and Figure S1). Specifically, root-mean-

F IGURE 3 Model parameter recovery for regression DCM and spectral DCM. (a) Model parameter recovery for synthetic resting-state fMRI
data in terms of the root mean squared error (left) and the Pearson's correlation coefficient (right) between the inferred and the “true” data-
generating parameter values for regression DCM (rDCM), and (b) spectral DCM. Each colored dot represents the respective RMSE or Pearson's
correlation coefficient for an individual synthetic subject. Black dots represent the mean RMSE or mean Pearson's correlation coefficient,
averaged across all 20 synthetic subjects. Note that, averaging of the individual Pearson's correlation coefficients was performed in z-space (see
main text). Results are shown for four different network architectures, where model 1 is the most complex (full) model and model 4 is the sparsest
network. Furthermore, results are shown for an exemplary repetition time (TR) of 2 s and three different signal-to-noise ratios (SNRs): 0.5 (red),
1 (orange), and 3 (yellow)
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squared-errors (RMSE) were below 0.15 in all tested cases. On aver-

age, we found the mean RMSE to range from 0.09 for model 1 to

0.04 for model 4 for the most challenging case of high measurement

noise (SNR = 0.5) and low sampling rate (TR = 2 s). Note that, the

absolute RMSE value is difficult to interpret as it will depend on the

scaling of the data; hence, values should only be interpreted in a rela-

tive manner as they allow comparison across different data settings

(i.e., SNR, TR) as well as across the different DCM variants. The aver-

age Pearson's correlation coefficient (�r ) ranged from .70 for Model

1 to .95 for Model 4 for the low-SNR-slow-TR scenario, and thus

showed a pattern highly consistent with the RMSE. Notably, averag-

ing was performed by (i) transforming individual correlation coeffi-

cients to z-space using Fisher r-to-z transformation, (ii) computing

mean as well as lower and upper bound of the 95% confidence inter-

val in z-space, and finally (iii) back-transforming estimates to r-space.

Overall, we observed an (expected) dependence of model parameter

recovery on the sparsity of the network, with the most accurate

results being observed for the simplest Model 4 with the lowest num-

ber of free parameters (Figure 3a). Furthermore, we observed a strong

dependence of model parameter recovery performance on the data

quality, suggesting that rDCM can infer upon connection strengths

more faithfully for higher SNR settings of the (synthetic) BOLD signal

time series. A similar effect was observed for the sampling rate

(i.e., TR). Specifically, model parameter recovery performance of

rDCM improved for faster TR settings, although this was somewhat

less pronounced as the effect of the SNR (see Figure S1). The

observed dependencies of model parameter recovery performance on

SNR and TR settings are consistent with previous simulation analyses

on rDCM in the context of task-based data (Frässle, Lomakina,

et al., 2018; Frässle et al., 2017).

3.1.2 | Comparison to spectral DCM

In a second step, we compared the model parameter recovery perfor-

mance of rDCM with results obtained with spectral DCM (Friston,

Kahan, Biswal, & Razi, 2014), which represents an alternative variant

of DCM for fMRI that is suited to model resting-state data. Impor-

tantly, spectral DCM has already been assessed in terms of face valid-

ity (Friston, Kahan, Biswal, & Razi, 2014), construct validity (Razi

et al., 2015), and test–retest reliability (Almgren et al., 2018). Conse-

quently, spectral DCM serves as a useful benchmark against which

rDCM can be challenged.

Spectral DCMs were fitted to the exact same synthetic BOLD sig-

nal time series that have previously been utilized for rDCM. As before,

model parameter recovery of spectral DCM improved as a function of

network sparsity (Figure 3b and Table 1). However, the dependence

of model parameter recovery on the characteristics of the synthetic

fMRI data was less clear for spectral DCM: while no obvious depen-

dence on data quality (i.e., SNR) could be observed, model parameter

recovery showed a tendency to improve as a function of sampling rate

(see Figure S2), which is consistent with previous work (Friston,

Kahan, Biswal, & Razi, 2014). When comparing parameter recovery

performance across the two DCM variants, overall, rDCM performed

better than spectral DCM. More specifically, rDCM and spectral DCM

were on par for the simplest Model 4, whereas for all other network

architectures, rDCM outperformed spectral DCM in terms of RMSE

and Pearson's correlation coefficient. This pattern was observed

across all SNR and TR settings.

TABLE 1 Model parameter recovery for regression DCM and
spectral DCM

SNR

RMSE Pearson's correlation

Mean [95% CI] Mean [95% CI]

Regression DCM (rDCM)

Model 1 0.5 0.092 [0.084 0.099] .70 [.63 .76]

1 0.088 [0.080 0.096] .73 [.66 .79]

3 0.088 [0.079 0.096] .74 [.67 .79]

Model 2 0.5 0.082 [0.071 0.092] .80 [.73 .85]

1 0.076 [0.066 0.085] .83 [.77 .87]

3 0.074 [0.065 0.083] .84 [.79 .88]

Model 3 0.5 0.062 [0.053 0.072] .84 [.79 .88]

1 0.058 [0.049 0.068] .86 [.81 .89]

3 0.057 [0.048 0.067] .86 [.82 .90]

Model 4 0.5 0.041 [0.037 0.045] .95 [.92 .97]

1 0.039 [0.036 0.042] .96 [.93 .98]

3 0.039 [0.036 0.042] .96 [.93 .98]

Spectral DCM

Model 1 0.5 0.209 [0.174 0.245] .32 [.21 .43]

1 0.244 [0.203 0.285] .27 [.11 .41]

3 0.217 [0.169 0.264] .38 [.30 .46]

Model 2 0.5 0.138 [0.111 0.165] .66 [.52 .76]

1 0.146 [0.118 0.174] .64 [.50 .74]

3 0.145 [0.119 0.172] .62 [.49 .72]

Model 3 0.5 0.138 [0.103 0.172] .64 [.50 .75]

1 0.157 [0.119 0.194] .67 [.54 .77]

3 0.158 [0.123 0.193] .66 [.51 .77]

Model 4 0.5 0.048 [0.033 0.062] .93 [.88 .96]

1 0.043 [0.035 0.052] .94 [.90 .97]

3 0.051 [0.035 0.067] .93 [.88 .96]

Note: Model parameter recovery for synthetic resting-state fMRI data in

terms of root mean squared error (left) and Pearson's correlation

coefficient (right) between the inferred and “true” data-generating
parameter values for regression DCM (rDCM) and spectral DCM.

Averaging of the individual Pearson's correlation coefficients as well as

computing the 95% confidence interval (CI) was achieved by (i)

transforming individual correlation coefficients to z-space using Fisher r-

to-z transformation, (ii) computing mean as well as lower and upper bound

of the 95% CI in z-space, and finally (iii) back-transforming estimates to r-

space. Results are reported for four different network architectures,

where model 1 is the most complex (full) model and model 4 is the

sparsest network. Furthermore, results are reported for an exemplary

repetition time (TR) of 2 s and three different signal-to-noise ratios (SNRs):

0.5, 1, and 3.
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In summary, our simulation analyses provide evidence for the face

validity of rDCM in application to synthetic resting-state fMRI data in

a relatively broad range of SNR and TR settings (Figures S1 and S2).

3.2 | Empirical analyses: 4-mode network

3.2.1 | Effective connectivity during resting state

Next, we investigated the construct validity of rDCM in comparison

to spectral DCM, using an empirical rs-fMRI dataset. We here used

the 196 healthy participants from the B-SNIP-1 consortium

(Tamminga et al., 2013) described earlier (see Section 2).

First, we investigated effective connectivity among four key

modes of the resting state (Figure 2a), namely the DMN, DAN, SAN,

and CEN. Individual connectivity parameters were estimated in a fully

connected network using rDCM. Model inversion resulted in biologi-

cally plausible connectivity patterns (Figure 4a). Specifically, we

observed pronounced inhibitory afferent (inward) and efferent (out-

ward) connections between the DMN, representing the task-negative

network, and the DAN and SAN, representing task-positive networks.

Additionally, we observed excitatory reciprocal connections between

DAN and SAN. Interestingly, the CEN exerted a relatively strong

excitatory influence on the DMN and simultaneously received a (wea-

ker) positive influence from the DMN. Furthermore, the CEN was

coupled positively to the DAN and negatively to the SAN.

Based on the posterior parameter estimates, one can compute a

metric of hierarchy strength as the difference between averaged

absolute efferent and afferent connections for each of the four intrin-

sic networks of the resting state. This approach has been used by a

previous DCM study on the hierarchical organization of RSNs (Zhou

et al., 2018), and is similar to approaches used for analyzing hierarchi-

cal projections in the monkey brain (Goulas, Uylings, & Stiers, 2014)

and the hierarchical organization of the prefrontal cortex in humans

(Nee & D'Esposito, 2016). Importantly, this definition of “hierarchy”
should not be confused with other accounts that relate to layer-

specificity of forward and backward connections (Felleman & Van

Essen, 1991; Markov et al., 2014). Instead, the present definition sim-

ply refers to the degree of influence that one mode exerts over others

(for a comprehensive review of alternative definitions of hierarchy,

see Hilgetag & Goulas, 2020). The total hierarchy strength was indica-

tive of a hierarchical organization of the four networks with the DMN

at the bottom (−0.12), predominantly serving as a sink, and the other

task-positive networks ranking higher (DAN: 0.05, SAN: 0.02, CEN:

0.05), predominantly serving as neuronal drivers. This finding is con-

sistent with previous observations on the hierarchical organization of

RSNs (Sridharan, Levitin, & Menon, 2008; Zhou et al., 2018).

3.2.2 | Comparison to spectral DCM

As for the simulations above, we again compared our findings from

rDCM to those obtained by spectral DCM, using the identical BOLD

signal time series. We observed that, at the group level, effective con-

nectivity patterns were highly consistent across the two DCM vari-

ants (Figure 4b). In brief, spectral DCM also revealed pronounced

inhibitory afferent and efferent connections between the DMN and

the DAN and SAN, as well as excitatory reciprocal connections among

DAN and SAN. The only (qualitative) difference between spectral

DCM and rDCM results was observed in how the CEN integrated into

this network. While, consistent with the rDCM results, efferent con-

nections from the CEN to the DMN and DAN were excitatory, affer-

ent connections to the CEN from DMN and DAN were inhibitory.

With regard to the coupling between CEN and SAN, spectral DCM

and rDCM again yielded consistent results. This similarity between

the two DCM variants was also represented by a very high Pearson's

correlation coefficient between the group-level inter-regional connec-

tivity estimates (r = .85, p <.001; Figure 4c).

In a second step, we investigated the consistency of parameter

estimates at the individual level (rather than at the group level) for

each connection separately. At the individual level, connections

showed some variability in the degree of consistency between the

two DCM variants. While for some connections, the Pearson's corre-

lation between rDCM and spectral DCM parameter estimates was rel-

atively weak, as seen for the connection from CEN to DAN (r = .13,

p = .06; Figure 4d, left), others showed much higher consistency, like

the connection from DAN to CEN (r = .67, p <.001; Figure 4d, right).

Overall, the mean Pearson's correlation coefficient, averaged across

connections, was �r = .38 [.27 .48] (Figure 4e). Again, averaging was

performed by (i) transforming individual correlation coefficients to z-

space using Fisher r-to-z transformation, (ii) computing mean as well

as lower and upper bound of the 95% confidence interval in z-space,

and finally (iii) back-transforming estimates to r-space. Despite the

observed variability, our results suggest that, across connections,

there is significant evidence for consistency across parameter esti-

mates from the two DCM variants at the individual level, as assessed

using a one-sample t-test after Fisher r-to-z transformation of the cor-

relation coefficients (t[1,11] = 6.40, p <.001).

3.3 | Empirical analysis: 15-node network

3.3.1 | Effective connectivity during resting state

Next, we aimed to study effective connectivity during the resting

state not only at the level of entire networks, but at the level of the

regional components of those networks. To this end, we restricted

our analysis to the DMN, DAN, and SAN and, consistent with Zhou

et al. (2018), divided these three networks into 15 subcomponents

(Figure 2b). This yielded four regions for the DMN (PCC, aMPFC, lAG,

and rAG), five regions for the SAN (dACC, lAI, rAI, lPFC, and rPFC),

and six regions for the DAN (lFEF, rFEF, lIFG, rIFG, lIPS, and rIPS).

As for the 4-mode network, individual connectivity parameters

were estimated in a fully connected network using rDCM, which

resulted in biologically plausible connectivity patterns (Figure 5a). The

first observation that becomes apparent from our result is the clear
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modular structure of the average endogenous connectivity matrix

where regions that belong to the same RSN group together and

show almost exclusively positive (excitatory) within-network interac-

tions. Conversely, between-network connections (i.e., connections

originating from a region in one RSN and terminating at a region in

another RSN) were overall weaker and more variable, showing both

inhibitory and excitatory influences. More precisely, afferent and

efferent connections between regions of the DMN and regions of

F IGURE 4 Effective connectivity among key modes of the resting state. (a) Group-averaged posterior parameter estimates during the resting
state as inferred with regression DCM (rDCM), and (b) spectral DCM (spDCM). Note that, in order to make the correlation between group-
averaged connectivity estimates of the two DCM variants more easily visible, color was scaled in relation to the maximal values of each method.
Hence, we utilize slightly different color scales for the two DCM variants for illustration purposes. (c) Consistency of group-level parameter
averages between rDCM and spDCM. Shown are the group-averaged inter-regional connectivity estimates (top) as well as the Pearson's
correlation coefficient (r) among them (bottom). Dots are colored using the rDCM color scale. (d) Consistency of individual parameter estimates
for each connection separately; here, shown for the connection with the weakest (left) and strongest association (right) between the two DCM
variants. Dots are colored using the rDCM color scale. (e) Range of correlation coefficients across all 12 connections of the 4-mode network. Each
colored dot represents the Pearson's correlation coefficient for an individual inter-regional connection and the black dot denotes the mean
Pearson's correlation coefficient, averaged across all connections. Note that, averaging of individual Pearson's correlation coefficients was
performed in z-space (see main text)
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the SAN and DAN were still predominantly negative, whereas con-

nections between the two task-positive networks were more

diverse.

In order to allow for direct comparability between this analysis of

nodes and the previous analysis of modes, we computed the average

connection strength between networks (Figure 5b). For example, the

F IGURE 5 Effective connectivity among key brain regions of the resting state. (a) Group-averaged posterior parameter estimates during the
resting state as inferred with regression DCM (rDCM). (b) Average connection strength between resting-state network (i.e., DMN, DAN, and
SAN), computed as the average of the strength of all connections originating in one resting-state network and terminating in another one.
(c) Group-averaged posterior parameter estimates during the resting state as inferred with spectral DCM (spDCM). Note that in order to make
the correlation between group-averaged connectivity estimates of the two DCM variants more easily visible, color was scaled in relation to the
maximal values of each method. Hence, we utilize slightly different color scales for the two DCM variants for illustration purposes.
(d) Consistency of group-level parameter averages between rDCM and spDCM. Shown is the Pearson's correlation coefficient (r) among the
group-averaged inter-regional connectivity estimates. Dots are colored using the rDCM color scale. (e) Consistency of individual parameter
estimates for each connection separately; here, exemplarily shown for the connection with the weakest (left) and strongest association (right)
between the two DCM variants. Dots are colored using the rDCM color scale. (f) Range of correlation coefficients across all 210 connections of
the 15-node network, as well as separately for all connections within a resting-state network and all connections between resting-state networks.
Each colored dot represents the Pearson's correlation coefficient for an individual inter-regional connection and the black dot denotes the mean
Pearson's correlation coefficient, averaged across all connections. Note that averaging of individual Pearson's correlation coefficients was
performed in z-space (see main text)
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strength of all connections originating from a node of the DAN and

terminating at a node of the DMN were averaged in order to yield the

between-network connection strength from the DAN to the DMN.

This analysis suggested that, at the between-network level, results

from the 15-node network were highly consistent with the ones

obtained in the previous analysis of the 4-mode network. Specifically,

we again observed that the DMN was reciprocally connected to the

other two RSNs via strong inhibitory connections, whereas the two

task-positive networks (i.e., DAN and SAN) showed excitatory cou-

pling (although very weakly).

Finally, based on these between-network connections (Figure 5b),

we again computed the hierarchy strength as the difference between

averaged absolute efferent and afferent connections between the

three RSNs. As for the previous analysis, the total hierarchy strength

was indicative of a hierarchical organization of the three networks

with the DMN at the bottom (−0.007), predominantly serving as a

sink, and the two task-positive networks ranking higher (DAN: 0.006,

SAN: 0.0007), predominantly serving as neuronal drivers. In fact, the

three RSNs displayed even the exact same ordering as in the previous

analysis of modes—a remarkable observation given the differences in

the underlying networks—and are thus again consistent with previous

work (Sridharan et al., 2008; Zhou et al., 2018).

3.3.2 | Comparison to spectral DCM

As before, we compared our empirical findings from rDCM against

the results obtained when utilizing spectral DCM to fit the identical

BOLD signal time series. Group-level effective connectivity patterns

were again highly consistent across the two DCM variants (Figure 5c).

Specifically, spectral DCM revealed the same modular structure of the

(average) endogenous connectivity matrix with pronounced excitatory

connections between regions of the same RSN and a more diverse

pattern for between-network connections. The similarity between the

two DCM variants was again represented by a very high Pearson's

correlation coefficient between the group-level connectivity estimates

(r = .87, p <.001; Figure 5d).

At the individual level, connections again varied in the degree of

consistency between the two DCM variants. Correlations between

rDCM and spectral DCM parameter estimates ranged from virtually

absent (r = −.04, p = .58) for the connection from left to right IFG

(Figure 5e, left) to robust (r = .45, p <.001) for the connection from left

IPS to dACC (Figure 5e, right), representing a significant correlation.

Overall, the mean correlation coefficient, averaged across all connec-

tions, was �r = .23 [.22 .24] (Figure 5f), and thus slightly decreased as

compared to the 4-mode networks. Nevertheless, consistency

between rDCM and spectral DCM was significantly larger than zero,

as assessed using a one-sample t-test (t[1,209] = 34.67, p <.001). Nota-

bly, consistency between the two DCM variants was not significantly

different for within-module as compared to between-module connec-

tions (t[1,208] = −0.75, p = .46), suggesting that there was no system-

atic difference between those two types. As before, averaging of

correlation coefficients as well as statistical testing were performed in

z-space—that is, after Fisher r-to-z transformation of the individual

correlation coefficients.

In summary, these results were very similar to the ones obtained

for the 4-mode networks, although correlations at the individual level

were overall somewhat lower for the 15-node networks.

3.4 | Empirical analysis: whole-brain network

Having established the face validity and construct validity of rDCM

for rs-fMRI data in small networks, we assessed the practical utility of

rDCM for inferring resting-state effective connectivity at the whole-

brain level. To this end, we utilized the Brainnetome atlas as a whole-

brain parcellation scheme, using a 212-node network covering the

entire cortex (see Section 2 for details). Structural connectivity infor-

mation provided by the Brainnetome atlas was used to constrain the

network, resulting in 18,260 directed connections to be estimated

(Figure 6a).

Applying rDCM to rs-fMRI data from these 212 regions resulted

in biologically plausible connectivity patterns (Figure 6b). The average

endogenous connectivity matrix displayed a clear modular structure

where regions within the same lobe (e.g., frontal, occipital) were

strongly connected among each other (Figure 6b, left). Specifically,

connections among regions within the same lobe were stronger and

mostly positive (excitatory), whereas connections among regions in

different lobes were more variable (i.e., showing both inhibitory and

excitatory influences). This modular structure at the whole-brain level

is consistent with our analysis of the connectivity among resting-state

nodes. Furthermore, we found that while the majority of strong con-

nections are within hemispheres, we also observed strong inter-

hemispheric interactions, primarily among homotopic regions

(Figure 6b, right).

Inspection of the distribution of (absolute) endogenous connec-

tivity parameters revealed a log-normal weight distribution, with con-

nection strengths varying over several orders of magnitude

(Figure 6c). This suggests a predominance of weak connections

(corresponding to low-frequency influences) in the average endoge-

nous connectivity matrix. At the same time, the log-normal distribu-

tion highlights the presence of an extended tail, indicating many

strong connections (i.e., higher-frequency influences) in the effective

connectome. This finding is consistent with previous reports on log-

normal distributions of anatomical connection weights in the mouse

cortex (Oh et al., 2014; Wang, Sporns, & Burkhalter, 2012) and in the

macaque cortical connectome (Markov et al., 2013; Markov, Ercsey-

Ravasz, et al., 2014). The fall-off from lower to higher frequency influ-

ences in the distribution of rDCM parameter estimates is also broadly

consistent with the general spectral characteristics of rs-fMRI data

where low frequencies dominate (Chen & Glover, 2015; Kalcher

et al., 2014; Niazy, Xie, Miller, Beckmann, & Smith, 2011).

Finally, the modular structure of the resting-state effective con-

nectivity becomes even more apparent when displaying the endoge-

nous connectivity matrix as an edge-weighted spring-embedded

projection. In brief, edge-weighted spring embedding positions nodes
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that interact strongly next to each other, by treating each node as a

steel ring linked by springs (edges), thereby forming a mechanical sys-

tem (Kamada & Kawai, 1989). The optimal layout is then defined as

one that minimizes the total energy of the system. Applying edge-

weighted spring embedding to the top 2000 connections of the aver-

age endogenous connectivity matrix revealed a clear modular

F IGURE 6 Whole-brain effective connectivity during the resting state. (a) The whole-brain rDCM analysis used the Human Brainnetome atlas
that provides both a whole-brain parcellation of cortical and subcortical regions as well as information on the structural connectivity among these
parcels. The image of the Brainnetome parcellation was reprinted from Fan et al. (2016) with explicit permission from the copyright holder under
the terms of the Creative commons attribution noncommercial license (http://creativecommons.org/licenses/by-nc/4.0/). (b) Group-averaged
posterior estimates of directed connection strengths during the resting state as inferred with rDCM. Results are displayed as the full adjacency
matrix (left) and as a connectogram of the top 2,000 connections with highest (absolute) weights (right). The connectogram was produced using
Circos (publicly available at http://www.circos.ca/software/). Regions are divided into distinct sets, including frontal (FRO), temporal (TEM),
parietal (PAR), insular (INS), cingulate (CNG; In the Brainnetome nomenclature, this set of regions is called “LIM” [limbic]. However, as the term
“limbic” is not well-defined (Kotter & Stephan, 1997) and since “LIM” exclusively consists of cingulate areas, we prefer to call this set of regions
“CNG” [cingulate]), occipital (OCC), and subcortical (SUB). (c) Distribution of (absolute) endogenous connectivity parameters both in native (top)
and logarithmic space (bottom). (d) Edge-weighted spring embedding of the endogenous connectivity matrix based on the top 2,000 connections
(see above). The edge-weighted spring embedding projection was computed using Cytoscape (publicly available at https://cytoscape.org/
download.html)
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structure with a tendency for nodes from the same set to cluster

together (Figure 6d). This was particularly clear for regions in the

occipital (red), parietal (yellow), and frontal lobe (blue). Furthermore,

the spring-embedded projection of the endogenous connectivity

matrix was indicative of a hierarchical organization from occipital over

parietal to frontal regions. This is consistent with the widespread view

on brain organization as a hierarchy ranging from unimodal

(e.g., visual) to transmodal (e.g., frontal) regions (Mesulam, 1998).

Regions from some lobes (e.g., temporal) did not integrate clearly into

this hierarchy, probably due to a dominance of weaker connection

strengths below the chosen threshold. Notably, the spring-embedded

projection shown here should only be treated as a qualitative illustra-

tion, as the exact layout will depend on, for instance, the density of

the network (and thus thresholding) and the exact initialization of the

edge-weighted spring embedding algorithm. Having said this, we veri-

fied that the overall pattern observed here holds for a range of differ-

ent settings.

3.5 | Computational burden

To provide an overview of computational efficiency, we report the

run-time for the different analyses. These values should be treated as

a rough indication only, as run-times will depend on the specific hard-

ware used. Here, for all analyses, we used a single processor core on

the Euler cluster at ETH Zurich (https://scicomp.ethz.ch/wiki/Euler).

First, rDCM took roughly 1 s for the small networks, regardless of

the network architecture. More specifically, for the 4-mode networks

(16 free parameters: 12 connection and 4 inhibitory self-connection

parameters), model inversion took on average 0.48 ± 0.07 s (range:

0.35–0.77 s), whereas for the 15-node networks (225 free parame-

ters: 210 connection and 15 inhibitory self-connection parameters),

model inversion took on average 0.62 ± 0.10 s (range: 0.47–1.32 s).

For the whole-brain networks (18,260 free parameters: 18,048 con-

nection and 212 inhibitory self-connection parameters), model inver-

sion took on average 132.30 ± 20.26 s (range: 90.63–175.30 s). This

highlights the computational efficiency of rDCM in application to rs-

fMRI data and illustrates that the model scales gracefully with the

number of regions, consistent with previous work on task-fMRI

(Frässle, Lomakina, et al., 2018; Frässle et al., 2017).

In comparison, while spectral DCM was also computationally effi-

cient for the small networks, run-times were considerably longer. Spe-

cifically, for the 4-mode networks (30 free parameters: 12 connection,

4 inhibitory self-connection, 6 hemodynamic, and 8 endogenous noise

parameters), model inversion took on average 14.07 ± 5.99 s (range:

8.88–48.26 s), whereas for the 15-node networks (261 free parame-

ters: 210 connections, 15 inhibitory self-connections, 17 hemody-

namic, and 19 endogenous noise parameters), model inversion already

took on average 3,031 ± 1,551s (range: 819–12,157 s).

In summary, although the number of free parameters of the small

networks was comparable for the two DCM variants, run-times were

up to three orders of magnitude larger for spectral DCM. Specifically,

our run-time analyses suggest that rDCM scales much more gracefully

to large networks as compared to spectral DCM. Here, we only

applied rDCM to rs-fMRI data from a parcellation with more than

200 areas; this was because runtimes of 21–42 hr per subject were

reported for spectral DCM in application to a much smaller network

of 36 regions (Razi et al., 2017).

4 | DISCUSSION

In this article, we assessed the face validity and construct validity of

regression DCM (rDCM; Frässle, Lomakina, et al., 2018; Frässle

et al., 2017) for inferring effective connectivity during the resting

state (i.e., unconstrained cognition) from noninvasive fMRI data. We

demonstrated in simulation studies that rDCM can faithfully recover

known model parameter values from synthetic rs-fMRI data. Further-

more, we assessed the utility of rDCM in application to an empirical

rs-fMRI dataset acquired by the B-SNIP-1 consortium (Tamminga

et al., 2013). These analyses suggest that rDCM yields biologically

plausible results with regard to the functional integration during the

resting state. Importantly, effective connectivity results obtained

using rDCM in small networks (up to 15 nodes) were highly consistent

with the estimates from spectral DCM when fitted to the identical

BOLD signal time series. Furthermore, we then demonstrated that

rDCM scales gracefully to large-scale networks and provides sensible

whole-brain effective connectivity estimates from rs-fMRI data within

minutes.

First, we conducted comprehensive simulation studies to estab-

lish the face validity of rDCM when applied to synthetic resting-state

fMRI data. Specifically, we found that rDCM faithfully inferred upon

the data-generating (“true”) parameter values over a wide range of

different settings of data quality (i.e., SNR) and sampling rate (i.e., TR).

While model parameter recovery of rDCM improved for higher SNR

and faster TR, consistent with previous observations in the context of

task-based fMRI (Frässle, Lomakina, et al., 2018; Frässle et al., 2017),

performance was reasonable even for the most challenging scenario

(i.e., SNR = 0.5, TR = 2 s). Besides this dependence on SNR and TR,

model parameter recovery performance also depended on the com-

plexity of the network with more accurate results being observed as

the number of free parameters decreased.

Second, we applied rDCM to an empirical rs-fMRI dataset to

study the effective connectivity among entire RSNs (4 modes), as well

as between their subcomponents (15 nodes). For both network archi-

tectures, results were biologically plausible and revealed inhibitory

afferent and efferent connections for (regions of) the DMN, whereas

(regions of) the task-positive networks elicited predominantly excit-

atory coupling among each other. This was also represented by the

fact that the different intrinsic RSNs followed a hierarchical ordering

(under the given metric of hierarchy strength utilized in the present

study), where the DMN was situated at the bottom (primarily serving

as a sink) and the task-positive networks (DAN, SAN, and CEN) were

situated higher in the hierarchy (primarily serving as drivers). These

findings were consistent with previous work on the hierarchical orga-

nization of RSNs (Sridharan et al., 2008; Zhou et al., 2018).
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It is worth highlighting that several other studies have already

applied DCM to resting-state fMRI data and have found results con-

sistent with observations reported here. Specifically, these studies

have also demonstrated a tight functional coupling among regions

within a given RSN (Razi et al., 2015; Zhou et al., 2018) as well as

comparable patterns of integration between the RSNs (Zhou

et al., 2018). This consistency is noteworthy given the substantial dif-

ferences in analysis strategies among these studies. First, the genera-

tive model utilized ranged from regression DCM (present work) to

spectral DCM (Razi et al., 2015; Sharaev, Zavyalova, Ushakov,

Kartashov, & Velichkovsky, 2016; Zhou et al., 2018), stochastic DCM

(Li, Wang, Yao, Hu, & Friston, 2012), and even deterministic DCM

with a discrete cosine set (DCT) input (Di & Biswal, 2014). Second,

studies differed in the exact choices made regarding preprocessing,

the choice of regions/networks, and group level analyses. Despite

these methodological and practical differences, all studies (including

the present work) revealed tight coupling in the DMN between left

angular gyrus and PCC, bilateral angular gyrus and the aMPFC, as well

as reciprocal connections between left and right angular gyrus. In par-

ticular, the consistent involvement of the bilateral angular gyrus has

been suggested to resemble its functional role in domain-general

automatic processing, where the angular gyrus has been claimed to

function as an automatic bottom-up buffer of incoming information

(Humphreys & Lambon Ralph, 2017). Concerning functional integra-

tion among the subcomponents of the task-positive networks, DCM

studies have so far mainly focused on task-based fMRI data. Never-

theless, these studies are still consistent with our findings in that pro-

nounced integration was observed for regions of the SAN (Ham, Leff,

de Boissezon, Joffe, & Sharp, 2013; Lamichhane & Dhamala, 2015)

and DAN (Vossel, Weidner, Driver, Friston, & Fink, 2012).

Importantly, rDCM estimates were not only biologically plausible

and consistent with previous findings in the literature, but also quanti-

tatively similar to the results obtained using spectral DCM (Friston,

Kahan, Biswal, & Razi, 2014). This is reassuring because spectral DCM

represents a well-established variant of DCM for resting-state fMRI

which has previously been tested in terms face validity (Friston,

Kahan, Biswal, & Razi, 2014), construct validity (Razi et al., 2015), and

test–retest reliability (Almgren et al., 2018). Hence, spectral DCM

here served as a useful benchmark for assessing the construct validity

of rDCM.

While group-level estimates were highly consistent across the

two variants of DCM, results were more variable at the individual

level. Specifically, while individual parameter estimates were highly

consistent for some connections, they were more variable between

the two methods for others (Figures 4e and 5f). An interesting ques-

tion for future work will be to disentangle whether the observed vari-

ability is merely due to chance or whether differences between the

two methods for some of the connections actually represents mean-

ingful differences in the variance that is picked up by rDCM and spec-

tral DCM, respectively.

We would like to emphasize that, although rDCM and spectral

DCM yielded comparable results for small networks (especially at the

group level), rDCM was computationally much more efficient. This

was indicated by run-times that were up to three orders of magnitude

higher for spectral DCM for the 15-node network. While this increase

in computational efficiency comes at the cost of physiological realism

(e.g., fixed HRF, mean-field approximation across regions), this allows

rDCM to scale gracefully to very large networks with hundreds of

brain regions. In contrast, the current implementation of spectral

DCM is unlikely to scale to whole-brain networks of this size, consid-

ering the run-times reported here for the small networks as well as

those reported previously, suggesting that model inversion of a single

DCM with 36 regions takes between 21 and 42 hr (Razi et al., 2017).

Along these lines, we here conducted an additional exploratory

analysis to demonstrate the practical feasibility of whole-brain effec-

tive connectivity analyses during the resting state with rDCM. These

analyses suggested that rDCM can indeed provide biologically plausi-

ble effective connectivity patterns at the whole-brain level within

minutes. Specifically, rDCM revealed an expected modular structure

of the effective connectivity patterns, where areas of the same lobe

grouped together and showed more pronounced within-lobe interac-

tions as compared to between-lobe interactions. This is consistent

with our findings on the coupling between components of the RSNs

(“nodes”) as well as previous reports on functional integration during

the resting state (Fornito, Zalesky, & Bullmore, 2016). Furthermore,

(absolute) endogenous connection strengths inferred using rDCM

followed a log-normal distribution, consistent with previous reports

on anatomical connection strengths in mice (Oh et al., 2014; Wang,

Sporns, & Burkhalter, 2012) and macaques (Markov et al., 2013; Mar-

kov, Ercsey-Ravasz, et al., 2014).

It is noteworthy that the average endogenous connection

strengths for the whole-brain network were an order of magnitude

smaller than for the 4-mode and 15-node networks. This is a conse-

quence of the choice of priors utilized in rDCM. More specifically, in

rDCM, the variance of the shrinkage prior scales with �1/N, where

N is the number of regions. This choice of prior variance is identical to

the one utilized for classical DCMs in SPM and aims to counteract the

problem of overfitting which increases with the number of regions

(and thus the number of connections and free parameters). In other

words, by making the prior variance dependent on the number of

regions, we regularize the estimates of individual connection strengths

in a manner that grows with the size of the network. In the current

study, the range of estimated connection strengths for the whole-

brain model is comparable to those reported in a previous publication

that demonstrated the construct validity of the model for task-based

fMRI data (Frässle et al., 2021).

The combination of computational efficiency and applicability to

simple conditions like the “resting state” renders rDCM particularly

promising for application in the fields of Computational Psychiatry

and Computational Neurology. Here, computational readouts of

directed connectivity in whole-brain networks are of major relevance

because global dysconnectivity has been postulated as a hallmark

of most psychiatric and neurological disorders (Deco &

Kringelbach, 2014; Fornito et al., 2015; Frässle, Yao, et al., 2018;

Menon, 2011; Stephan, Iglesias, Heinzle, & Diaconescu, 2015). The

ability to infer whole-brain effective connectivity patterns from
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rs-fMRI measurements is appealing from a clinical perspective as it

puts minimal burden on the patient in the MR scanner. Besides these

promises for clinical applications, computational efficiency, and appli-

cation to rs-fMRI renders rDCM also a promising tool for analyses of

large-scale datasets (Sudlow et al., 2015; Van Essen et al., 2013).

These datasets typically focus on rs-fMRI for its advantage in terms of

easy harmonization of multi-site acquisition efforts. The vast amount

of data available from these consortia calls for computational tools

that are highly efficient. We anticipate that the application of rDCM

to these open-source datasets may represent an exciting new oppor-

tunity to move human connectomics and network neuroscience

towards directed measures of functional integration.

It is worth mentioning that, while we replicated previous findings

on putative anticorrelations between the task-negative network

(DMN) and the task-positive networks (DAN, SAN) during the resting

state (Fox et al., 2005), one should be cautious with regard to the

interpretation of this finding. Specifically, it has been argued that the

observed anticorrelations may—at least in part—be a consequence of

specific preprocessing choices. In particular, global signal regression

has been argued to artificially induce anticorrelations by removing any

positive correlation between DMN and DAN/SAN that may be hidden

in the signal (Buckner et al., 2008; Fox et al., 2009; Murphy, Birn,

Handwerker, Jones, & Bandettini, 2009). In the present work, we did

perform global signal regression to correct for potential confounds like

psychological, hardware, and motion artifacts. Hence, results obtained

with rDCM in the present study are consistent with previous reports

that followed comparable preprocessing strategies (e.g., global signal

regression). However, our methodological study cannot—and does not

intend—to resolve the ongoing controversy on the validity of antic-

orrelations between RSNs.

Finally, we would like to highlight that the development of rDCM

is still in an early stage and the present implementation is subject to

several limitations. First, in its current form, rDCM does not account

for variability in the hemodynamic response across regions and sub-

jects (Aguirre, Zarahn, & D'esposito, 1998; Handwerker, Ollinger, &

D'Esposito, 2004). In this study, using simulated fMRI data with realis-

tic hemodynamic variability across regions, rDCM proved to be sur-

prisingly robust and even allowed for superior connectivity parameter

recovery compared to spectral DCM (Figure 3), a model that does

account for region-specific hemodynamics. Nevertheless, a major

future development is to replace the fixed HRF with a more flexible

hemodynamic model that still preserves the computational efficiency

of rDCM.

Second, it is worth emphasizing that—although rDCM performs

well in practice (both in simulations and empirical applications)—the

approach presented in this article should only be seen as an initial

pragmatic solution to enable application of rDCM to the resting state.

This is because the generative model of rDCM does not represent

endogenous fluctuations in neuronal activity explicitly. Instead,

endogenous fluctuations of BOLD signal in any given region are

explained, in the frequency domain, as a linear mixture of intrinsic

fluctuations in other regions. This rests on the fact that the measured

(instead of predicted) data enters the design matrix in Equation (1).

This formulation effectively renders rDCM similar to a multivariate

autoregressive model in the frequency domain (compare Frässle

et al., 2017). While this works well in practice for both task (Frässle,

Lomakina, et al., 2018; Frässle et al., 2017, 2021) and resting-state

data, this represents an important conceptual limitation of rDCM

since this removes the strict separation between (latent) state and

(measured) observation levels that is otherwise a characteristic fea-

ture of DCMs. Consequently, another major future development for

rDCM is to explicitly account for endogenous neuronal fluctuations in

the generative forward model and re-separate state from observation

levels.

Third, the linear formulation of rDCM and the stationarity

assumption of the Fourier transform implies that only stationary mea-

sures of functional integration can be obtained. However, functional

integration changes dynamically on short timescales, under the influ-

ence of synaptic plasticity and neuromodulation (Stephan

et al., 2015). Models of effective connectivity in the context of task

fMRI data have long accounted for this nonstationarity by considering

dynamic changes in connectivity as a function of cognitive context

(Friston et al., 2003) or local activity (Stephan et al., 2008). More

recently, research on the resting state has also recognized the impor-

tance of time-varying functional integration for a more comprehensive

understanding of the organizing principles of the human brain; this

constitutes an active area of research (e.g., Chang & Glover, 2010;

Hutchison et al., 2013; Lurie et al., 2020; Preti, Bolton, & Van De

Ville, 2017; Vidaurre et al., 2017). These studies have highlighted the

reoccurring nature of dynamic functional connectivity patterns and

proposed descriptions that model states of functional connectivity as

attractor states in a high dimensional space (Vergara et al., 2020). Fur-

thermore, alterations in the dynamics of functional integration during

the resting state have been linked to a number of psychiatric and neu-

rological conditions, including schizophrenia (Rashid, Damaraju,

Pearlson, & Calhoun, 2014; Sakoglu et al., 2010), depression (Kaiser

et al., 2016), autism (de Lacy, Doherty, King, Rachakonda, &

Calhoun, 2017), Parkinson's (Diez-Cirarda et al., 2018), and

Alzheimer's disease (Jones et al., 2012). Hence, a major goal for future

developments of our approach will be to introduce dynamics to the

effective connectivity estimates obtained with rDCM.

Despite these limitations, our results demonstrate the face and

construct validity of rDCM for modeling rs-fMRI data: they demon-

strate good recovery of known connection strengths from simulated

data, illustrate that rDCM can infer biologically plausible effective

connectivity patterns from empirical rs-fMRI data and show that

rDCM estimates are consistent with results from spectral DCM, a

well-established DCM variant for rs-fMRI. Importantly, due to the

computational efficiency of our method, rDCM scales gracefully with

network size and provides sensible whole-brain resting-state effective

connectivity patterns. This opens up promising new avenues for

whole-brain connectomics based on directed measures of functional

integration during the resting state. Such a readout of whole-brain

effective connectivity will hopefully not only provide novel insights

into the organizing principles of the human brain in health, but might

also prove valuable for unraveling pathophysiological mechanisms and
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for enabling single-subject predictions about clinical outcomes

(Frässle et al., 2020).
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