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Abstract

Background: Precise quantitative and spatiotemporal control of gene expression is necessary to ensure proper
cellular differentiation and the maintenance of homeostasis. The relationship between gene expression and
the spatial organisation of chromatin is highly complex, interdependent and not completely understood. The
development of experimental techniques to interrogate both the higher-order structure of chromatin and the
interactions between regulatory elements has recently lead to important insights on how gene expression is
controlled. The ability to gain these and future insights is critically dependent on computational tools for the
analysis and visualisation of data produced by these techniques.

Results and conclusion: We have developed GenomicInteractions, a freely available R/Bioconductor package
designed for processing, analysis and visualisation of data generated from various types of chromosome
conformation capture experiments. The package allows the easy annotation and summarisation of large
genome-wide datasets at both the level of individual interactions and sets of genomic features, and provides
several different methods for interrogating and visualising this type of data. We demonstrate this package’s
utility by showing example analyses performed on interaction datasets generated using Hi-C and ChIA-PET.

Background
Metazoan gene expression is controlled through the
complex interplay of transcription factors, histone
modifications and regulatory elements [1, 2] in three-
dimensional nuclear space [3]. Gene expression is typic-
ally regulated by both the gene’s core and proximal
promoters and through the action of distal elements
such as enhancers [4] and insulators [5]. Physical inter-
actions between these elements and their cognate pro-
moters are currently thought to be a major mechanism
for quantitatively and spatiotemporally regulating gene
expression [6]. The positioning of chromosomes in the
nucleus [7–10] and the organisation of chromatin at
multiple scales [11, 12] have important roles in control-
ling the dynamics and specificity of these interactions,
although the mechanisms involved are not completely

understood. Information on how the spatial organisation
of chromosomes impacts the regulation of gene expres-
sion is becoming increasingly available due to the devel-
opment of experimental techniques to interrogate this
phenomenon in a genome-wide manner [13].
Chromosome conformation capture methods have

been developed for investigating chromatin interactions
at both the level of individual loci (i.e. 3C [14], 4C [15],
5C [16], T2C [17]) and genome-wide (i.e. Capture-C
[18], Hi-C [19, 20], ChIA-PET [21]). These methods
work by cross-linking regions of genomic DNA that are
in close physical proximity and thereby allowing the
identification of interactions between genomic loci by
the capture and sequencing of these regions. ChIA-PET
(Chromatin Interaction Analysis with Paired-End Tag se-
quencing) allows for the investigation of interactions
that are mediated by or associated with a specific protein
(e.g. PolII [21]) or histone modification (e.g. H3K4me2
[22]), which is accomplished by performing a
chromatin-immunoprecipitation step after crosslinking.
The resulting data can then be used to generate
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interaction maps or networks detailing chromatin inter-
actions, focusing either on specific genes and elements
or genome-wide.
These methods have provided insights into the 3D or-

ganisation of chromatin across multiple cell types and
conditions. Most interactions between genomic regions
occur within the same chromosome (cis-interactions),
with only a small number of interactions occurring re-
producibly between elements on different chromosomes
(trans-interactions) [23]. Chromatin is organised into
distinct topologically associated domains (TADs) [12],
with regulatory elements and genes preferentially inter-
acting within the same TAD, and at the larger scale
TADs are organised into compartments of active/in-
active chromatin [19]. Both genes and enhancers are
promiscuous with respect to their interaction partners,
with genes able to interact with multiple enhancers and,
less frequently, enhancers able to regulate multiple pro-
moters [24]. The interaction landscape of a promoter is
often highly dynamic and cell-type specific [25], with
changes in its interaction partners thought to play a
role in regulating its expression during development
and differentiation [26, 27]. These findings were made
possible not only by advances in experimental tech-
niques but also because of the development of statis-
tical and computational methods for data processing,
filtering, normalisation and visualisation [19, 28–33],
and currently there is considerable work on developing
new statistical methodologies for analysing this type of
data [34, 35].
Here, we present GenomicInteractions, an R/Biocon-

ductor [36] package for the manipulation, annotation
and visualisation of various types of chromatin inter-
action data, e.g. Hi-C, ChIA-PET. The development of
this software was motivated by the lack of a general plat-
form to analyse and visualise chromatin interaction data.
Existing analysis tools are mostly standalone packages
(e.g. HOMER, ChIA-PET tool), which do not have inter-
faces to the popular R/Bioconductor tools for genomic
data analysis. Current R/Bioconductor packages for
chromatin interaction data are generally specialised for a
specific data type (e.g. HiC: diffHiC [37], HiTC [38],
GOTHiC [39]; 4C: r3Cseq [32], Basic4CSeq [40], Four-
CSeq [41]). Most of these packages take BAM files as in-
put and provide data processing and normalisation and
visualisation functions. In contrast, GenomicInteractions
can be used with any type of chromatin interaction data
in a range of formats, and is designed for interactive data
exploration and visualisation. The ability to import data
from several formats and its integration with existing
Bioconductor packages facilitates the integrative analysis
of data from different experiments, for example combin-
ing ChIP-seq signal or gene expression data with inter-
action data. We describe the main features of this

package and demonstrate its utility and novel features by
analysing two different chromatin interaction datasets.

Implementation
GenomicInteractions is a publicly available Bioconductor
package for the handling of chromatin interaction data.
It follows the same naming conventions as core Biocon-
ductor packages, such as GenomicRanges [42]. We pro-
vide vignettes detailing the use of GenomicInteractions
in analysing both Hi-C and ChIA-PET data.

Interoperability and integration with other Bioconductor
packages
Our package is designed to be as high-level as possible
in order to allow its use in a wide range of analyses
using different types of chromatin interaction data. Al-
though the methods used to generate and process chro-
matin interaction data vary, the conceptual structure of
the data is a series of pairs of genomic regions involved in
the interactions (known as anchors) and data associated
with each pair of regions e.g. supporting counts, p-value
and false discovery rate (FDR). We define an S4 class,
which encapsulates this structure and allows the easy ma-
nipulation and investigation of interactions stored within
it. Anchor regions are stored as GenomicRanges objects,
allowing individual anchors to be efficiently queried
and annotated with relevant data and metadata. As with
any analysis of biological data, the specific steps in-
volved depend on the experimental design and on the
biological questions being asked. However, most tasks
can be grouped together and organised into a workflow
structure (Fig. 1), regardless of how the data was gener-
ated originally.

Data import
The package can import chromatin interaction data
stored in several formats, including the output from
common processing tools [43], e.g. HOMER [28], ChIA-
PET tool [30], and from standard formats, e.g. bed12,
bedpe and BAM. This allows users to easily import data
processed using existing tools, while also providing
methods for directly manipulating aligned reads (e.g.
merging interactions between predefined anchors, re-
moving positional duplicates and determining thresholds
for self-ligation events).

Determining self-ligation thresholds
The package contains implementations of two methods
for calculating thresholds to separate reads into those
that are the result from self-ligations versus those that
arise from inter-ligations. This threshold can be identi-
fied by comparing the distribution of paired-end reads
mapping to the same-strand against those aligning to
different strands. The paired-end reads are binned by
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distance and the ratio is calculated for each bin. A bino-
mial test is available for testing whether this ratio is dif-
ferent from the expected 50:50 ratio in a specific bin.
Additionally, we provide an implementation of the
method described in Heidari et al. [44, 45], where the
cut-off is determined by examining the strand distribu-
tion of reads which span over long distances.

Interaction summaries
We provide methods for creating various diagnostic
plots (see Figs. 2 and 3), including visualising the distri-
bution of distances spanned by the interactions, the

proportion of cis- and trans-interactions in the dataset,
and the number of reads supporting each interaction.

Annotation, interrogation of interacting regions
The package allows both interactions and genomic fea-
tures/regions of interest to be annotated and examined
easily. Each anchor region can be annotated with
whether or not it overlaps a region of interest (which
specifies the class of the anchor e.g. promoter) and an
identifier specifying that region (e.g. a gene identifier).
For example, this allows anchors to be annotated with
which gene promoters, transcription factor binding
peaks or chromatin states they overlap with. This in turn
allows the extraction of all interactions that are between
pairs of promoters (promoter:promoter interactions), or
between other features of interest (e.g. promoter:enhan-
cer or enhancer:enhancer interactions). A GenomicInter-
actions object can be queried and filtered based on user-
defined criteria: for example, it is straightforward to
subset the object to only contain interactions within or
between specific chromosomes or specific features.
Users can summarise interactions at the level of individ-
ual genomic features, identifying the total number of
interactions a feature is involved in, or the number of
other features with which it interacts. This makes it pos-
sible to identify gene promoters involved in many inter-
actions with distal/enhancer regions, thus resolving
promoter:enhancer interactions at complex loci with
non-linear arrangement of genes and the regulatory ele-
ments that control them [27, 45].

Visualisation of interactions
The proportion of interactions between different classes
of features can be calculated and visualised (Figs. 2 and 3).
It is also possible to generate a virtual 4C viewpoint-style
plot of all interactions involving a region(s) of interest, e.g.
a specific promoter, or around a set of transcription factor
binding sites. In addition, the package provides methods
for visualising interactions and features within a defined
genomic region by representing interactions between an-
chors as curves (Figs. 4 and 5) via integration with the
Gviz visualisation library [46].

Data export
Finally, users can export their dataset to a variety of out-
put formats for further analysis with other tools. We
have provided methods for exporting a GenomicInterac-
tions object to bed12 format, which can be used, for
example, to visualise the interactions in the UCSC Gen-
ome Browser [47]. It is also possible to convert the inter-
action data into a graph format compatible with the
igraph library [48], allowing the examination of data
using network analysis approaches.

Fig. 1 Typical workflow for analysing a chromatin interaction
dataset. A workflow may involve investigating which distal regions a
gene of interest is interacting with, or may involve summarising the
number and types of interactions a set of regions is involved in. In
order to accomplish this, the relevant data needs to be imported
into R, filtered appropriately, annotated with information on genes
and/or regions and interrogated. During this process, a researcher
can visualise the imported data, focusing either on genome-wide or
locus-specific features. Finally, the data can be exported for use by
other software packages. Methods defined in GenomicInteractions
that can be used to perform each task are shown in italics
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Results
Usage examples
Investigating Hi-C data from mouse thymocytes
Here, we describe using GenomicInteractions to perform
an example analysis of Hi-C data generated using mouse
double positive (CD4+ CD8+) thymocytes [49] (GEO
dataset GSE48763). All code and data required to repro-
duce this analysis can be found in Additional file 1. Two
biological replicates, totalling about 203 M paired-end
reads were aligned using bowtie [50]. Uniquely mappable
reads were then pooled and processed using the
HOMER software pipeline, to remove sources of noise
and bias. This resulted in the identification of a set of
100 kb regions involved in significant interactions, tak-
ing both genomic distance and sequencing depth into
account. GenomicInteractions has a built-in function to
import data from the HOMER interaction file format.
This gives 74443 interactions at an FDR of 5 %. Al-

most all (96.2 %) of these are cis-chromosomal inter-
actions, although many are long-range interactions
across distances of more than 2 Mb. These properties
can be quickly summarised using plotting functions

provided in the package (Fig. 2a,c). Annotation of
these interactions (as either promoters or distal
elements) reveals that the majority are annotated as
promoter:promoter interactions (Fig. 2b). This is partly
due to the resolution of the Hi-C data; as the anchors are
100 kb, the chance that they will contain at least one
promoter is high.
Figure 4 shows the interaction landscape around the

100 kb anchor that contains the promoter of the Cd4
gene. CD4 is a cell surface protein that is a key cell iden-
tity marker for CD4+ CD8+ thymocytes. Its gene is
highly expressed in these cells and is regulated by an in-
tronic enhancer and multiple distal elements [51, 52].
Although the resolution of the data is not high enough
to detect interactions within the Cd4 gene region, nu-
merous interactions with both neighbouring 100 kb re-
gions and distal regions on the same chromosome are
apparent. The 100 kb region containing Cd4 also partici-
pates in at least one trans-chromosomal interaction (grey
line, Fig. 4). These interactions could be investigated fur-
ther using other chromosome conformation capture
methods or DNA FISH.

Fig. 2 Summary statistics of mouse double positive (CD4+ CD8+) thymocyte Hi-C data generated using the plotSummaryStats function from
GenomicInteractions. a Donut plot showing percentage of cis/trans interactions within the dataset. b Donut plot describing the distribution of
types of interaction observed. c Distribution of interaction distances between anchor regions (base pairs) d Number of reads supporting
each interaction
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Investigating ChIA-PET data from human K562 cells
K562 ChIA-PET data for PolII (8WG16) was taken from
Li et al. [21] replicate 1 (GEO dataset GSE33664). This
dataset has been processed using the ChIA-PET tool,
with interactions supported by more than two PET
counts and having an FDR < 0.05 considered as signifi-
cant. All code and data required to replicate this analysis
can be found in Additional file 2.
All interactions involving chrM were filtered from the

dataset, resulting in 64554 unique interactions supported
by 879351 PETs. The vast majority of interactions in this
dataset occur in cis, with only 1 % (637) occurring trans-
chromosomally (Fig. 3a). There are 166 interactions
which span more than 1 Mb, some of which show inter-
actions between regions over 17 Mb apart. These super-
long range interactions were removed from further
analysis. Only a small number (N = 508) of remaining in-
teractions appear to span distances longer than 500 kb
(Fig. 3c).
In order to more accurately define the promoter re-

gion of a gene, the robust DPI promoter set generated
from the FANTOM5 data [53] was used to propose the
TSS of each gene. Only genes coding for proteins, long

intergenic non-coding RNAs (lincRNAs) or microRNAs
(miRNAs) were considered. Promoter regions were de-
fined as +/− 2.5 kb around this set of TSSs. Chromatin
state annotations for K562 were obtained from Hoffman
et al. [54]. GenomicInteractions relies on a user-defined
order of importance of features in order to assign classes
to individual anchors. Features were ordered as pro-
moter, t (transcribed region) and e (enhancer or weak
enhancer), ctcf (CTCF region) and r (repressed region).
If an anchor lies within a region not covered by one of
these annotations it was labelled as distal. The majority
of interactions in this dataset appear to be between pro-
moters and other promoters (N = 21694), with a large
number of promoter:enhancer interactions (N = 4177)
(see Fig. 3b). As expected [23], a number of enhancer:-
enhancer interactions were also observed (N = 1209).
Interaction data was summarised at the level of pro-

moters, i.e. PET counts of all anchors overlapping the
promoter regions of each gene have been summed to-
gether, which revealed the genes involved in the highest
number of interactions genome-wide. 13215 of the
19358 genes examined were involved in some form of
interaction as identified by ChIA-PET. The top ten

Fig. 3 Summary statistics of K562 RNAPII ChIA-PET dataset (Replicate 1) generated using the plotSummaryStats function from GenomicInteractions.
K562 ChIA-PET data for PolII (8WG16) was taken from Li et al. [21] and filtered as described in the associated text. a Number of cis/trans interactions
b Donut plot of number of interaction classes (promoter—2.5 kb around an Ensembl gene TSS, r—repressed region, e—enhancer or weak enhancer,
t—transcribed region) c Distribution of interaction distances between anchor regions. d Number of reads supporting each interaction
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genes ranked by total number of promoter:enhancer in-
teractions are shown in Table 1. Some of these genes
have been previously found to play important roles in
haematopoiesis and leukaemia pathogenesis, e.g. PIM1
[55], BCOR [56], TNFRSF8 [57] and NR4A2 [58]. The
number of promoters and enhancers that interact with
each promoter was also calculated. In some cases, due
to the close genomic proximity of some enhancers and
promoters it was not possible to distinguish which
individual enhancer or promoter an interaction was in-
volved with.
NR4A2 (also known as Nurr1) is a member of the

steroid orphan nuclear receptor transcription factor
superfamily. It is essential in neurogenesis and the main-
tenance of dopaminergic neurons [59], plays a role in
the activation of FOXP3 in regulatory T cells and in their
differentiation and function [60] and has been associated
with various types of cancer [61]. The interaction land-
scape of NR4A2 is shown in Fig. 5. The promoter of
NR4A2 is involved in interactions with the promoter of

its neighbouring gene GPD2 (located 93 kb away) and a
promoter of the gene GALNT5 (located 910 kb away). It
is interacting with five putative enhancers, four of which
are located within 100 kb of the promoter of NR4A2,
with one located almost 900 kb away. This enhancer also
has interactions with the promoter of GALNT5 and
appears to be bound by a number of factors in K562 in-
cluding GATA2, PML, TAL1 and BCL3, all of which
have been implicated in the leukemia or other forms of
cancer [62–64].

Conclusions
GenomicInteractions provides a set of tools to import,
manipulate, visualise and mine chromatin interaction
data in R. The package has the potential to serve as a
starting point for different types of analyses, providing
the ability to ask relevant questions about the chromatin
interactome using data generated from a variety of
experimental techniques. In this paper, we have shown how
GenomicInteractions allows an end-user to reproducibly

Fig. 4 The interaction landscape spanning 500 kb around the promoter of Cd4 in mouse (mm9) double positive (CD4+ CD8+) thymocytes. The
height of each curve corresponds to the number of PETs supporting that interaction. The resolution of the data is not high enough to detect
interactions within the Cd4 gene region, however numerous interactions with both neighbouring 100 kb regions and distal regions on the
same chromosome are observed (shown in light blue). The 100 kb region containing Cd4 also participates in at least one trans-chromosomal
interaction (dark grey line). Tracks displaying Ensembl protein-coding genes and enhancers active in the mouse thymus [52] present in the region
are also shown
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Fig. 5 The interaction landscape of NR4A2 in K562 cells (hg19) as determined by ChIA-PET (chr2:156898860–158248860). See associated text for
more details on processing. All identified interactions are shown in the top panel, with promoter:promoter interactions and promoter:enhancer
interactions shown in the panels below. This gene is involved in interactions with the promoters of two nearby genes (GPD2 and GALNT5) and a
small number of enhancers. The height of each curve corresponds to negative logarithm of the FDR for each interaction. Promoter:promoter
interactions are shown in green, promoter-enhancer interactions in purple, promoter:distal interactions in orange and promoter:ctcf interactions
are displayed in blue

Table 1 Genes with the highest number of promoter:enhancer interactions in RNA Polymerase II ChIA-PET with 8WG16 antibody in
human K562 cell line, replicate 1 [21], see associated text for more details on processing of this dataset

Ensembl ID HGNC
Symbol

Number of
interactions

Number of promoter:
promoter interactions

Number of
promoters

Number of promoter:
enhancer interactions

Number of
enhancers

ENSG00000177000 MTHFR 934 686 7 233 9

ENSG00000011021 CLCN6 901 686 7 208 9

ENSG00000183337 BCOR 2585 2444 1 110 14

ENSG00000137193 PIM1 167 60 1 107 42

ENSG00000007944 MYLIP 721 485 2 97 38

ENSG00000120949 TNFRSF8 198 91 1 84 3

ENSG00000153234 NR4A2 671 541 2 82 5

ENSG00000253276 CCDC71L 303 186 3 76 12

ENSG00000116717 GADD45A 537 317 1 73 12

ENSG00000172216 CEBPB 414 265 8 65 21

A window size of 2.5 kb around TSSs, defined using the FANTOM5 robust tag cluster set, was used to define promoters. Enhancers and other chromatin states
were defined using the Genome Segments K562 track. The number of interactions is calculated as the sum of the PET counts of all anchors overlapping the
promoter region of a gene
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and efficiently perform analyses of two publicly avail-
able genome-wide chromatin interaction datasets. This
allowed the identification and visualisation of regula-
tory elements that are interacting with a number of
interesting genes, the identification of genes with the
highest number of interactions and the characterisation
of sets of those interactions. The package is available
under a GPL-3 licence, and users and developers can
easily extend the implemented functionality to match
their specific analysis needs. In the future we are look-
ing to extend this package with additional methods for
normalising and processing the data, and expand the
number of formats from which interaction data can be
imported.

Availability and requirements
GenomicInteractions is a publicly available Bioconductor
package available from http://bioconductor.org/pack-
ages/GenomicInteractions/. Documentation is available
on the Bioconductor website, and we provide vignettes
describing two example analyses using publicly available
ChIA-PET and Hi-C data. We also maintain a public
github repository (https://github.com/ComputationalRe-
gulatoryGenomicsICL/GenomicInteractions), and invite
the community to submit or request additional functional-
ity to incorporate into this package. This package requires
R > = 3.0.1 and depends on several R/Bioconductor pack-
ages including Rsamtools, GenomicRanges, data.table,
stringr, rtracklayer, ggplot2, gridExtra, igraph and Gviz.
All of the analyses and figures presented in the paper

can be reproduced via the RMarkdown documents pro-
vided in the supplemental material using GenomicInter-
actions (version 1.3.6 available on Github), which is
available (as version 1.4.0) in Bioconductor 3.2.

Additional files

Additional file 1: R script used to generate figures, tables and
numbers used in the described analysis of Hi-C data. (RMD 7 kb)

Additional file 2: R script used to generate figures, tables and
numbers used in the described analysis of ChIA-PET data.
(RMD 14 kb)
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