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Abstract: The adjustment of the emitting wavelength of carbon dots (CDs) is usually realized by
changing the raw materials, reaction temperature, or time. This paper reported the effective synthesis
of multicolor photoluminescent CDs only by changing the solvent in a one-step solvothermal method,
with 1,2,4,5-tetraaminobenzene as both the novel carbon source and nitrogen source. The emission
wavelengths of the as-prepared CDs ranged from 527 to 605 nm, with quantum yields (QYs) reaching
10.0% to 47.6%, and it was successfully employed as fluorescence ink. The prepared red-emitting CDs
(R-CDs, λem = 605 nm) and yellow-emitting CDs (Y-CDs, λem = 543 nm) were compared through
multiple characterization methods, and their luminescence mechanism was studied. It was discovered
that the large particle size, the existence of graphite Ns, and oxygen-containing functional groups
are beneficial to the formation of long wavelength-emitting CDs. Y-CDs responded to crystal violet,
and its fluorescence could be quenched. This phenomenon was thus employed to develop a detection
method for crystal violet with a linear range from 0.1 to 11 µM and a detection limit of 20 nM.
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1. Introduction

Carbon dots (CDs), as a novel carbon nanomaterial, have been widely applied in the fields of
detection [1,2], drug delivery [3,4], medical diagnosis [5,6], and biological imaging [7] due to its excellent
fluorescence properties, low cell toxicity, good biological compatibility, and low cost [8–10]. Recently,
various CDs with different luminesces have been developed by researchers. In the present published
literature, an adjustment of the emission wavelength of prepared CDs was realized mainly through
the adjustment of raw materials and their amounts [11,12], the reaction time or temperature [13],
and changing the solvents [14]. The adjustment of raw materials is often the most commonly used
method. Lin et al. [11] prepared red-, orange-, yellow-, and green-emissive CDs by changing the
raw material type (p-phenylenediamine or o-phenylenediamine) and their amounts. Chen et al. [13]
realized surface state control by adjusting the reaction time or temperature, and finally acquired blue-
and orange-emissive CDs (p-phenylenediamine as the raw material, solvothermal route). However,
the type of as-prepared CDs through this method is quite limited. In recent years, some research
groups discovered that adjusting the solvent is also effective in preparing long wavelength-emissive
CDs. Xiong et al. [14] acquired all color-emissive CDs (λem ranged from 443 to 745 nm) by adjusting
the type of solvent (formamide, N,N-dimethylformamide, ethanol, and concentrated sulfuric acid)
and their ratios (L-glutamic acid and o-phenylenediamine as raw materials). This route also exhibited
obvious drawbacks, such as a high reaction temperature (210 ◦C), long reaction time (10 h), and the
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employment of a strong acid. Tian [15] and his group also realized all color-emissive CDs through
three different solvents (water, glycerin, and N,N-dimethylformamide), with citric acid and urea as raw
materials. However, this method requires careful control of the solvent ratios. These reports offered
a new and excellent method for the research in this field, but the relevant reports on the synthesis
based on single raw materials have rarely been seen in published literature. Therefore, studies on the
impacts of solvents upon CD synthesis are of great significance.

An in-depth insight into the formation mechanism of CDs is of great significance not only for
understanding the construction chemistry of carbon nanomaterials but also for guiding large-scale
synthesis. To study the synthesis mechanism, Xiong et al. [14] realized the adjustment of CDs’ emission
wavelength using multiple solvents. The particle size and extent of graphitization of CDs greatly depend
upon the condition of dehydration and carbonization. Because of the catalysis effect of concentrated
sulfuric acid, the accelerated dehydration and carbonization process produced near-infrared-emissive
CDs with the largest particle size and highest graphite nitrogen content. Some researchers realized
the adjustment of the emission wavelength of as-prepared CDs by dissolving CDs into different
solvents. For instance, Chao et al. [16] studied the impact of solvents upon the optical properties of
CDs by dissolving CDs (prepared by o-phenylenediamine) into different solvents. Wang [17] and his
team proposed that the absorption and photoluminescence of CDs in alcoholic solvents are mainly
determined by the –OH groups of solvents rather than their polarity. In the aspect of the luminescence
mechanism, Xiong et al. [14], through detailed characterization, proved that the differences in the
particle sizes and element contents of CDs cause varied fluorescence emission properties. Because the
process of CD synthesis is difficult to monitor, especially for solvent methods, and the types of solvents
are too many and their characteristics vary greatly, exploration of the synthesis and luminescence
mechanism of CDs through solvent methods is hard but meaningful work.

Crystal violet (CV) is a triphenylmethane dye used to treat infections. It is an antifungal agent and
has been used in the treatment of aquatic animal diseases and as a water disinfectant [18]. CV is highly
toxic, and may be carcinogenesis and mutagenesis to humans [19,20]. Therefore, the development of
sensitive detection methods to CV is of great importance. Some researchers have applied capillary
electrophoresis [21], liquid chromatography-mass spectrometry [22], and Raman spectroscopy [23] in
crystal violet detection. However, these methods require cumbersome pre-processing and are time
consuming, so the exploration of a fast, simple, and sensitive method is necessary.

This paper reports the simple and fast one-step synthesis of multiple-color-emissive CDs through
the solvothermal route with a novel raw material, 1,2,4,5-tetraaminobenzene, as the single carbon
source. The effects of solvents on the synthesis and luminescence mechanism of CDs were investigated
by various characterizations. The properties of the solvents had an important influence on the synthesis
process while the particle size, element form, and their content caused a change of the emission
wavelength. The prepared yellow-emissive CDs were further applied as an effective fluorescence
sensing platform for CV, with excellent selectivity and sensitivity.

2. Experimental Section

2.1. Reagents and Materials

1,2,4,5-tetraaminobenzene (analytically pure, 95%) was purchased from Adamas Reagent Co. Ltd.
(Shanghai, China).; organic solvents (analytical grade) were purchased from Sinopharm Chemical
Reagent Co. Ltd. (Shanghai, China).; and Rhodamine 6G and Rhodamine B were purchased from
Aladdin Chemistry Co. Ltd. (Shanghai, China). The MCI Gel filler (CHP20/P120) was purchased
from Mitsubishi Chemical Corporation of Japan (Tokyo, Japan). Crystal violet (CV), methyl red (MR),
SudanI (SDI), methylene blue (MB), malachite green (MG), FeCl3, HgCl2, (CH3COO)2Pb, AgNO3,
CdCl2, CoCl2, CuCl2, ZnCl2, and CaCl2 were purchased from Sinopharm Chemical Reagent Co. Ltd.
(Shanghai, China).
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2.2. Instrumentations

A Lambda-35 UV-vis spectrophotometer and LS55 fluorescence spectrophotometer were purchased
from PerkinElmer; a VG Multilab 2000 X-ray photoelectron spectroscopy and Nicolet 6700 Fourier
infrared spectrometer were purchased from Thermo Fisher Scientific (KBr tableting method, Waltham,
MA, USA). TEM images were obtained using a JEM-1400Plus transmission electron microscope
(Japan Electron Optics Laboratory Company, Tokyo, Japan). X-ray power diffraction (XRD) patterns
were recorded on a D8-Advance spectrometer (Bruker, Germany). The Raman spectra were recorded
using a Raman spectrometer from Thermo Fisher Scientific (Waltham, MA, USA).

2.3. Preparation of CDs

CDs were synthesized through the one-step solvothermal method. In total, 0.025 g of
1,2,4,5-tetraamino-benzene powder were placed in a 25-mL round-bottomed flask. Next, 24 mL
of solvent were added to the flask, and stirred for 10 min under the protection of N2 until totally
dissolved. Then, 24 mL of the solution were then transferred into a stainless-steel autoclave with Teflon
lining, which was then placed into an oven at 170 ◦C for 5.5 h. The autoclave was naturally cooled to
room temperature, and the CDs solvent was acquired. The prepared CDs solvent was filtered through
0.22-µm filter, and then after the ultrafiltration purification process, the solvent was dried into solids.
MCI Gel was used as the filler for the chromatographic column (separation mechanisms include a
molecular sieve and polarity), with methanol and water as the eluents. The prepared R-CDs and Y-CDs
were added into the column to be separated. Then, different separated components were obtained
for characterization.

2.4. Quantum Yield (QY) Measurement

Rhodamine 6G (QY = 95%) and rhodamine B (QY = 56%) dissolved in absolute ethanol (refractive
index η = 1.096, 25 ◦C) were used as references, respectively [12]. The QYs of CDs were calculated
by comparing the ratio of the fluorescence area (rhodamine 6G-λex = 488 nm and rhodamine
B-λex = 495 nm) to the absorbance. All samples were dissolved in absolute ethanol and their absorbance
at 488 or 495 nm was controlled to be less than 0.1. The relative QY was calculated as follows:

ΦX = ΦST (GradX/GradST)(ηX2/ηST2),

where Φ is QY, Grad is the ratio of the fluorescence area to the absorbance, η is the refractive index of
the solvent, ST is the standard substance, and X is the CDs sample, where ηX = ηST.

2.5. Fluorescence Detection of Crystal Violet

The total volume of Y-CDs solution, different detected samples, and ethanol was 1 mL, followed
by the addition of CV standard with various concentrations. The fluorescence spectra were recorded
after reaction for 1 min at room temperature. The selectivity of CV sensing was confirmed by adding
metal ion solutions (including Fe3+, Hg2+, Pb2+, Ag+, Cd2+, Co2+, Cu2+, Zn2+, and Ca2+ ions) and
other dyes (MR, SudanI, MB, and MG) instead of CV. The fluorescence was recorded at the excitation
wavelength of 500 nm.

3. Results and Discussion

3.1. The Preparation of Multiple-Color-Emissive CDs Based on Different Solvents

1,2,4,5-tetraaminobenzene was selected as the single raw material to prepare CDs through
the solvothermal route. With the other synthesis parameters fixed, the change of solvents would
cause an obvious difference in the emission wavelength of the as-prepared CDs. To systematically
investigate this phenomenon, several solvents, including water, absolute ethanol (EA), isopropanol
(IPA), methanol (MT), n-butanol (NBA), and N,N-dimethylformamide (DMF), were selected to
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prepare CDs under the same synthesis environment. Interestingly, the CDs prepared with water as
the solvent had weak fluorescence. Other CDs prepared by organic solvents emitted five different
colored fluorescence, and their fluorescence spectra, UV-vis spectra, excitation wavelengths, emission
wavelengths, full width at half maximum (FWHW), QYs, and other related data are shown in Figure 1a
and Table 1. Their excitation wavelengths were in the range of 460 to 540 nm, emission wavelengths
of 527 to 605 nm, and FWHW of 44 to 86 nm. The absorption peaks of the UV-vis spectra of the five
samples were different, illustrating an obvious structure difference among the samples. The ones
with longer UV-vis absorption wavelengths exhibited longer emission wavelengths. The prepared
multi-colored CDs have great potential as fluorescence ink for fluorescence color painting (Figure 1b).
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Figure 1. (a) The fluorescence and UV-vis spectra of carbon dots (CDs) synthesized by five different
solvents. (b) A fluorescent ink color photo (365 nm) drawn by five CDs.

Table 1. Excitation wavelength, emission wavelength, quantum yields (QYs), and full width at half
maximum (FWHM) of carbon dots (CDs) synthesized by five different solvents.

Solvent EA IPA MT NBA DMF

Ex/nm 540 520 480 460 460
Em/nm 605 600 552 543 527

FWHM/nm 56 65 86 75 44
QYs/% 30.2 32.7 10.0 10.0 47.6

It is regarded that properties of the solvent, such as the dehydrating ability, solubility, boiling
point, polarity, protic, and non-protic property, lead to differences in the aggregation, dehydration,
carbonization, core formation, and growth process during synthesis, and thus differences in the
emission wavelengths of the as-prepared CDs.

First, the dehydrating ability of the solvent plays a critical role in the as-prepared CDs, while in the
aqueous phase, the reactants can hardly aggregate through the dehydration reaction. The CDs solution
prepared with water as the solvent is brown, showing that the high temperature already initiates the
carbonization process of the raw material, but the whole reaction environment is not beneficial for
the formation of nano-particles through aggregation of the raw material by the dehydration process.
Therefore, the prepared solution basically emits weak fluorescence. Comparatively, the organic solvents
offer a better environment for the dehydrating process. Some researchers reported [24] that the organic
solvothermal method is more beneficial for the preparation of long wavelength-emissive CDs, and thus
more types of CDs.

Then, the solubility of raw materials in solvents also influences the properties of CDs, and is also
an important factor for the filtration of solvents. A series of solvents, including water, absolute ethanol,
isopropanol, methanol, n-butanol, N,N-dimethylformamide, formamide, N,N-dimethyl sulfoxide,
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tetrahydrofuran, and cyclohexane, were investigated regarding their impacts on the as-prepared CDs.
The experiments showed that the carbon source exhibited excellent solubility in alcoholic solutions and
N,N-dimethylformamide. The low solubility of the raw material would lead to an aggregation state in
the solvent with low dispersion, which is unbeneficial to the formation of small-sized nano particles.

Meanwhile, the boiling point of the solvent would also impact the preparation of CDs.
The solvothermal route seals solvents of the same volume into the 25-mL lining of the reaction
kettle under heating. Under the same reaction space and reaction temperature, the difference in
boiling points of the solvents would cause a difference in the steam pressure of the environment.
Among the tested solvents, ethanol, isopropanol, and methanol possess lower boiling points, and thus
higher steam pressure in the autoclave, which is more beneficial to the growth of long wavelength-
emissive CDs. For n-butanol, its high boiling point (117 ◦C) causes a lower steam pressure, and shorter
wavelength-emissive CDs (yellow fluorescence). DMF possesses the highest boiling point (153 ◦C),
and therefore the lowest reaction pressure, so the as-prepared CDs exhibit the shortest emission
wavelength. The experiment results are in accordance with the reports of Xiong’s team [14], who found
that a lower boiling point of the solvent could improve the dehydration and carbonization process.
Therefore, in the solvothermal route, the selection of a solvent with a proper boiling point is another
way to realize the preparation of CDs with different colored fluorescence.

What needs to be emphasized is that the polarity difference of solvents renders an obvious
difference in the interaction between the solvent and carbon source, leading to an optical property
change of the as-prepared CDs. First, the differences in the UV-vis spectra of the solvents prove
our inference, as shown in Figure 2. The nitrogen in the amino group of 1,2,4,5-tetraaminobenzene
possesses lone pair electrons, and the molecules have a benzene ring, with UV absorption in the form
of the n–π* transition. According to the absorbance spectroscopy theory, with the increase of the
solvent polarity, the n electrons of the solvent molecules form a hydrogen bond with the polar solvent
in the n–π* transition, which decreases the energy in the n track and enhances the energy difference
between the n and π* track, leading to the blue shifts of λmax of the absorption band. As shown in
Figure 2, the concentration of the sample to be tested was 1 mg/mL. In the DMF solution (which has
the strongest polarity), its UV-vis spectrum exhibits an absorption peak at 450, 483, and 523 nm; in the
medium polarity solutions (MT and EA), the absorption peaks in MT are at 479, 518, and 621 nm, and
in EA the peaks are at 479, 518, and 633 nm. The result proves that the increase of the solvent polarity
causes the λmax of the absorption band blue shift. The UV-vis spectra of DMF, MT, and EA are discrete,
while in isopropanol and n-butanol, whose polarities are smaller, the absorption spectra are wide and
integrated, with peaks at 505 and 463 nm.
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The difference between solvents is not only their polarity but also their protic (non-protic) property.
In our experiments, the alcohol solutions belong to polar protic solutions, which is more beneficial
to the preparation of long wavelength-emissive CDs, while DMF is a polar non-protic solution, and
the CDs as-prepared with it would have shorter emission wavelengths. The experiment results and
related literature reports [16] showed that the properties of the solvents, including their dehydrating
ability, solubility, boiling point, and polarity, are critical factors to the properties of as-prepared CDs.
Of course, some other factors might have been neglected, which can be investigated by other raw
materials in our future research. The properties of the solvent (solubility, boiling point, polarity, and
protic (non-protic)) are important factors affecting the preparation of CDs.

Properties of the solvents will not only impact the synthesis process of CDs but also the optical
properties of prepared CDs. To investigate the influence of solvents upon the optical properties of
prepared CDs, the fluorescence and UV-vis properties of red-emissive CDs (R-CDs, λmax = 605 nm)
were investigated. R-CDs were dissolved into the solvents, including water, methanol (MT), absolute
ethanol (EA), isopropanol (IPA), acetone (CP), ethyl acetate (EAC), and dichloromethane (MC).
The acquired emission wavelengths, fluorescence intensities, and UV-vis spectra are shown in Figure 3.
The experiment results showed that the emission of CDs is highly dependent upon the polarity and
type of the solvents. As shown in Figure 3a,b, for protic solvents, the CDs dissolved in water exhibit
the longest emission wavelength (615 nm), and in some alcoholic protic solvents, like MT, EA, and IPA,
the emission wavelengths of CDs are almost the same (about 607 nm). The solvents also influence the
fluorescence intensity of dissolved CDs. The fluorescence intensity of CDs is the weakest in water but
the strongest in ethanol. The absorption and photoluminescence of CDs in alcoholic solvents mainly
originate from the –OH group, rather than the polarity of the solvents, which explains why CDs exhibit
the strongest fluorescence intensity in ethanol [17]. As shown in Figure 3c, with the polarity decrease
of protic solvents (MT, EA, and IPA), the absorption peak of R-CDs red shift. The solvent-dependency
of R-CDs originates from the hydrogen bond interaction between the protic solution and CDs [25–27].
For non-protic solvents (CP, EAC, and MC), the polarity decrease would cause red shifts in the emission
wavelength of dissolved CDs (Figure 3a), and the UV-vis absorption wavelength blue shifts with the
increase of the polarity (Figure 3c). In different non-protic solvents, dipole-dipole interaction plays
a critical role in PL shifting, which is in accordance with the related reports [25–27].
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(b) Bar graph of the fluorescence intensity of R-CDs dispersed in different polar solvents; insets are
photographs under 365 nm UV-light (from left to right, water, MT, EA, IPA, CP, EAC, MC). (c) UV-vis
spectra of R-CDs dispersed in different polar solvents.

The above studies show that the dehydrating ability, solubility, boiling point, polarity, and (non-)
proton of solvents have a great impact on the synthesis process of CDs, leading to obvious differences
in the optical properties of prepared CDs. The dissolution of CDs into different solvents also changes
the fluorescence intensity and emission wavelength. This solvent dependency of CDs is helpful for the
effective adjustment of the optical properties of CDs.
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Some means of characterization were used to characterize the CDs as-prepared with these
two solvents (ethanol and n-butanol), and their differences in terms of particle size and surface
component were further compared.

The fluorescence spectrum of R-CDs and Y-CDs were compared. As shown in Figure 4a,b, R-CDs
shows a weak excitation wavelength dependency while Y-CDs exhibit a strong dependency. MCI Gel
column chromatographic separation was used to study the dependency of both R-CDs and Y-CDs.
After the separation of R-CDs, three different emissive CDs were acquired with emission wavelengths
at 619, 608, and 554 nm (Figure S1) while for Y-CDs, four samples were acquired with emission
wavelengths at 476, 484, 543, and 586 nm (Figure 4c). Although both original CDs can be further
separated into different color-emissive CDs, the emission wavelengths of those CDs acquired from
R-CDs exhibit a 65-nm difference, while those of CDs acquired from Y-CDs exhibit a 110-nm difference.
Both of the prepared CDs (R-CDs and Y-CDs) are heterogeneous samples, but Y-CDs were separated
into more samples, and thus exhibit a stronger emission wavelength dependency. Furthermore, when
choosing different excitation wavelengths, those nano particles with different particle sizes play
different roles in illumination. The CDs with a smaller particle size and larger surface defect energy gap
take a leading role in illumination under the excitation of shorter wavelength, while with the increase
of the excitation wavelength, those with narrower surface defect energy gap gradually take the leading
roles. The CDs prepared by different solvents contain nanoparticles with a large range of particle sizes,
and their surface defect energy gaps also show great differences, which results in the exhibition of an
excitation wavelength dependency. The quantum confinement effect, and the surface state is similar to
the molecule state, both of which lead to the complexity of the excitation state of CDs [28–30].
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TEM was used to characterize the morphology and particle size of prepared R-CDs and Y-CDs.
As shown in Figure 5, both samples exhibit a spherical shape with an average particle size of 6.99 nm
for R-CDs and 5.32 nm for Y-CDs. The difference in particle size might originate from the difference of
the solvents used during the preparation process. Because of the impact of the quantum confinement
effect, the nanoparticle with a larger particle size would be more beneficial to the formation of long
wavelength-emissive CDs. The XRD patterns of R-CDs and Y-CDs (Figure S2) show highly disordered
carbon atoms [31].

FTIR, Raman, and XPS spectra were used to investigate the surface functional groups, element
compositions, and existence forms of R-CDs and Y-CDs. As shown in Figure 6a, FTIR spectra show the
both R-CDs and Y-CDs possess rich functional groups on their surfaces. R-CDs and Y-CDs exhibit
absorption peaks at 3141, 3128 (N–H), 1623 (–CONH–), 1587 (C=O), 1503, 1493 (C=C), 1404, 1408 (C–H),
1305, 1340 (C–N), 1018, and 1233 cm−1 (C–O). The absorption peaks at 841 and 672 cm−1 of both CDs
represent the bending vibration of C–H on the benzene ring. The peak at 3046 cm−1 in R-CDs’ spectra
represents the stretching vibration of =CH, while the peaks at 2965, 2933, and 2878 cm−1 in Y-CDs’
spectra represent the stretching vibration of C–H, and peaks at 2832 and 2767 cm−1 represent the
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existence of the O=C–H group [17,28]. The absorption peaks in Y-CDs’ FTIR spectra are much more
complicated than those in R-CDs’, further proving that the Y-CDs prepared with n-butanol complicated
the surface structure, the same as the conclusion obtained from the analysis of the CDs’ excitation
wavelength dependency. Moreover, the Raman spectra of the two peaks at 1363 and 1551 cm−1

correspond to the disordered structures or defects (D band) and the graphitic carbon domains (G band)
(Figure S3). The intensity ratios of ID/IG are 1.14 and 1.04 for R-CDs and Y-CDs, respectively, indicating
that R-CDs are more disordered and amorphous than Y-CDs [32,33].Nanomaterials 2019, 9, 1556 8 of 14 
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The XPS full spectra of R-CDs and Y-CDs exhibit three absorption peaks at 248, 400, and 532 eV,
which are attributed to C1s, N1s, and O1s [34] (Figure S4). In the spectrum of C1s (Figure S5a,c), R-CDs
and Y-CDs possess the same functional groups, showing three absorption peaks at 284.4, 285.2, and
288.4 eV, which are attributed to C=C/C–C, C–N/C–O, and C=O groups. In the spectrum of N1s
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(Figure 6b,c), R-CDs and Y-CDs show the same absorption peaks at 400.4, 398.4, and 399.4 eV, which are
attributed to pyrrole Ns, pyridine Ns, and amino Ns. Interestingly, R-CDs exhibit a peak at 401.4 eV
because of the existence of graphite Ns, which Y-CDs does not. In the spectrum of O1s (Figure S5b,d),
both CDs exhibit two absorption peaks at 531.7 and 532.3 eV, which are attributed to the existence of
C–O and C=O, which is in accordance with the results of the FTIR analysis. The combined types of
nitrogen in R-CDs are more than that of Y-CDs, and the oxygen content of R-CDs is also obviously
more than that of Y-CDs (Table 2), proving that the surface state of CDs is an important factor to the
optical properties of CDs.

Table 2. XPS elemental analysis results of the R-CDs and Y-CDs.

Sample C (mol%) O (mol%) N (mol%)

R-CDs 74.45 16.08 9.48
Y-CDs 73.37 5.38 21.25

As shown in Figure 7, the difference in solvents would lead to an obvious variety in the
particle size and surface state of the prepared CDs. Based on the results of multiple characterization
methods, the possible luminescence mechanism prepared by different solvents can be proposed.
The photoluminescence properties are controlled by the quantum confinement effect and surface
state, which is in accordance with the conclusions of most of the literature [35,36]. As discussed in
Section 3.1, compared with n-butanol, ethanol exhibits better solubility to raw materials, and its low
boiling point causes higher reaction pressure in the autoclave under the same reaction temperature
and time; its stronger polarity is also beneficial to the formation of products with a larger particle size
and more oxygen on the surface. Because of the quantum confinement effect, CDs with a smaller
particle size exhibit a shorter emission wavelength, while larger CDs exhibit a longer wavelength,
as proven by the TEM images. On the one hand, XPS shows the existence of graphite Ns in R-CDs,
which produces a middle gap state inside the gap between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) in the undoped system, leading to
an obvious red shift absorption and then the production of fluorescence at the low energy end in
the visible light spectrum. This is in accordance with the conclusion reported by HoláK [37] that the
red-shifting trend of CDs is the result of increased graphite Ns in CDs’ structures. On the other hand,
the result of XPS also shows that the content of oxygen in R-CDs is obviously more than that in Y-CDs
(Table 2). Because the luminescence center on the surface of CDs is mainly composed of the binding of
conjugated atoms with oxygen atoms, the gap between HOMO and LUMO is greatly determined by
the doping content of oxygen [27]. It is well known that heteroatom doping has a critical role in the PL
properties, but the literature has pointed out that the size of the electronegativity of heteroatoms also
affects the emission wavelength of CDs. Yang et al. [38] believe that a blue shift of the photoluminescent
emission can be observed by doping with more electronegative elements than C (such as N), and a red
shift can be obtained by doping with less electronegative atoms, such as S. For our research, since the
electronegativity of oxygen is stronger than that of nitrogen, the reduced doping amount of oxygen
atoms would lead to a stronger trend of red-shifting of the emission wavelength of as-prepared CDs
than the same amount of nitrogen atoms. Therefore, a large particle size, the existence of graphite Ns,
and an increase of the oxygen content are all reasons for the redshift of the emission wavelength of the
prepared CDs.
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3.2. Fluorescent Detection of CV

The selectivity of the Y-CDs nanosensor for CV was investigated. Different samples, including CV,
MR, SudanI, MB, MG, Fe3+, Hg2+, Pb2+, Ag+, Cd2+, Co2+, Cu2+, Zn2+, and Ca2+ (concentration: 10
µM), were reacted with Y-CDs solution. As shown in Figure S6, the F0/F (F0 and F are the fluorescence
intensity before and after the addition of detected samples) of the Y-CDs could be visibly quenched by
the addition of CV, and there were a slimly change of F0/F of the Y-CDs after the addition of metal
ions and other dyes. This result showed that the Y-CDs were selective toward CV over the other metal
ions, and dyes. The Y-CDs could be developed as an efficient fluorescence sensor for CV. Figure 8
shows the quenching effect of the fluorescence intensity towards CV. The fluorescence intensity of
Y-CDs decreases gradually with increasing concentration of CV (the concentration of CV is 0, 0.1, 0.5,
0.9, 1.3, 1.8, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, and 11.0 µM). The F0/F values of the Y-CDs were
treated with a concentration gradient of CV. A good linear correlation (R2 = 0.99807) was found over
the concentration range of 0.1 to 11 µM and the LOD, according to the IUPAC (International union of
pure and applied chemistry) standard, which was taken as 3× standard deviation/slope, calculated as
20 nM, which is comparable with the reported data [39]. Han [40] et al. realized the detection of crystal
violet in fish tissues based on yellow-emissive silicon nanoparticles, with a detection limit of 25 µg/mL
(6.12 × 10−5 M), while in our study, the detection limit was 20 nM, lower than that in Chen’s detection.
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For the fluorescence quenching mechanism, the UV-vis absorption spectra of CV and the emission
spectra of Y-CDs were compared (Figure S7). The UV-vis absorption spectrum of CV shows a broad
absorption peak at 510 to 675 nm, which greatly overlaps with the emission spectra of Y-CDs, resulting
in CV’s effective screening of the emission of Y-CDs. This indicates that the Y-CDs are quenched
by CV due to the internal filtration effect. For the detection methods based on the inner filter effect,
the realization of sensitive detection not only relies on the overlapping extent of the fluorescence spectra
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of CDs with the absorption spectra of crystal violet but also on the distance between the energy donor
(Y-CDs) and its acceptor (dye). Besides, crystal violet also shows good solubility in ethanol. Therefore,
this method can realize sensitive detection of crystal violet.

4. Conclusions

This paper investigated the preparation of CDs with 1,2,4,5-tetraaminobenzene as the raw material.
The emission wavelength is adjustable merely through the control of the solvent. Properties of the
solvents, including the dehydrating ability, solubility, boiling point, polarity, and (non-) proton,
cause the difference in the particle size and surface state of the prepared CDs, which further influence
its photoluminescence property. The particle size and element composition and content also impact
the emission wavelength of CDs. The emission wavelength of prepared CDs red shifts with a stronger
quantum confinement effect, the existence of graphite Ns, and more oxygen-doping on the surface.
Furthermore, Y-CDs were applied as a probe for the detection of CV with a linear range of 0.1 to 11 µM
and LOD of Y-CDs of 20 nM, with the detection mechanism as the fluorescence inner filter effect.
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Sensitivity investigation of the Y-CDs for CV detection (samples concentration: 10 µM) ,Figure S7: The overlap
between absorption spectrum of CV and the emission spectra of Y-CDs.
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