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The DNAmicroarray classification technique has gained more popularity in both research and practice. In real data analysis, such
as microarray data, the dataset contains a huge number of insignificant and irrelevant features that tend to lose useful information.
Classes with high relevance and feature sets with high significance are generally referred for the selected features, which determine
the samples classification into their respective classes. In this paper, kernel fuzzy inference system (K-FIS) algorithm is applied to
classify the microarray data (leukemia) using t-test as a feature selection method. Kernel functions are used to map original data
points into a higher-dimensional (possibly infinite-dimensional) feature space defined by a (usually nonlinear) function 𝜙 through
a mathematical process called the kernel trick. This paper also presents a comparative study for classification using K-FIS along
with support vector machine (SVM) for different set of features (genes). Performance parameters available in the literature such
as precision, recall, specificity, F-measure, ROC curve, and accuracy are considered to analyze the efficiency of the classification
model. From the proposed approach, it is apparent that K-FIS model obtains similar results when compared with SVMmodel.This
is an indication that the proposed approach relies on kernel function.

1. Introduction

Accurate diagnosis of the disease, particularly “cancer,” is
vital for the successful application of any specific therapy.
Even though classification related to cancer diagnosis has
been improved over the last decade significantly, still there
is a need for its proper diagnosis with less subjective meth-
ods. Recent development in diagnosis indicates that DNA
microarray provides an insight into cancer classification at
the gene level due to their capabilities to measure abundant
ribonucleic acid (mRNA) transcripts for thousands of genes
concurrently.

Microarray-based gene expression profiling has emerged
as an efficient technique for cancer classification as well as for
diagnosis, prognosis, and treatment purposes [1–3]. In recent
years, DNA microarray technique has shown great impact
on determining the informative genes that cause cancer
[4, 5].

The major drawback that exists in microarray data is
the curse of dimensionality problem; that is, the number

of genes 𝑁 far exceeds the number of samples 𝑀 (𝑁 ≫
𝑀), which hinders the useful information of dataset and
the computational instability [6]. Therefore, the selection
of relevant genes remains a challenge in the analysis of
microarray data [1]. The aim of gene selection is to select
a small subset of genes from a larger pool, yielding not
only good performance of classification but also biologically
meaningful insights. Gene selection methods are classified
into three types: (a) filter methods, (b) wrapper methods,
and (c) embedded methods. Filter methods evaluate a gene
subset by looking at the intrinsic characteristics of data with
respect to class labels [1], while wrapper methods evaluate
the goodness of a gene subset by the accuracy of its learning
or classification. Embedded methods are generally referred
to algorithms where gene selection is embedded in the
construction of the classifier [7].

In this paper, 𝑡-test (filter approach) method is used to
select the high relevance genes. It assumes independence
among genes while determining the rankings and is compu-
tationally very efficient.

Hindawi Publishing Corporation
International Scholarly Research Notices
Volume 2014, Article ID 769159, 18 pages
http://dx.doi.org/10.1155/2014/769159

http://dx.doi.org/10.1155/2014/769159


2 International Scholarly Research Notices

Table 1: Relevant works on cancer classification using microarray (leukemia) dataset.

Author Feature selection/extraction
method Classifier used Accuracy (%)

Cho et al. [8] (2003)
Kernel fisher feature
discriminant analysis
(KFDA)

73.53

Deb and Raji Reddy [9]
(2003) NSGA-II 100

Lee et al. [10] (2003) Bayesian model Artificial neural network
(ANN), KNN, and SVM 97.05

Ye et al. [11] (2004) Uncorrelated linear discriminant
analysis (ULDA) KNN (𝑘 = 1) 97.5

Cho et al. [12] (2004) SVM-RFE Kernel KFDA 94.12

Paul and Iba [13] (2004) Probabilistic model building
genetic algorithm (PMBGA)

Naive-Bayes (NB),
weighted voting classifier 90

D ́ıaz and De andres [14]
(2006) Random forest 95

Peng et al. [15] (2007) Fisher ratio NB, decision tree J4.8, and
SVM 100, 95.83, and 98.6

Pang et al. [16] (2007) Bootstrapping consistency gene
selection KNN 94.1

Hernandez et al. [17] (2007) Genetic algorithm (GA) SVM 91.5

Zhang and Deng [18]
(2007) Based Bayes error filter (BBF)

Support vector machine
(SVM),𝐾-nearest neighbor
(KNN)

100, 98.61

Bharathi and Natarajan [19]
(2010) ANOVA SVM 97.91

Tang et al. [20] (2010) ANOVA Discriminant Kernel partial
least square (Kernel-PLS) 100

Mundra and Rajapakse [7]
(2010)

𝑡-test, SVM based 𝑡-statistics,
SVM with recursive feature
elimination (RFE), and SVM
based 𝑡-statistic with RFE

SVM 96.88, 98.12, 97.88,
and 98.41

Lee and Leu [21] (2011) 𝜒2-test Hybrid with GA + KNN
and SVM 100

Salem et al. [22] (2011) Multiple scoring gene selection
technique (MGS-CM)

SVM, KNN, and linear
discriminant analysis
(LDA)

90.97

Table 2: Classification matrix.

NO YES
NO True Negative (TN) False Positive (FP)
YES False Negative (FN) True Positive (TP)

However, a linear subspace cannot describe the nonlinear
variations of microarray genes. Alternatively, a kernel feature
space can reflect nonlinear information of genes, in which the
original data points are mapped onto a higher-dimensional
(possibly infinite-dimensional) feature space defined by a
function 𝜙 (usually nonlinear) through a mathematical pro-
cess called the “kernel trick” [23].

The kernel trick is a mathematical technique which can
be applied to any algorithm. It solely depends on the dot
product between two vectors. Wherever a dot product is
used, it is replaced by the kernel function. When properly

applied, these candidate linear algorithms are transformed
into nonlinear algorithms (sometimes with little effort or
reformulation). These nonlinear algorithms are equivalent to
their linear originals operating in the range space of a feature
space.

In the literature, it is observed that the following types
of kernels have been used to map the function in high
dimensional space:

(i) linear: 𝐾(𝑥
𝑖
, 𝑥
𝑗
) = 𝑥𝑇
𝑖
𝑥
𝑗
;

(ii) polynomial: 𝐾(𝑥
𝑖
, 𝑥
𝑗
) = (𝛾𝑥𝑇

𝑖
𝑥
𝑗
+ 𝑐)𝑑; 𝛾 > 0, 𝑐 ⩾ 0;

(iii) radial basis function (RBF): 𝐾(𝑥
𝑖
, 𝑥
𝑗
) = exp(−𝛾

‖𝑥
𝑖
− 𝑥
𝑗
‖2); 𝛾 > 0;

(iv) tan-sigmoid (tansig):𝐾(𝑥
𝑖
, 𝑥
𝑗
) = tanh(𝛾𝑥𝑇

𝑖
𝑥
𝑗
+ 𝑐); 𝛾 >

0, 𝑐 ⩾ 0.
where 𝛾, 𝑐, and 𝑑 are kernel parameters.
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Table 3: Performance parameters.

Performance parameters Description

Precision = TP/(FP + TP) It is the degree to which the repeated measurements under
unchanged conditions show the same results

Recall = TP/(FN + TP) It indicates that the number of the relevant items are to be identified

𝐹-measure
= (2 ∗ Precision ∗ Recall)/(Precision + Recall)

It combines the “precision” and “recall” numeric values to give a
single score, which is defined as the harmonic mean of the precision
and recall

Specificity = TN/(FP + TN) It focuses on how effectively a classifier identifies negative labels

Accuracy = (TP + TN)/(FP + FN + TP + TN) It measures the percentage of inputs in the test set that the classifier
correctly labeled

Receive operating characteristic (ROC) curve

ROC curve is a graphical plot which illustrates that the performance
of a binary classifier system as its discrimination threshold is varied. It
investigates and employs the relationship between “true positive rate
(sensitivity)” and “false positive rate (1 − specificity)” of a classifier

Table 4: Classification matrix before classification.

ALL(0) AML(1)
ALL(0) 47 0
AML(1) 25 0

The choice of a kernel function depends on the problem
in hand because it depends on what we are trying to model.
For instance, a polynomial kernel allows feature conjunction
modeling to the order of the polynomial. Radial basis func-
tion allows picking out circles (or hyperspheres) in contrast
with the linear kernel, which allows only picking out lines
(or hyperplanes). The objective behind using the choice of
a particular kernel can be very intuitive and straightforward
depending on what kind of information is to be extracted
with respect to data. Fuzzy logic provides a means to arrive at
a definite conclusion based upon vague, ambiguous, impre-
cise, noisy, or missing input information. Since the nature of
dataset is quite fuzzy, that is, not predictable, which in turn
(data) leads to different inference, the relationship among
the data and inference is unknown. The fuzzy concept has
been used in this work, to study the behavior of the data
(capturing humanway of thinking), and also it is also possible
to represent and describe the data mathematically. Further,
fuzzy system has been considered because of the limited
number of learning rules that needs to be learnt in the present
system.The number of free parameters to be learnt is reduced
considerably, leading to efficient computation. In general, if
the number of features is larger than 100, then it is suitable to
use machine learning techniques rather than using statistical
approaches.

If ANN is applied for the same method, designing the
model would be far more challenging due to the large
number of cases. Hence coupling ANN with Fuzzy logic will
be easy to handle by inferring the rule base of the fuzzy
system.

In the current scenario, neurofuzzy networks have been
found to be successfully applied in various areas of analytics.

Two typical types of neurofuzzy networks are Mamdani-
type [24] and TSK-type [25]. For Mamdani-type neurofuzzy
networks, minimum number of fuzzy implications are used
in fuzzy reasoning. Meanwhile, in TSK-type neurofuzzy
networks, the consequence of each rule is a function of
various input variables. The generic adopted function for
rule generation is a linear combination of input variables
and constant term. Several researchers and practitioners have
reported that using TSK-type neurofuzzy network achieves
superior performance in network size and learning accuracy
to that ofMamdani-type neuron-fuzzy networks [26]. In clas-
sic TSK-type neurofuzzy network, which is linear polynomial
of the input variables, the system output is approximated
locally by the rule of hyperplanes.

Along with the feature selection using t-statistic, a non-
linear version of FIS called kernel fuzzy inference system (K-
FIS) using 10-fold cross-validation (CV).The results obtained
from the experimental work carried out on leukemia dataset
show that the proposed methods perform well when certain
performance indicators are considered.

The rest of the paper is organized as follows. Section 2
highlights the related work in the field of microarray classi-
fication. Section 3 presents the proposed work for classifying
the microarray data using kernel fuzzy inference system (K-
FIS). Section 4 presents the various performance parameters
used to evaluate the performance of classifiers (models).
Section 5 gives the details of the implementationwork carried
out for classification. Section 6 highlights the results obtained
and interpretation drawn from it and also presents a compar-
ative analysis for gene classification of microarray. Section 7
concludes the paper with scope for future work.

2. Related Work

This section gives a brief overview of the feature selection
methods and classifiers used by various researchers and
practitioners and their respective accuracy rate achieved in
gene classification. Table 1 gives the list of classifiers and
features selection/extraction methods.
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Table 5: Selected features with “𝑃 value” in descending order.

Number of features Notation Selected features with gene ID.
5 F5 {𝑓4328, 𝑓2354, 𝑓6855, 𝑓6281, 𝑓2642}

10 F10 F5 ∪ {𝑓6225, 𝑓1144, 𝑓1685, 𝑓2335, 𝑓2441}
15 F15 F10 ∪ {𝑓6974, 𝑓804, 𝑓5772, 𝑓4973, 𝑓7119}
20 F20 F15 ∪ {𝑓6702, 𝑓758, 𝑓1962, 𝑓1928, 𝑓4196}
25 F25 F20 ∪ {𝑓5501, 𝑓4847, 𝑓4438, 𝑓5377, 𝑓4167}
30 F30 F25 ∪ {𝑓1078, 𝑓5593, 𝑓3252, 𝑓1630, 𝑓6283}

Table 6: Parameters of K-FIS model.

Parameters used Range Value used
Squash factor (𝜂) [1, 2] 1.25
Accept ratio (𝜖) (0, 1] 0.75
Reject ratio (𝜖) (0, 1] 0.15
Cluster radius (𝑟

𝑎
) (0, 1] —

Table 7: Classification matrix for FIS with different set of features.

(a) F5

0 1
0 44 3
1 2 23

(b) F10

0 1
0 46 1
1 1 24

(c) F15

0 1
0 43 4
1 2 23

(d) F20

0 1
0 44 4
1 0 25

(e) F25

0 1
0 45 2
1 1 24

(f) F30

1 0
0 45 2
1 1 24

3. Proposed Work

Thepresence of a huge number of insignificant and irrelevant
features degrades the quality of analysis of the disease like
“cancer.” To enhance the quality, it is very essential to analyze
the dataset in proper perspective. This section presents the

Data

Missing value
imputation and

data
normalization

Feature
selection using

Training
data Test data

Classify data based on kernel
fuzzy inference system (K-FIS)

algorithm

Adjustment
parameters

Classification
result

Evaluations
indexes

Validity of
classifications

?

Output classification results

10-Fold CV

Yes

No

t-test

Figure 1: Proposed work for microarray classification.

proposed approach for classification of microarray data,
which consists of two phases:

(1) this phase, preprocessess the input data using various
methods such asmissing data imputation, normaliza-
tion, and feature selection using t-statistic.

(2) the fact that K-FIS algorithm has been applied as a
classifier.

Figure 1 shows the graphical representation of proposed
approach and the brief description of the proposed approach
is as follows.

(1) Data Collection. The requisite input data for microarray
classification is obtained fromKent Ridge Biomedical Dataset
Repository [1].

(2) Missing Data Imputation and Normalization of Dataset.
Missing data of a feature (gene) ofmicroarray data is imputed
by using the mean value of the respective feature. Input
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Table 8: Performance analysis of FIS with different set of features with best suitable cluster radius (𝑟
𝑎
in small bracket).

Models (𝑟
𝑎
) Accuracy Precision Recall Specificity 𝐹-measure

F5 (0.5) 0.9306 0.9200 0.8846 0.9565 0.9020
F10 (0.2) 0.9722 0.9600 0.9600 0.9787 0.9600
F15 (0.4) 0.9167 0.9200 0.8519 0.9556 0.8846
F20 (0.45) 0.9444 1.0000 0.8621 1.0000 0.9259
F25 (0.2) 0.9583 0.9600 0.9231 0.9783 0.9412
F30 (0.4) 0.9583 0.9600 0.9231 0.9783 0.9412

feature values are normalized over the range [0, 1] using
min-max normalization technique [27]. Let 𝑋

𝑖
be the 𝑖th

feature of the dataset 𝑋, and 𝑥 is an element of the 𝑋
𝑖
. The

normalization of the 𝑥 can be calculated as

Normalized (𝑥) =
𝑥 −min (𝑋

𝑖
)

max (𝑋
𝑖
) −min (𝑋

𝑖
)
, (1)

wheremin(𝑋
𝑖
) andmax(𝑋

𝑖
) are theminimumandmaximum

value for the dataset 𝑋
𝑖
, respectively. If max(𝑋

𝑖
) is equal to

min(𝑋
𝑖
), then normalized(𝑥) is set to 0.5.

(3) Division of Dataset. The dataset is divided into two
categories such as training set and testing set.

(4) Feature Selection of Dataset. t-test statistics has been
applied to select the features having high relevance value and
hence the curse of dimensionality issue has been reduced.

(5) Build Classifier.Kernel fuzzy inference system (K-FIS) has
been designed to classify the microarray dataset.

(6) Test the Model. Model is tested using the testing dataset
and then the performance of the classifier has been compared
using various performance measuring criteria based on “10-
fold cross-validation” technique.

4. Performance Evaluation Parameters

This section describes the performance parameters used for
classification [28] (Table 3). Table 2 shows the classification
matrix, fromwhich the values of the performance parameters
can be determined.

5. Implementation

5.1. Feature Selection Using 𝑡-Test. Generally, the problems
with microarray data are (a) “curse of dimensionality,” where
numbers of features are much larger than the number of
samples, (b) the fact that there are so many features having
very less effect on the classification result, and so forth. To
alleviate these problems, feature selection approaches are
used. In this paper, 𝑡-test filter approach is used to overcome
the problems. Selecting features using 𝑡-test is to reduce the
dimension of the data by finding a small set of important
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Figure 2: Empirical cumulative distribution function (CDF) of the
𝑃 values.

features which can give good classification performance and
is computed using (2):

TS (𝑖) =
𝑋
𝑖1
− 𝑋
𝑖2

𝑠
𝑋
1
𝑋
2

√(1/𝑛
1
) + (1/𝑛

2
)
, (2)

𝑠
2

𝑋
1
𝑋
2

=
(𝑛
1
− 1) 𝑠2
𝑋
𝑖1

+ (𝑛
2
− 1) 𝑠2
𝑋
𝑖2

𝑛
1
+ 𝑛
2
− 2

, (3)

where 𝑠
𝑋
1
𝑋
2

is an estimator of the common standard devia-
tion of the two samples, 𝑋

𝑖𝑘
represents the mean of feature 𝑖

of class 𝑘 ∈ {1, 2}, and 𝑠 is the standard deviation.
Awidely used filtermethod formicroarray data is to apply

a univariate criterion separately on each feature, assuming
that there is no interaction between features. A two-class
problem test of the null hypothesis (𝐻

0
) is that the means of

two populations are equal; itmeans that there is no significant
difference between their means, and both features are almost
the same. It implies that they (features) do not affect much
the classification result. Hence, these features have been dis-
carded, and the features having significant difference between
their means are accepted. Therefore, it is necessary to reject
“null hypothesis” (𝐻

0
) and accept the “alternate hypothesis”

(𝐻
1
). In otherwords, alternate hypothesis is accepted.Here, 𝑡-

test on each feature has been applied and comparedwith their
corresponding 𝑃 value (or the absolute values of 𝑡-statistics)
for each feature as ameasure of how effective it is at separating
groups. In order to get a general idea of how well separated
the two groups (classes) are by each feature, the empirical
cumulative distribution function (CDF) of the 𝑃 values has
been plotted in Figure 2.
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Table 9: Classification matrix for K-FIS with different sets of
features using polynomial (𝛾 = 1, 𝑐 = 0.5, 𝑑 = 3) kernel.

(a) F5

0 1
0 46 1
1 0 25

(b) F10

0 1
0 46 1
1 1 24

(c) F15

0 1
0 45 2
1 1 24

(d) F20

0 1
0 45 2
1 1 24

(e) F25

0 1
0 45 2
1 1 24

(f) F30

0 1
0 45 2
1 1 24

From Figure 2, it is observed that about 18% of features
are having 𝑃 values close to zero and over 28.70% of
features are having 𝑃 values smaller than 0.05. The features
having 𝑃 values smaller than 0.05 have strong discrimination
power. Sorting these features according to their 𝑃 values
(or the absolute values of the 𝑡-statistic) helps to identify
some features from the sorted list. However, it is usually
difficult to decide how many features are needed unless one
has some domain knowledge or the maximum number of
features that can be considered has been dictated in advance
based on outside constraints. To overcome this problem,
forward feature selection method is considered, in which top
ranked features corresponding to their descending 𝑃 value
are identified.

5.2. Fuzzy Inference System (FIS). For a given universe set 𝑈
of objects, a conventional binary logic (crisp) 𝐴 is defined by
specifying the objects of 𝑈 that are member of 𝐴. In other
words, the characteristic function of 𝐴 can be written as 𝑢

𝐴
:

𝑈 → {0, 1} for all 𝑥 ∈ 𝑈.
Fuzzy sets are obtained by generalizing the concept of

characteristic function to a membership function 𝑢
𝐴
: 𝑈 →

[0, 1] for all 𝑥 ∈ 𝑈. It provides the degree of membership

Training data

Kernel subtractive
(KSC) clustering

Group1 Group 2

LMS parameter
Setting up

simplified fuzzy
rules

Data fuzzification and
mapping the most

similar rule
Testing data

Classification

Group R· · ·

Figure 3: Framework of kernel fuzzy inference system (K-FIS).

rather than just the binary is/is not a member to a set, which
ensures the objects that are not clearly member of one class
or another. Using crisp techniques, an ambiguous object will
be assigned to one class only lending an aura of precision and
definiteness to the assignments that are notwarranted.On the
other hand, fuzzy techniques will specify to what degree the
object belongs to each class.

The TSK fuzzy model (FIS) is an adaptive rule model
introduced by Takagi et al. [25, 26]. The main objective of
using TSK fuzzy model is to reduce the number of rules
generated by Mamdani model. In this approach, TSK fuzzy
model can also be used for classifying complex and high
dimensional problems. It develops a systematic approach to
generating fuzzy rules froma given input-output dataset. TSK
model replaces the fuzzy sets of the Mamdani rule with the
function of the input variables.

5.3. Kernel Fuzzy Inference System (K-FIS). In this section,
K-FIS has been described which is a nonlinear version of
FIS. The number of rules (𝑅), the parameters of fuzzy sets,
that is, the centers and the width parameters (𝜎) of the
corresponding membership function (in this case Gaussian)
of K-FIS, are computed using kernel subtractive cluster-
ing technique (KSC) which is also a nonlinear version of
subtractive clustering (SC) and the parameters of rules are
computed using least mean square (LMS) in nonlinear space.
The stepwise working procedure of K-FIS has been depicted
in Figure 3. The working procedure of K-FIS is described as
follows.

(1) Clustering.To compute the parameters of themembership
function, that is, centroids and sigmas (𝜎) and number of
rules (centers), Kernel subtractive clustering (KSC) has been
used on training dataset (microarray). The algorithm of KSC
has been described in Section 5.3.1.
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Table 10: Performance analysis of K-FIS using polynomial kernel (𝛾 = 1, 𝑐 = 0.5, 𝑑 = 3) with different set of features with best suitable cluster
radius (𝑟

𝑎
in small bracket).

Models (𝑟
𝑎
) Accuracy Precision Recall Specificity 𝐹-measure

F5 (0.2) 0.9861 1.0000 0.9615 1.0000 0.9804
F10 (0.2) 0.9722 0.9600 0.9600 0.9787 0.9600
F15 (0.3) 0.9583 0.9600 0.9231 0.9783 0.9412
F20 (0.2) 0.9583 0.9600 0.9231 0.9783 0.9412
F25 (0.2) 0.9583 0.9600 0.9231 0.9783 0.9412
F30 (0.4) 0.9583 0.9600 0.9231 0.9783 0.9412

Table 11: Classificationmatrix forK-FISwith different set of features
using RBF kernel (𝛾 = 0.5).

(a) F5

0 1
0 45 2
1 0 25

(b) F10

0 1
0 45 2
1 1 24

(c) F15

0 1
0 45 2
1 0 25

(d) F20

0 1
0 42 5
1 0 25

(e) F25

0 1
0 42 5
1 0 25

(f) F30

0 1
0 40 7
1 2 23

(2) Setting Up a Simplified Fuzzy Rule Base.

(i) Computation of Membership Function. Gaussian function
is used as a membership function (𝐴). The parameters such
as centroid (𝑐) and sigma (𝜎) of𝐴 have been computed using
KSC and 𝐴 is expressed as

𝐴 = exp(−1
2
(
𝑥 − 𝑐

𝜎
)
2

) . (4)

(ii) Generation of Fuzzy Rules. The number of fuzzy rules
generated will be equal to the number of clusters formed.

(3) Estimation of Parameters of Rules. After generating fuzzy
rules, the constant parameters in rules can be estimated using
least mean square (LMS) algorithm.

5.3.1. Kernel Subtractive Clustering (KSC). The kernel sub-
tractive clustering (KSC) is a nonlinear version of subtractive
clustering [29]; here input space is mapped into nonlinear
space. In this algorithm, to obtain the cluster centroids and
sigmas, the same parameters are used which are also used
in subtractive clustering (SC) [30]. The parameters used to
calculate the cluster centroid are Hypersphere cluster radius
(𝑟
𝑎
) in data space, reject ratio (𝜖), accept ratio (𝜖). Squash

factor (𝜂) defines the neighborhood which will have the
measurable reductions in potential value, and it can be
calculated as

𝜂 =
𝑟
𝑏

𝑟
𝑎

. (5)

Reject ratio (𝜖) specifies a threshold for the potential value
above which the data point is definitely accepted as a cluster
centroid. Accept ratio (𝜖) specifies a threshold below which
the data point is definitely rejected.

For a given data point 𝑥
𝑖
⊂ 𝑋 where (1 ⩽ 𝑖 ⩽ 𝑛), 𝑋 ∈ R𝑝,

and a nonlinear function 𝜙, R𝑝 → H maps the input to a
higher- (may be infinite-) dimensional feature space H. The
potential value of each data point defines a measure of the
data point to serve as a cluster centroid and can be calculated
by using the following equation:

𝑝 (𝑥
𝑖
) =
𝑛

∑
𝑗=1

𝑒
−𝛼‖𝜙(𝑥

𝑖
)−𝜙(𝑥

𝑗
)‖
2

=
𝑛

∑
𝑗=1

𝑒
−𝛼(𝐾(𝑥

𝑖
,𝑥
𝑖
)−2𝐾(𝑥

𝑖
,𝑥
𝑗
)+𝐾(𝑥

𝑗
,𝑥
𝑗
))
,

(6)

where 𝛼 = 4/𝑟2
𝑎
, 𝐾 is a kernel function, ‖ ⋅ ‖ denotes

the Euclidean distance between the data points, and 𝑟
𝑎
is a

positive constant called cluster radius. The data point with
highest potential is selected as the first cluster centroid by
computing the potential value of individual data point. Let 𝑥∗

1
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Figure 4: ROC curve for FIS with different set of features.

be the centroid of the first cluster and 𝑝∗
1
its potential value.

The potential value of each data point 𝑥∗
𝑖
is revised as follows:

𝑝
𝑗
(𝑥
𝑖
) = 𝑝
𝑗−1
(𝑥
𝑖
) − 𝑝
∗

𝑗−1
𝑒
−𝛽‖𝜙(𝑥

𝑖
)−𝜙(𝑥

∗

𝑗−1
)‖
2

= 𝑝
𝑗−1
(𝑥
𝑖
) − 𝑝
∗

𝑗−1
𝑒
−𝛽(𝐾(𝑥

𝑖
,𝑥
𝑖
)−2𝐾(𝑥

𝑖
,𝑥
∗

𝑗−1
)+𝐾(𝑥

∗

𝑗−1
,𝑥
∗

𝑗−1
))
,

(7)

where 𝑝∗
𝑗
= Max

𝑖
(𝑝(𝑥
𝑖
)), 𝛽 = 4/𝑟2

𝑏
, 𝑟
𝑏
= 𝜂 ∗ 𝑟

𝑎
, and 𝜂 is a

positive constant over the range [1, 2]. When the potentials
of all data points have been revised by (7), the data point
with the highest remaining potential is selected as the second
cluster centroid. In such amanner, all the cluster centroids are
selected using Algorithm 1.

After computing the number of rules (𝑅), the parameters
of fuzzy sets and the parameters of rules are derived. To derive
the rules for the K-FIS, the selected features (genes) using
filter approach (𝑡-test) have been used as the input. The 𝑘th

rule (𝑅𝑘) for the given test point 𝑥
𝑡
can be expressed as.

IF 𝑥
1
is 𝐴𝑘
1
and 𝑥

2
is 𝐴𝑘
2
, . . . and 𝑥

𝑛
is 𝐴𝑘
𝑛
,

where 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
are input variables and 𝐴𝑘

𝑗
is a fuzzy set,

𝑅𝑘 is a linear function. The fuzzy set 𝐴𝑘
𝑗
uses a Gaussian

function and can be computed as

𝐴
𝑘

𝑗
= exp(−1

2
(
𝜙(𝑥
𝑗
) − 𝜙(𝑐

𝑗𝑘
)

𝜎
𝑗𝑘

)

2

)

= exp(− 1

2𝜎2
𝑗𝑘

(𝐾 (𝑥
𝑗
, 𝑥
𝑗
) − 2𝐾 (𝑥

𝑖
, 𝑐
𝑗𝑘
) + 𝐾 (𝑐

𝑗𝑘
, 𝑐
𝑗𝑘
)))

(8)

THEN

𝑅
𝑘
= 𝑏
𝑘

0
+
𝑛

∑
𝑡=1

𝑝
𝑘

𝑡
𝜙 (𝑥
𝑡
) (9)

𝑝
𝑘

𝑡
=
𝑚

∑
𝑖=1

𝛼
𝑖
𝜙 (𝑥
𝑖
) . (10)

Consider 𝑚 to be the number of training samples and 𝜙 as a
nonlinear transformation function. The representer theorem
[31, 32] states that the solution of an optimization of (10) can
be written in the form of an expansion over training pattern,
(𝑥
𝑖
is replaced by𝜙(𝑥

𝑖
)).Therefore, each training vector lies in
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Figure 5: ROC curve for K-FIS using polynomial kernel (𝛾 = 1, 𝑐 = 0.5, and 𝑑 = 3) with various feature sets.

Table 12: Performance analysis of K-FIS using RBF kernel (𝛾 = 0.5) with different set of features with best suitable cluster radius (𝑟
𝑎
in small

bracket).

Models Accuracy Precision Recall Specificity 𝐹-measure
F5 (0.4) 0.9722 1.0000 0.9259 1.0000 0.9615
F10 (0.2) 0.9583 0.9600 0.9231 0.9783 0.9412
F15 (0.3) 0.9722 1.0000 0.9259 1.0000 0.9615
F20 (0.4) 0.9306 1.0000 0.8333 1.0000 0.9091
F25 (0.6) 0.9306 1.0000 0.8333 1.0000 0.9091
F30 (0.6) 0.8750 0.9200 0.7667 0.9524 0.8364

the span of 𝜙(𝑥
1
), 𝜙(𝑥
2
), . . . , 𝜙(𝑥

𝑚
), and Lagrange multiplier

𝛼
𝑖
, where 𝑖 = 1, 2, . . . , 𝑚 [33]. Therefore, (9) is expressed as

𝑅
𝑘
(𝑥
𝑡
) = 𝑏
𝑘

0
+
𝑛

∑
𝑡=1

m
∑
𝑖=1

𝛼
𝑖
𝜙 (𝑥
𝑖
) 𝜙 (𝑥
𝑡
)

= 𝑏
𝑘

0
+
𝑛

∑
𝑡=1

𝑚

∑
𝑖=1

𝛼
𝑖
𝐾(𝑥
𝑖
, 𝑥
𝑡
) .

(11)

The degree (firing strength) with which the inputmatches
𝑘th rule is typically computed using “𝑎𝑛𝑑” operator:

𝜇
𝑘
=
𝑛

∏
𝑗=1

𝐴
𝑘

𝑗
. (12)

In this case, each rule is a crisp output.The overall output
is calculated using the weighted average as shown in the
following:

𝑌 =
∑
𝑅

𝑖
𝜇
𝑖
𝑅
𝑖

∑
𝑅

𝑖
𝜇
𝑖

, (13)
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Figure 6: ROC curve for K-FIS using RBF kernel (𝛾 = 0.5) with various feature sets.

where 𝑅 is the number of rules and 𝑅
𝑖
is the 𝑖th fuzzy rule

where 𝑖 = 1, 2, . . . , 𝑅. For K-FIS classification algorithm,
the probability 𝑦 of output 𝑌 can be calculated using the
following [34]:

𝑦 = (1 + exp (−𝑌))−1. (14)

Using the usual kernel trick, the inner product can be
substituted by kernel functions satisfying Mercer’s condition.
Substituting the expansion of 𝑝 in (10) into (9), this transfor-
mation leads to nonlinear generalization of fuzzy inference
system in kernel space which can be called as kernel fuzzy
inference system (K-FIS).

6. Results and Interpretation

In this section, the obtained results are discussed for the pro-
posed algorithm (Section 3) on a case study, namely, leukemia
microarray dataset [1]. The classification performance is
assessed using the “10-fold cross-validation (CV)” technique
for leukemia dataset. 10-fold CV provides more realistic
assessment of classifiers, which generalizes significantly to
unseen data.

6.1. Case Study: Leukemia. The leukemia dataset consists
of expression profiles of 7129 features (genes), categorized

as acute lymphoblastic leukemia (ALL), and acute myeloid
leukemia (AML) classes, having 72 samples [1]. Out of
seventy-two samples, the dataset contains twenty-five (25)
AML and forty-seven (47) ALL samples. Table 4 shows the
classification matrix before the application of the classifica-
tion algorithm.

Since the dataset contains a very large number of features
with irrelevant information, feature selection (FS) method
has been applied to select the features (genes)which have high
relevance score, and the genes with a low relevance score are
discarded. 𝑡-test method has been used to choose genes with
high relevance score. The main objectives of the FS method
are as follows:

(a) to avoid overfitting and improve model (classifier)
performance,

(b) to provide faster and more cost-effective models,

(c) to gain a deeper insight into the underlying processes
that generate the data.

To achieve these objectives of FS, forward selection
method has been employed by selecting the features having
high “𝑃 value” using 𝑡-test.The forward selectionmethod has
been slightlymodifiedwhere features are selected inmultiples
of five; that is, five features are selected corresponding to top
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Figure 7: ROC curve for K-FIS using tansig kernel (𝛾 = 0.5, 𝑐 = 0.1) with various feature sets.
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Figure 8: Comparison of testing accuracy of K-FIS using different
feature set.

five “𝑃 values” and so on. The selected features are tabulated
in Table 5.

After feature selection using 𝑡-test, the proposed classi-
fication algorithm K-FIS is applied to classify the reduced
leukemia dataset using 10-fold CV.

The dataset is divided into different subsets for the
training and testing purpose. First of all, every tenth sample
out of seventy-two (72) samples is extracted for testing
purpose and the rest of the data will be used for training
purpose. Then the training set has been partitioned into the
learning and validation sets in same manner as shown below.

For partition 1. Samples 1, 11, 21, . . . are used as
validation samples and the remaining are accepted as
learning samples.
For partition 2. Samples 2, 12, 22, . . . are used as
validation samples and the remaining are accepted as
learning samples.
...
For partition 10. Samples 10, 20, 30, . . . are used as
validation samples and the remaining are accepted as
learning samples.

After partitioning data into learning set and validation
set, model selection is performed using 10-fold CV process
by varying the parameters of K-FIS. The parameters used in
the proposed work are shown in Table 6.

By varying the value of 𝑟
𝑎
, the best model (with high

accuracy or minimum error) is selected in each fold using
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Input:The dataset𝑋, radius 𝑟
𝑎
, 𝜂, 𝜖, 𝜖.

Output: Optimal number of clusters, their centroid and sigma (𝜎).
Compute the potential for each data point 𝑥

𝑖
using (6).

Choose the data point 𝑥
𝑖
whose potential value is highest as a cluster centroid.

Discard and recompute the potential value for each 𝑥
𝑖
using (7).

If 𝑝∗
𝑗
> 𝜖𝑝∗
1
then

Accept 𝑥∗
𝑗
as a cluster center and continue.

else if 𝑝∗
𝑗
< 𝜖𝑝∗
1
then

Reject 𝑥∗
𝑗
and end the clustering process.

else
𝑑min = shortest of the distance between 𝑥∗

𝑗
and all previously found cluster centers.

if (𝑑min /𝑟𝑎 + 𝑝
∗

𝑗
/𝑝∗
1
) ⩾ 1 then

Accept 𝑥∗
𝑗
as a cluster center and continue.

else
Reject 𝑥∗

𝑗
and set the potential at 𝑥∗

𝑗
to 0. Select the data point with the next highest potential as the new 𝑥∗

𝑗
and reset.

end if
end if
Sigma = (𝑟

𝑎
∗ (max(𝑋) −min(𝑋))/√8.0

Algorithm 1: Kernel subtractive clustering.

for i =1 to F do
Divide the dataset into training set𝐷

𝑖
and testing set 𝑇

𝑖
.

for 𝑟
𝑎
= 0.1 to 1 (with step size = 0.1) do

for j =1 to F do
Divide the training set (𝐷

𝑖
) into learning set (𝐿

𝑗
) and validation set (𝑉

𝑗
).

Train the model using learning set (𝐿
𝑗
).

Validate the model using validation set (𝑉
𝑗
).

Calculate Accuracy of the model.
end for
Calculate mean of Accuracy of model corresponding to radius (𝑟

𝑎𝑖
).

end for
Select 𝑟

𝑎
, corresponding to model having high accuracy (called 𝑟∗

𝑎
).

Train the model with training set (𝐷
𝑖
) with 𝑟∗

𝑎
and calculate accuracy.

Test the model with testing set (𝑇
𝑖
) with 𝑟∗

𝑎
and calculate accuracy.

end for

Algorithm 2: 𝐹-fold cross-validation.

Algorithm 2, where 𝐹 represents the number of folds which
is equal to ten.

6.2. Interpretation of Results. After feature selection using 𝑡-
test, K-FIS has been used as a classifier to classify themicroar-
ray dataset by performing 10-fold CV. Different number of
features set, namely, 5, 10, 15, and so on, have been considered
and then their corresponding training (training data) and
testing accuracies (using testing data) are computed.

6.2.1. Analysis of Kernel Fuzzy Inference System (K-FIS).
In this study, kernel TSK fuzzy (K-FIS) approach based
on kernel subtractive clustering (KSC) has been used to
classify the microarray gene expression data. The process of
classifier (model) building using KSC has been carried out by
formation of clusters in the data space and translation of these
clusters into TSK rules. The number of clusters signifies the

number of rules; that is, the number of rules in K-FIS will
be equal to a number of clusters obtained using KSC. The
parameters used in K-FIS are shown in Table 6 and the value
of 𝑟
𝑎
has been optimized using cross-validation and results

are computed.
After feature selection using 𝑡-test, the features are taken

in a set of 5, 10, 15, 20, 25, and 30 called F5, F10, F15, F20,
F25, and F30 (shown in Table 5), respectively, as an input to
the classifier K-FIS and corresponding to that input vector
performance of classifier has been analyzed. The K-FIS has
been implemented using various kernel functions, namely,
linear, polynomial, RBF, and tansig.

(1) Analysis of K-FIS Using Linear Kernel (L-FIS). As a
nonlinear version of FIS, K-FIS is more general model
and contains FIS as an instance when the linear kernel is
employed. Figures 9 and 10 show the comparison of accuracy



International Scholarly Research Notices 13

Table 13: Classification matrix for K-FIS with different set of
features using tansig kernel (𝛾 = 0.5, 𝑐 = 0.1).

(a) F5

0 1
0 46 1
1 0 25

(b) F10

0 1
0 46 1
1 1 24

(c) F15

0 1
0 45 2
1 1 24

(d) F20

0 1
0 45 2
1 2 23

(e) F25

0 1
0 45 2
1 1 24

(f) F30

0 1
0 45 2
1 1 24

obtained in each fold using training data and testing data by
considering varying number of features like 5, 10, 15, 20, 25,
and 30, respectively, shown in the appendix.

After performing “10-fold CV” on the dataset, the pre-
dicted values of test data are collected from each of the
folds and classification matrix has been computed in each
of the cases as shown in Table 7. For instance, in model
F5, five (5) features are selected, and then classification is
performed. Tables 4 and 7(a) represent the classification
matrix for number of classes with ALL and AML, before
and after applying L-FIS classifier, respectively. It is evident
that, before applying the L-FIS, out of 72 samples; 47 samples
were classified as ALL class and the rest 25 samples are
classified into AML class. But after applying L-FIS (with F5)
analysis, it is found that a total number of 67 (23 (AML) +
44(ALL)) samples are classified correctly with an accuracy
rate of 93.06%. Similarly, using L-FIS with a different set of
features, namely, F10, F15, . . . , F30, the classification matrix
has been tabulated in Tables 7(b), 7(c), 7(d), 7(e), and 7(f),
respectively, and their ROCcurve plots are shown in Figure 4.
Table 8 shows the value of cluster radius 𝑟

𝑎
(i.e., the median

of the best value of 𝑟
𝑎
in each fold) and the value of various

performance parameters used to evaluate the performance of
model for classification.

It has been observed that L-FIS as a classifier achieved
highest accuracy when 10 numbers of features (i.e., F10) have

been selected. Model L-FIS has high (Recall = 96%) capacity
to identify relevant item and also to identify negative labels
(Specificity = 97.87%) in case of F10.

Hence from the obtained results, it is concluded that the
role of feature selection is very important to classify the data
with the classifier.

(2) Analysis of K-FIS Using Polynomial Kernel (P-FIS). Figures
11 and 12 show the comparison of accuracy obtained in
each fold using training data and testing data by taking
different number of features, namely, 5, 10, 15, 20, 25, and
30, respectively, has been shown in the appendix. After
performing “10-fold CV” on the dataset, the predicted values
of test data are collected from each of the folds and clas-
sification matrix has been computed in each of the cases
as shown in Table 9 and different performance measuring
parameters are computed. For instance, K-FIS with F5
model, five (5) features are selected, and then classification is
performed.

The 𝑔𝑎𝑚𝑚𝑎(𝛾) value of polynomial kernel is selected
by searching in the range of each fold, that is, 2−5 to 25.
Finally, the median value of the best 𝑔𝑎𝑚𝑚𝑎 from each fold
is considered as the value of 𝑔𝑎𝑚𝑚𝑎 for the final model.

In comparison with Table 4 K-FIS was able to classify
a total of 71 (25 (AML) + 46 (ALL)) classes with respect
to F5 by obtaining 98.61% of accuracy. Similarly, using K-
FIS with a different set of features, namely, F10, F15,. . ., F30,
the classification matrix has been tabulated in Tables 9(b),
9(c), 9(d), 9(e), and 9(f), respectively, and the obtained ROC
curves have been shown in Figure 5.

After analyzing K-FIS (polynomial) with various sets of
features, Table 10 shows the value of cluster radius 𝑟

𝑎
(i.e.,

the median of the best value of 𝑟
𝑎
in each fold) and the

value of various performance parameters used to evaluate
the performance of model for classification. It is observed
that, K-FIS (P-FIS) classifier achieved the highest accuracy
with 98.61% when 5 numbers of features (i.e., F5) have been
selected.Model polynomialhas high (Recall = 96.15%) capac-
ity to identify relevant items and also to identify negative
labels (Specificity = 100%) in case of F5, when compared with
other feature sets of K-FIS. Hence, from the obtained results,
it can be concluded that the role of feature selection is very
significant in order to classify the microarray dataset.

(3) Analysis of K-FIS Using RBFKernel (R-FIS). Figures 13 and
14 show the comparison of accuracy obtained in each fold
using training data and testing data by taking different
number of features, namely, 5, 10, 15, 20, 25, and 30, respec-
tively; vide the appendix.

After performing “10-fold CV” on the dataset, the pre-
dicted values of test data are collected from each of the
folds and classification matrix has been computed in each
of the cases as shown in Table 11 and different performance
measuring parameters are computed. For instance, K-FIS
with F5, five (5) features are selected, and then classification
is performed. The 𝑔𝑎𝑚𝑚𝑎(𝛾) value of RBF kernel is selected
by searching in the range of each fold, that is, 2−5 to 25.
Finally, the median value of the best 𝑔𝑎𝑚𝑚𝑎 from each fold
is considered as the value of 𝑔𝑎𝑚𝑚𝑎 for the final model.
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Table 14: Performance analysis of K-FIS using tansig kernel (𝛾 = 0.5, 𝑐 = 0.1) with different set of features with best suitable cluster radius
(𝑟
𝑎
in small bracket).

Models (𝑟
𝑎
) Accuracy Precision Recall Specificity 𝐹-measure

F5 (0.2) 0.9861 1.0000 0.9615 1.0000 0.9804
F10 (0.2) 0.9722 0.9600 0.9600 0.9787 0.9600
F15 (0.2) 0.9583 0.9600 0.9231 0.9783 0.9412
F20 (0.2) 0.9444 0.9200 0.9200 0.9575 0.9200
F25 (0.2) 0.9683 0.9600 0.9231 0.9783 0.9412
F30 (0.2) 0.9683 0.9600 0.9231 0.9783 0.9412

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Fold number
1 2 3 4 5 6 7 8 9 10

F5
F10
F15

F20
F25
F30

Figure 9: Training accuracy in each foldwith different set of features
using K-FIS with linear kernel.
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Figure 10: Testing accuracy in each fold with different set of features
using K-FIS with linear kernel.

In comparison with Table 4 K-FIS was able to classify a
total of 70 (25 (AML) + 45 (ALL)) classes with respect to
F5 by obtaining 97.22% of accuracy. Similarly, using K-FIS
with a different set of features, namely, F10, F15,. . ., F30, the
classification matrix has been tabulated in Tables 11(b), 11(c),
11(d), 11(e), and 11(f), respectively, and the obtained ROC
curves have been shown in Figure 6.

After analyzing K-FIS (RBF) with various sets of features,
Table 12 shows the value of cluster radius 𝑟

𝑎
(i.e., the median

of the best value of 𝑟
𝑎
in each fold) and the value of various

performance parameters used to evaluate the performance

of model for classification. It is observed that K-FIS (RBF)
classifier achieved highest accuracy with 97.22% when 5
numbers of features (i.e., F5) are selected. Model R-FIS has
high (Recall = 92.59%) capacity to identify relevant items
and also to identify negative labels (Specificity = 100%) in
case of F5, when compared with other feature sets of R-FIS.
Hence, from the obtained results, it is concluded that the role
of feature selection is very important to classify the data with
the classifier.

(4) Analysis of K-FIS Using Tansig Kernel (T-FIS). Figures
15 and 16 show the comparison of accuracy obtained in
each fold using training data and testing data by taking
different number of features, namely 5, 10, 15, 20, 25, and 30,
respectively, as shown in the appendix.

After performing “10-fold CV” on the dataset, the pre-
dicted values of test data are collected from each of the
folds and classification matrix has been computed in each
of the cases as shown in Table 11 and different performance
measuring parameters are computed. For instance, K-FIS
with F5 in themodel, F5 five (5) features are selected, and then
classification is performed. The 𝑔𝑎𝑚𝑚𝑎(𝛾) value of tansig
kernel is selected by searching in the range of each fold, that is,
2−5 to 25. Finally, the median value of the best 𝑔𝑎𝑚𝑚𝑎 from
each fold is considered as the value of 𝑔𝑎𝑚𝑚𝑎 for the final
model.

In comparison with Table 4 K-FIS was able to classify a
total of 71 (25 (AML) + 46 (ALL)) classes with respect to
F5 by obtaining 98.61% of accuracy. Similarly, using K-FIS
with a different set of features, namely, F10, F15,. . ., F30, the
classification matrix has been tabulated in Tables 13(b), 13(c),
13(d), 13(e), and 13(f), respectively, and the obtained ROC
curves have been shown in Figure 7.

After analyzing K-FIS (Tansig) with various sets of
features, Table 14 shows the value of cluster radius 𝑟

𝑎
(i.e.,

the median of the best value of 𝑟
𝑎
in each fold) and the

value of various performance parameters used to evaluate the
performance of model for classification. It has been observed
that K-FIS (Tansig) classifier achieved highest accuracy with
98.61% when 5 numbers of features (i.e., F5) had been
selected. Model T-FIS has high (Recall = 96.15%) capacity
to identify relevant item and also to identify negative labels
(Specificity = 100%) in case of F5 comparison to K-FIS with
other sets of features. In case of F10, accuracy is 97.22% and
accuracies of K-FIS with F15, F25, and F30 are the same with
95.83%. Since the variation of classifier performance is very
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Figure 11: Training accuracy in each fold with different set of
features using K-FIS with polynomial kernel.
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Figure 12: Testing accuracy in each fold with different set of features
using K-FIS with polynomial kernel.

flexible, it is concluded that the role of feature selection is very
important to classify the data with the classifier.

6.3. Comparative Analysis. A best model for classification
of microarray data is chosen based on the performance
parameters such as accuracy, precision, recall, specificity, and
𝐹-measure.The values obtained for the respective parameters
are shown in Table 15. The results of proposed algorithm
are compared with the SVM classifier. From Table 15, the
following can be inferred that.

(i) In case of K-FIS classification using different kernel
functions, tansig kernel function obtained high values
of accuracy with different set of features, namely, F5,
F10, F15, F20, F25, and F30. The respective accuracies
for the features are 98.61%, 97.22%, 95.83%, 94.44%,
96.83% and 96.83% respectively on test data.

(ii) In case of SVM classifier with different kernel func-
tions:

(1) the parameters of the kernel functions like
𝑔𝑎𝑚𝑚𝑎(𝛾) and the penalty parameter 𝐶 are
selected using the grid search in the range of
[2−5, 25] and [2−5, 25], respectively,
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Figure 13: Training accuracy in each fold with different set of
features using K-FIS with RBF kernel.
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Figure 14: Testing accuracy in each fold with different set of features
using K-FIS with RBF kernel.

(2) from Table 15, it is observed that 100% testing
accuracy is achieved (for F15), when SVM is
used along with RBF kernel.

The comparative analysis of the accuracies of differ-
ent models has been presented in Figure 8. Based on the
performance parameter, it can be concluded that, out of
two classifiers, that is, K-FIS and SVM for microarray data
classification,K-FISwith tansig kernelmethod and SVMwith
RBF kernel yielded better performance.

The running time of the classification algorithm depends
on number of features (genes) and number of training data
points.The running times were recorded usingMATLAB’13a
on Intel Core(TM) i7 CPUwith 3.40GHz processor and 4GB
RAM for different models in Table 15 (within small braces).

7. Conclusion

In this paper, an attempt has been made to design a
classification model for classifying the samples of leukemia
dataset either into ALL or AML class. In this approach, a
framework was designed for construction of K-FIS model.
K-FIS model was developed on the basis of KSC technique
in order to classify the microarray data using “kernel trick.”
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Figure 15: Training accuracy in each fold with different set of
features using K-FIS with tansig kernel.
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Figure 16: Testing accuracy in each fold with different set of features
using K-FIS with tansig kernel.

The performance of the classifier for leukemia dataset was
evaluated by using 10-fold cross-validation.

From the computed result, it is observed that K-FIS
classifier using different kernels yields very competitive result
than SVM classifier. Also, when the overall performance is
taken into consideration, it is observed that tansig kernel
coupled with K-FIS classifier acts as a more effective classifier
among the selected classifiers in this analysis. It is evident
from the obtained results that “kernel trick” provides a
simple but powerful method for classification where data is
nonlinearly separable. Data existing in nonlinear space can
be easily classified by using a kernel trick.

Further, kernel trick can be applied for all the existing
classifiers or to the recently proposed classifiers to classify the
data with high predictive accuracy.

Appendix

For more details see Figures 9, 10, 11, 12, 13, 14, 15, and 16.
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