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Background: Numerous reports have highlighted that the tumor microenvironment (TME)
is closely linked to survival outcome and therapeutic efficacy. However, a comprehensive
investigation of the TME feature in breast cancer (BC) has not been performed.

Methods: Here, we performed consensus clustering analysis based on TME cell
expression profiles to construct TME pattern clusters and TME-related gene signature
in BC. GSVA combined with CIBERSORT and ssGSEA algorithms were applied to
evaluate the differences in biological pathway and immune cell infiltration level,
respectively. The PCA method was employed to construct TME-score to quantify the
TME-mediated pattern level in individual BC patients.

Results:We determined two distinct TME gene clusters among 3,738 BC samples, which
exhibited distinct survival outcome and enriched biological processes. The TME features
demonstrated that these two clusters corresponded to the established immune profiles:
hot and cold tumor phenotypes, respectively. Based on TME-related signature genes, we
constructed the TME-score and stratified BC patients into low and high TME-score
groups. Patients with high TME-score exhibited favorable outcome and increased
infiltration of immune cells. Further investigation revealed that high TME-score was also
related with high expression of immunosuppressive molecules, decreased tumor mutation
burden (TMB), and high rate of mutation in significantly mutated genes (SMGs) (e.g.,
PIK3CA and CDH1).

Conclusion:Assessing the TME-mediated pattern level of individual BC patients will assist
us in better understanding the responses of BC patients to immunotherapies and directing
more effective immunotherapeutic approaches.
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BACKGROUND

Breast cancer (BC) remains the most frequently diagnosed
malignancy and the main cause of cancer-related mortality for
global females, and its incidence and fatality rates are 24.2%
and 15.0%, respectively (Siegel et al., 2018; Kalimutho et al.,
2019). Numerous conventional therapies, including surgery,
radio(chemo)therapy, endocrine therapy and targeted therapy,
have been applied in clinical practice, resulting in the
significant decline of BC death rate (Wang et al., 2019).
Recently, immunotherapy based on immune checkpoint
inhibitors (ICIs) has been identified as a promising
therapeutic regimen for BC patients and could serve as a
complement to traditional schemes for treatment of BC
(Emens, 2018; Basu et al., 2019). However, a significant
portion of BC patients fail to benefit from checkpoint-
blocking antibodies and exhibit an increased risk of
immune-related adverse events (Wang et al., 2017). Thus,
identification of an accurate signature to predict therapeutic
responsiveness of immunotherapies is required.

As a complex and continuously evolving entity, the tumor
microenvironment (TME) is composed of various cell
populations (immune cells, fibroblasts, endothelial cells, etc.)
and extracellular constituents (extracellular matrix, growth
factors, cytokines, etc.), which surround malignant cells and
are supported by the vascular network (Hui and Chen, 2015;
Wu and Dai, 2017; Hinshaw and Shevde, 2019). A series of
studies have demonstrated that TME not only has profound
effects during cancer growth and metastatic progression but also
plays a pivotal role in predicting therapeutic efficacy (Deepak
et al., 2020). As for BC, tumor-infiltrating lymphocyte, a TME
component, has been identified as a biomarker to reflect patients’
clinical outcome and predict the potential benefits from
treatment (Stanton and Disis, 2016; Denkert et al., 2018).
There have been plenty of studies on evaluation of the clinical
significance of TME components by computational methods,
such as single-sample gene set enrichment analysis (ssGSEA),
which could assess the relative abundance of each cell infiltration
in the TME (Ye et al., 2019). However, few studies attempted to
discover the role of comprehensive TME feature in prognosis and
therapeutic responsiveness in BC.

Here, we incorporated genomic and transcriptomic data of
3,738 BC samples from TCGA, GSE, and METABRIC datasets
to comprehensively evaluate the relationship between TME
cell infiltration characteristics and survival outcome and
therapeutic response. Two TME gene clusters were
identified using consensus clustering analysis, which were
characterized by cold and hot tumor phenotypes,
respectively. Besides, to quantify the pattern level mediated
by TME in individual BC patients, we constructed the TME-
score using principal component analysis (PCA), which could
predict immunotherapies based on ICIs and
chemotherapeutics, suggesting that TME performed an
essential role in guiding therapies for BC.

MATERIALS AND METHODS

Acquisition and Preprocessing of BC
Datasets
Gene-expression profiles and clinical information of BC
samples were obtained from publicly available databases:
TCGA cBioPortal, and GEO. A total of 3,738 BC samples
were incorporated into this research, including those from
TCGA-BRCA (N = 1,091), METABRIC (N = 1904), GSE20685
(N = 327) (Kao et al., 2011), GSE20711 (N = 88)
(Dedeurwaerder et al., 2011), GSE42568 (N = 104) (Clarke
et al., 2013), GSE58812 (N = 107) (Jézéquel et al., 2015), and
GSE88770 (Metzger-Filho et al., 2013) (N = 117) (Table 1). As
for TCGA dataset, we downloaded FPKM-normalized values
and then transformed them into TPM format, which were
more similar to microarray data and more comparable
between samples (Wagner et al., 2012). The
Homo_sapiens.GRCh38.104.chr.gtf from the ENSEMBLE
website was used as an annotation file to map ensemble ID
to gene symbol. The scale method provided by R “limma”
package was applied to normalize gene expression. We
discarded genes with low abundance, whose expression
value of 0 accounts for >80% of total samples and
calculated the average value for duplicate genes. The
selection criteria for BC datasets in the GEO database were
as follows: 1) datasets with a sample size larger than 80; 2)
datasets created based on the GPL570 platform; and 3) datasets
with necessary clinical information, especially overall survival
(OS) interval and status. The GPL570 annotation file was used
to map the probes. We obtained the METABRIC dataset from
cBioPortal and then imputed the missing data using R
“impute” package. While merging the expression matrix of
these 7 BC datasets into one meta-cohort, we applied the
“ComBat” algorithm from R “sva” package to achieve the
batch-effect removal (Leek et al., 2012). The genomic
mutation data obtained from the UCSC Xena database was
used for somatic mutation and copy number variation (CNV)
analysis.

Evaluation of Cell Infiltration in the TME
Based on the expression profile containing 547 reference genes
minimally representing each cell type, CIBERSORT could
characterize and accurately calculate the proportion of
distinct immune cell components from bulk tumor samples
using a support vector regression and deconvolution algorithm
(Wagner et al., 2012). To discriminate 22 human immune cell
phenotypes sensitively and specifically, the LM22 gene
signature was applied to quantify T cells, NK cells, B cells,
macrophages, DCs, and myeloid subsets. Gene-expression
profiles processed by standard annotation files were
uploaded to the CIBERSORT website (http://cibersort.
stanford.edu/), with the algorithm running based on the
LM22 signature and 1,000 permutations. p-value <0.05 was
considered as the significance criterion.
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Consensus Clustering Analysis of TME
Components
Based on the expression profiles of TME-infiltrating cells, we
applied the unsupervised clustering method to construct distinct
TME pattern clusters and classified patients for subsequent
analysis. To determine the optimal number of clusters and
guarantee their stability, the consensus clustering algorithm
provided by the “ConsensusClusterPlus” package was
performed repeatedly for 100 times (Monti et al., 2003).
Consensus clustering, as a highly useful technique in cancer
research, could detect unknown groups in a dataset based on
intrinsic biological features and no external information. Besides,
this method could provide quantitative and visual stability
evidence derived from repeated subsampling and clustering.

Identification of Differentially Expressed
Genes (DEGs) Between Distinct TME
Clusters
Distinct TME pattern clusters have been determined by the above
consensus clustering algorithm. Subsequently, to identify DEGs
between distinct TME pattern clusters, we applied the empirical
Bayesian approach provided by R “limma” package (Ritchie et al.,
2015) to estimate gene-expression changes and screened out DEGs
using the adjusted p-value <0.05 as the significance criterion.

Gene Set Variation Analysis GSVA and
ssGSEA
R “GSVA” package (Hänzelmann et al., 2013) was utilized to
perform GSVA enrichment analysis, which could explore the

differences in biological processes between distinct pattern
clusters mediated by DEGs. The gene set of
c2.cp.kegg.v7.4.symbols.gmt obtained from the MSigDB
database was utilized as the well-defined signature
(Subramanian et al., 2005), and adjusted p-value <0.05 was
considered as the significance criterion. To investigate the
immune infiltration feature between distinct pattern clusters,
ssGSEA was employed to quantify the infiltration levels of 23
different types of immune cell (Ren et al., 2021). Based on a
Gaussian fitting model and multidimensional scaling, we
estimated the bio-similarity of immune cells, calculated the
enriched score of each immune cell, and uniformly distributed
the normalized score from 0 to 1.

Construction of the TME-Score
To quantify the TME-mediated pattern level of individual BC
patients, we developed a scoring scheme by the following
procedures. Firstly, the prognostic analysis of the overlapping
DEGs identified between distinct TME pattern clusters was
performed by univariate Cox regression analysis and genes
with prognostic impact were extracted. Then, feature selection
of these genes with prognostic value was analyzed by recursive
feature elimination with random forest and the 10-fold cross-
validation method provided by the “caret” package. Finally, the
expression profile of the determined genes was employed to
perform PCA analysis and we extracted principal component
1 and 2 as the signature score. The advantage of this method is
focusing on the score on the set with the largest block of well-
correlated (or anticorrelated) genes in the set, while down-
weighting contributions from genes that do not track with
other set members. The TME-score was defined using a

TABLE 1 | Baseline characteristics of breast cancer patients in TCGA, METABRIC and GSE datasets.

TCGA-BRCA METABRIC GSE20685 GSE20711 GSE42568 GSE58812 GSE88770

No. of patients 1091 1904 327 88 104 107 117
Age
≤65 775 (70.7%) 1160 (61.0%) 305 (93.3%) NA 68 (65.4%) 72 (67.3%) NA
>65 321 (29.3%) 743 (39.0%) 22 (6.7%) NA 36 (34.6%) 35 (32.7%) NA

Gender
Male 12 (1.1%) 0 (0%) 0 (0%) NA NA NA 0 (0%)
Female 1084 (98.9) 1903 (100%) 327 (100%) NA NA NA 117 (100%)

Stage
I 183 (17.1%) 474 (24.9%) NA NA NA NA NA
II 621 (57.9%) 800 (57.2%) NA NA NA NA NA
III 248 (23.1%) 115 (8.2%) NA NA NA NA NA
IV 20 (1.9%) 9 (0.6%) NA NA NA NA NA

ER status
Positive 789 (77.4%) 1458 (76.6%) NA 42 (48.3%) 64 (65.3%) 0 (0%) 106 (90.6%)
Negative 231 (22.6%) 445 (23.4%) NA 45 (51.7%) 34 (34.7) 107 (100%) 11 (9.4%)

PR status
Positive 685 (67.4%) 1008 (53.0%) NA NA NA 0 (0%) 79 (68.1%)
Negative 332 (22.6%) 895 (47.0%) NA NA NA 107 (100%) 37 (31.9%)

HER2 status
Positive 162 (15.8%) 236 (12.4%) NA 26 (29.5%) NA 0 (0%) 7 (6.1%)
Negative 865 (84.2%) 1667 (87.6%) NA 62 (70.5%) NA 107 (100%) 108 (93.9%)

Survival status
Alive 947 (86.4%) 1281 (67.3%) 244 (74.6%) 63 (71.6%) 69 (66.3%) 78 (72.9%) 89 (76.1%)
Deceased 149 (13.6%) 622 (32.7%) 83 (25.4%) 25 (28.4%) 35 (33.7%) 29 (27.1%) 28 (23.9%)
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formula similar to previous studies (Zhang et al., 2020; Chong
et al., 2021):∑ (PC1i + PC2i), in which i represents the expression
of DEGs with prognostic value.

Quantification of Predictors Related to
Immune Response: Immunophenoscore
(IPS), the Estimation of Stromal and Immune
Cells inMalignant Tumors Using Expression
Data (ESTIMATE) and ICIs
As a superior biomarker to predict the response of anti-PD-1 and
CTLA-4 therapies, IPS could calculate the determinants of tumor
immunogenicity and depict the cancer antigenomes and intra-
tumoral immune profiles (Charoentong et al., 2017). This scoring
scheme derived from a panel of immune-related genes, which
belong to four classes: suppressor cells, effector cells,
immunomodulators or checkpoints, and MHC-related
molecules. By averaging the samplewise Z scores of the four
classes within the respective category, the sum of the weighted
averaged Z score was calculated as the IPS. The ESTIMATE
algorithm could take advantage of the unique properties of the
transcriptional landscape to obtain the tumor cellularity and
tumor purity. By using the ESTIMATE algorithm (Yoshihara
et al., 2013), we calculated the immune and stromal score to
predict the level of infiltrating immune and stromal cells, and
these form the basis to infer tumor purity. Tumor tissues with
abundant immune cell infiltration represented a higher immune
score and a lower level of tumor purity. Immunotherapy-based
common immunosuppressive molecules PD-1, PD-L1, and
CTLA-4 have achieved tremendous success in clinical practice;
novel immune checkpoint proteins such as TIGIT and LAG3
were also strongly recommended to evaluate immune response.

Statistical Analysis
All data processing was generated in R-4.1.0. For quantitative
data, we performed Student’s t-tests and the Wilcoxon rank-sum
test to estimate the statistical significance for normally and non-
normally distributed variables, respectively. For comparisons of
more than two groups, we used one-way analysis and
Kruskal–Wallis test as parametric and nonparametric methods,
respectively. To analyze the relationship between tumor pattern
clusters and prognosis, we applied the R “Survminer” package to
perform Kaplan–Meier survival analysis and the Cox
proportional hazards model. The surv-cutpoint function
provided by R “survival” package was used to divide patients
into high and low TME-score and tumormutation burden (TMB)
groups. All statistical p-values were two-sided, with a p-value
<0.05 as statistical difference and adjusted p-value calculated
using the Benjamini–Hochberg correction.

RESULTS

Landscape of Tumor-Infiltrating Immune
Cells in BC
Seven independent BC datasets (TCGA-BRCA, METABRIC,
GSE20685, GSE20711, GSE42568, GSE58812, and GSE88770)

with completed OS information were merged into one meta-
cohort. CIBERSORT was applied using the expression profiles of
the meta-cohort to obtain the proportion of 22 immune cells. We
classified immune cells into four clusters, and immune cells in
each cluster have similar functions. Immune cells in Cluster A
recognize antigens and act as messengers between the innate and
adaptive immune systems, including activated dendritic cells,
resting mast cells, naïve B cells, CD8 T cells, and macrophage
M1. Most immune cells in Cluster B have the function of
attacking and killing exogenous antigens, such as activated NK
cells, T cells regulatory, T cells follicular helper, plasma cells,
neutrophils, and activated mast cells. Cluster C includes
macrophage M2, which decreases inflammation and
encourages tissue repair, and CD4 memory resting T cells.
Non-activated macrophage M0 forms Cluster D alone.
Univariate Cox regression and Kaplan–Meier analysis were
conducted to explore the prognostic impact of immune cells
in BC samples, and p-value <0.05 was regarded as statistical
difference. Figure 1A comprehensively illustrated the landscape
of the interactions of the immune cells, cell lineages, and their
prognostic impact in BC patients. This network demonstrated
that the crosstalk of the infiltration among TME cells significantly
correlated with the survival outcome of BC patients and played an
indispensable role in the construction of distinct TME pattern
clusters. To stratify BC samples with qualitatively different TME-
mediated pattern clusters, we performed consensus clustering
analysis based on the TME cell expression profiles and
determined two distinct clusters, which were termed as TME
cluster A, including 1,682 BC samples, and TME cluster B,
containing 545 tumor ones (Figure S1). Further analysis of
survival outcome revealed that TME cluster A possessed more
prominent advantage in OS and progression-free survival (PFS)
(Figure 1B).

To further investigate the differences in the biological and
clinicopathological characteristics underlying TME cluster A and
B, we focused on the TCGA-BRCA and METABRIC datasets,
because they compromised the largest BC sample size and the
most comprehensive clinical features. As shown in Figures 1C, D,
TME cluster A with survival benefit was significantly enriched in
macrophages M1 and T cells CD8/CD4 memory activated, while
T cells regulatory, macrophages M0, and M2 were mainly
concentrated in cluster B. Besides, CIBERSORT and ssGSEA
were applied together to estimate the differences in TME profiles
between distinct TME clusters, which was highly consistent with
the results obtained in the TCGA-BRCA and METABRIC
datasets (Figures 1E, F). In terms of clinical features, TME
cluster A exhibited a higher stromal and immune score and
relatively low tumor purity, which was established by the
ESTIMATE algorithm. Based on the TME cell expression
profiles, PCA could separate samples with distinct TME
clusters into two opposite directions (Figure 1G).

Identification of TME-Related Signature
Genes
Based on TME cell expression profiles, the consensus clustering
algorithm could stratify BC patients into 2 distinct TME clusters.
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However, the genomic alteration and transcriptomic
perturbation underlying these 2 clusters were not fully
elucidated. Thus, the expression changes of 13,711 genes
between the two TME clusters were investigated by the
“limma” package and a total of 205 DEGs were determined
and regarded as the crucial TME-related gene signature
(Supplementary Table S1). Further investigation of the TME-
related gene signature demonstrated that these genes were

associated with or specific to immune cells, such as BTLA,
CD3D, CD3E, CD3G, CD8A, CD8B, CTLA4, ICOS, KLRG1,
and PDCD1 for T cells; CD19, CD5, CD79A and CD79B for
B cells; and CD48 for dendritic cells. One speculation is that these
DEGs were determined between distinct clusters, which were
identified based on infiltrating immune cells. Thus, the TME-
related signature genes were mainly expressed by various types of
immune cell. Then, GO enrichment analysis of these genes

FIGURE 1 | Tumor microenvironment-mediated pattern clusters in breast cancer. (A) The interaction between TME-infiltrating immune cells in BC. The lines
connecting immune cells represented their interaction with each other. The size of each circle represented the prognostic effect of each immune cell and scaled by
p-value. Protective factors for patients’ survival were indicated by a green dot in the circle center and risk factors indicated by the purple dot in the circle center. (B)
Kaplan–Meier curves of OS and PFS for BC patients in the meta-cohort and TCGA-BRCA dataset with distinct TME clusters. The numbers of patients in TME
cluster A and B were 1,682 and 545, respectively. (C,D) Unsupervised clustering of immune cells in the TCGA-BRCA and METABRIC datasets. Clinicopathological
information, including age, gender, ER, PR, HER2, molecular subtype, stage, grade and TME cluster were used as patient annotations. Red represented the high
expression of immune cells, and blue represented the low expression of immune cells. (E, F) The fraction of tumor-infiltrating lymphocytes in distinct TME clusters using
the ssGSEA and CIBERSORT algorithms. Within each group, the scattered dots represented TME cell expression values. The thick line represented the median value.
The bottom and top of the boxes were the 25th and 75th percentiles (interquartile range). The statistical difference of two TME clusters was compared through the
Kruskal–Wallis H test. *p < 0.05; **p < 0.01; ***p < 0.001. (G) PCA of TME-infiltrating immune cells to distinguish TME cluster A from B.
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demonstrated that biological processes associated with immune
activation, such as regulation of lymphocyte proliferation, antigen
processing and presentation, and T cell activation, were
prominently overrepresented (Figure 2A). KEGG analysis also
revealed that these DEGs played an indispensable role in
modulating the TME landscape (Figure 2B, Supplementary
Table S2). Protein–protein interaction (PPI) was constructed
to investigate the interactions among TME-related signature
genes, and the high confidence (0.700) was set as the
minimum required interaction score. We identified 202 nodes
and 587 edges in the PPI network, and 16 genes with degree of
interaction more than 40 were recognized as hub genes
(Figures 2C, D).

Landscape of Genetic Alterations of
TME-Related Gene Signature in BC
Figure 3A first depicted the prevalence of somatic mutation of
205 TME-related signature genes among 986 BC samples with
available variant classification and variant type information, out
of which 320 (32.45%) samples experienced genetic alterations,
mainly including splice site mutation, nonsense mutation, and
missense mutation. Considering that COL14A1 exhibited the
highest mutation frequency, we investigated the difference in the
expression of TME-related signature genes between COL14A1-
wild and mutant type and a total of 10 genes (ALDH1A1,
CH25H, COL11A1, GJB2, HLA-DPB1, IL18R1, MMP13,
P2RY10, PTGER4, and UNC5B) were found differentially

FIGURE 2 | Functional enrichment analysis of differentially expressed genes between distinct TME clusters. (A, B) GO and KEGG analysis of DEGs. (C) PPI of
DEGs. The high confidence (0.700) was considered as the minimum required interaction score. (D) Identification of hub genes. Genes with degree of interaction more
than 40 were recognized as hub genes. The X-axis label means the degree of interaction of each gene.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8403486

Xu et al. TME-Mediated Immune Subtypes in BC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


expressed (Figure S2). Further exploration of 205 DEGs revealed
a prevalent CNV alteration. ABCA8, CD79B, TBC1D10C,
ENPP2, COL14A1, and CD7 had prevalent CNV
amplification, while CD3E, IL10RA, CD3D, CD3G, ZNF683,
and CD52 showed widespread CNV deletion (Figure 3B).
Interestingly, we discovered that TME-related signature genes
exclusively expressed in T cells, such as CD3D, CD3E, and CD3G,
exhibited deleted CNV. We speculated that this phenomenon
may be attributed to the lower CD3+ T cell infiltration. Because

distinct TME clusters were determined based on the
characteristics of infiltrating immune cells. Besides PCA and
t-SNE based on the crucial signature gene expression profiles
were performed and BC samples and normal ones could be
completely distinguished (Figure 3C). To explore whether the
above genetic variation affected transcriptomic expression, we
calculated the differences in gene expression value between BC
and normal samples and observed that HLA-DRA, HLA-DPB1,
and SPP1 were significantly increased in BC tissues, while,

FIGURE 3 | The landscape of genetic alteration of differentially expressed genes in breast cancer. (A) 320 of the 986 BC samples experienced genetic alterations,
mostly including missense mutation, nonsense mutation, and splice site mutation. The number on the right indicated the mutation frequency of each DEG. Each column
represented the individual BC sample. (B) The CNV mutation frequency of DEGs was prevalent. The column represented the alteration frequency. The amplification
frequency, pink dot; the deletion frequency, green dot. Because of the size of the gene list (205 genes), we presented the CNV results in 3 plots: one for CNV
deletion and the other two for amplified CNV. (C)PCA and t-SNE analysis based on the expression of DEGs to distinguish BC samples (red dots) from normal ones (green
dots). (D) The differences in mRNA expression level of DEGs between tumor and normal samples was compared by R “limma” package. The asterisks represented the
statistical p-value (*p < 0.05; **p < 0.01; ***p < 0.001). For graphical reasons, we presented the gene lists (upregulated and downregulated genes in BC samples) in 2
plots and ordered them based on the log FC.
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FIGURE 4 | Construction of TME-related gene signature. (A, B) Unsupervised clustering of TME-related signature genes in the TCGA and METABRIC datasets.
Clinicopathological information including age, gender, ER, PR, HER2, stage, grade, and molecular subtype is shown in annotations above. Red represented the high
expression, while blue represented the low expression. (C) PCA based on the TME-related gene signature could satisfactorily distinguish between TME gene cluster I
and II. (D) The Kaplan–Meier curves of OS and PFS for BC samples in the meta-cohort and TCGA-BRCA dataset, respectively.
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FIGURE 5 | Biological pathways and tumor microenvironment characteristics in distinct gene clusters. (A) Heatmap showed the GSVA score of representative
hallmark pathways curated fromMSigDB between distinct TME gene clusters. (B) The differences in mRNA expression of transcripts associated with immune activation
between distinct gene clusters. (C, D) The fraction of tumor-infiltrating immune cells between distinct gene clusters using the CIBERSORT and ssGSEA algorithms.
Within each group, the scattered dots represented TME cell expression values. The thick line represented the median value. The bottom and top of the boxes were
the 25th and 75th percentiles (interquartile range), respectively. The statistical difference of the three gene clusters was compared through the Kruskal–Wallis H test. *p <
0.05; **p < 0.01; ***p < 0.001. (E) Comparison of the expression level of immunosuppressive molecules between distinct TME gene clusters.
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FIGURE 6 |Construction of the TME-score and exploration of its clinical significance. (A) Alluvial diagram of the TME cluster, TME gene cluster, and TME-score. (B)
Relative distribution of TME-score between distinct TME clusters and TME gene clusters. (C) Correlations between TME-score and tumor-infiltrating immune cells using
Spearman analysis. The asterisks represented the statistical p-value (*p < 0.05). (D) Representative results of KEGG pathways between high and low TME-score groups
via GSEA. (E) Kaplan–Meier curves for patients with high and low TME-score groups in the meta-cohort and METABRIC, TCGA-BRCA, GSE20685, GSE58812,
GSE42568, GSE88770, and GSE20711 datasets. Themedian TME-score obtained from theMETABRIC dataset (discovery cohort) was utilized to separate BC samples
into high- and low-score groups. Independent validations were then performed using TCGA-BRCA and GSE datasets (external validation cohort).
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FABP4, PLIN1, and APOD were markedly downregulated in
tumor tissues (Figure 3D, Supplementary Table S3). As
expected, we discovered that the CNV alteration could be the
major contributor to perturbation on the expression of the TME-
related gene signature. Compared with normal samples, genes
with CNV amplification exhibited a remarkedly higher
expression in BC samples, such as CD7, IDO1, and LYZ,
while other genes with deleted CNV, such as INPP5D, were
significantly decreased in tumor tissues (Figures 3B,D),
indicating that there was high heterogeneity between the
genomic and transcriptomic landscape of TME-related
signature genes and this expression imbalance played an
essential role in BC tumorigenesis and progression.

Construction of Pattern Clusters Mediated
by the DEGs
Based on the above hypotheses, we applied consensus clustering
algorithm based on the TME-related gene signature to classify
BC patients and obtained 2 distinct subtypes, which were
defined as TME gene cluster I and II (Figures 4A, B;
Supplementary Figure S3). PCA based on the signature gene
expression profiles could satisfactorily separate BC samples into
opposite directions (Figure 4C). The predictive ability of these 2
gene clusters in survival outcome revealed that gene cluster II
exhibited a significant prognostic benefit (Figure 4D). To
further explore the biological behaviors between distinct gene
clusters, we conducted GSVA and found that cluster II presented
enrichment pathways associated with immune activation,
including allograft rejection, natural killer cell-mediated
cytotoxicity, T/B cell receptor signaling pathway, Toll/NOD-
like receptor signaling pathway, antigen processing and
presentation, chemokine signaling pathway, and
cytokine–cytokine receptor interaction (Figure 5A). Besides,
we compared transcripts associated with immune activation
between distinct gene clusters and observed a significant
upregulation in cluster II (Figure 5B). Further analysis of the
TME feature via CIBERSORT revealed that compared with gene
cluster I, cluster II had elevated infiltration of antitumor
immune cells, such as NK cells activated, T cells CD4
memory activated/CD8, and macrophages M1, and a
decreased proportion of immunosuppressive or tumor-
promoting immune cells, such as macrophages M2 and Treg
cells (Figure 5C). Furthermore, we utilized ssGSEA to
characterize the immune infiltration profile and observed the
similar TME landscape between these 2 gene clusters
(Figure 5D). We also applied the ESTIMATE algorithm to
evaluate the overall infiltrating level of immune cells and
stromal components between these 2 clusters. As expected,
we discovered that gene cluster II exhibited an elevated
immune and stromal score, indicating that cluster I had a
higher tumor purity (Figure 5C). Moreover, some transcripts
of immune checkpoint proteins were compared between distinct
gene clusters and we observed that PD-L1, PD-1, CTLA4,
TIGIT, and LAG-3 were highly expressed in gene cluster II
(Figure 5E). Based on these findings, we determined that these 2
TME gene clusters were characterized by distinct immune

features. Expectedly, cluster I was defined as cold tumor,
characterized by the lack of tumor T cell infiltration and
decreased expression of immunosuppressive molecules, and
cluster II was recognized as hot tumor, characterized by
abundant immune cells and elevated PD-L1 expression.

Development of the TME-Score and
Evaluation of its Clinical Significance
The above analyses have demonstrated that TME immune profiles
were tightly connected with survival outcome and immune
checkpoint proteins in BC. However, these findings were only
based on the patient population and could not accurately predict
the pattern level mediated by TME in individual tumors.
Consequently, we constructed a scoring scheme based on
identified TME-related signature genes and defined it as TME-
score to quantify the TME-mediated pattern level in individual BC
patients. Considering that the quantification of TME-score was
complex, we used the alluvial diagram to illustrate the workflow of
the TME-score construction (Figure 6A). The Kruskal–Wallis test
demonstrated that TME cluster A and gene cluster II with survival
advantage exhibited a higher TME-score (Figure 6B). Spearman
analysis was performed to examine the relationship between the
TME-score and immune landscape. The correlation matrix
revealed that the TME-score positively correlated with tumor-
infiltrating lymphocytes, including activated CD4+/CD8+ T cells,
activated B cells, nature killer T cells, and macrophages M1, and
negatively correlated with T cells regulatory, tumor-associated
neutrophils, and macrophages M2, demonstrating the crosstalk
between TME-score and tumor-infiltrating immune cells
(Figure 6C). Moreover, GSEA demonstrated that biological
processes associated with immune activation were significantly
enriched in the high TME-score group (Figure 6D,
Supplementary Table S4). The predictive ability of the TME-
score for BC prognosis was estimated by stratifying patients into
high- and low-score groups, according to the median value of
−3.75 obtained from the METABRIC dataset (discovery cohort).
As we expected, patients in the high-score group possessed a
prominent survival benefit. Independent validations were
performed using the TCGA-BRCA and GEO datasets (external
validation cohort) to further assess the prognostic value of TME-
score. The median value obtained from the discovery cohort was
used to stratify BC patients in the validation cohort into high- and
low-score groups. Similarly, patients with a high TME-score
exhibited a promising survival outcome, compared with those
with a low TME-score (Figure 6E).

Estimation of the Role of TME-Score in
Tumor Somatic Mutation Signature,
Immunotherapy, and Chemotherapeutic
Efficacy
Accumulating evidence has indicated that cancer-specific
antigens produced by somatic mutation could influence the
responsiveness to immune-checkpoint blockades. Thus, the
distribution pattern of TMB was investigated between high
and low TME-score groups. The results demonstrated that
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TME-score was negatively correlated with TMB and the high-
score group exhibited lower TMB (Figures 7A,B). BC patients
were categorized into high- or low-TMB group based on the
median cutoff value of 0.42. Survival analysis further
demonstrated that the high-TMB group had a dismal survival
outcome, and as expected, the combined high-TMB and low
TME-score group exhibited the worst prognosis (Figures 7C, D).
Significantly mutated genes (SMGs) analysis was also conducted
between different TME-score groups, and the SMGs landscape
revealed that CDH1 (16.27 vs. 4.7%) and PIK3CA (37.29 vs.
26.37%) exhibited higher somatic mutation rates in the high-
score group, whereas GATA3 (7.63 vs. 14.1%) had a higher
somatic mutation rate in the low-score group (Figures 7E, F;
Table 2).

Immunotherapy based on immunosuppressive molecules has
achieved a major breakthrough in antitumor response. Many
well-known predictors, especially PD-L1, were extensively used to
assess immune response. We discovered that the expression levels
of immunosuppressive molecules, including PD-L1, CTLA4, PD-
1, TIGIT, and LAG3, were pronouncedly elevated in the high
TME-score group (Figure 8A), indirectly demonstrating the
essential role of the TME-score in mediating immune
response. In addition, we also observed that patients in the
high TME-score group exhibited significant therapeutic
benefits from ICIs treatment represented by CTLA4-/PD-1-,
CTLA4-/PD-1+, CTLA4+/PD-1-, and CTLA4+/PD-1+,
indirectly suggesting that the TME-score played an essential
role in predicting response to immunotherapies (Figure 8B).
In addition to immunotherapies based on ICIs, we attempted to
investigate the connection between the TME-score and
chemotherapeutic drugs commonly used for BC in clinical
practice. We discovered that with the exception of docetaxel
and lapatinib, the high TME-score group exhibited decreased
IC50 of cisplatin, doxorubicin, gemcitabine, methotrexate,
paclitaxel, roscovitine, vinblastine, and vinorelbine, suggesting
that the high TME-score group may enjoy therapeutic benefits
from these chemotherapeutic drugs (Figure 8C).

DISCUSSION

Cancer immunotherapies targeting PD-1, PD-L1, and CTLA4 have
achieved durable and robust responses for BC patients in clinical
practice (Keenan and Tolaney, 2020; Emens, 2021). However,
approximately one-third of patients fail to respond to these
therapeutic agents, and numerous studies have demonstrated that
microsatellite instability, PD-L1/PD-1 expression, and TMB are not

efficient predictors of the efficacy of immunotherapies (Zeng et al.,
2019; Tang et al., 2020). To maximize the therapeutic benefit,
identification of novel predictors for the efficacy of checkpoint-
blocking antibodies is essential. Mounting evidence has implied that
TMEnot only takes on an indispensable role in survival outcome but
also has profound effects on predicting immunotherapeutic
responsiveness (Basu et al., 2019; Emens, 2021). In the present
research, we applied several computational methodologies to
quantify the infiltration level of immune cells and
comprehensively explored the connections between TME-
infiltrating immune cells and clinicopathological characteristics,
survival outcome, and immunotherapeutic efficacy in BC.

Based on TME cell expression profiles, we employed
consensus clustering analysis to determine two TME clusters,
which exhibited distinct survival outcome. We speculated that
this survival discrepancy may derive from the distinct immune
class: TME cluster A was characterized by abundant antitumor
T cells CD8 andmacrophagesM1, corresponding to the immune-
activated subtype, while TME cluster B was characterized by
immunosuppressive T cells regulatory and higher tumor purity
corresponding to the immune-suppressed subtype.

Moreover, DEGs identified between immune-activated and
immune-suppressed subtypes were prominently elevated in
biological pathways associated with immune activation,
demonstrating that these DEGs were regarded as TME-related
gene signature. Based on the TME-related signature genes, two
transcriptomic clusters were constructed and characterized by
different survival outcome, which was in great accord with the
results of TME clusters. One possible speculation for this survival
difference is that TME gene clusters were characterized by
distinct antitumor immunity. TME gene cluster II was
characterized by immune activation and abundant antitumor
immune cell infiltration, corresponding to hot tumor phenotype,
while gene cluster I was characterized by immune suppression
and immunosuppressive immune cell infiltration, corresponding
to cold tumor phenotype (Duan et al., 2020). Several studies have
demonstrated that TME components were tightly connected with
aggressive properties of tumor and the likelihood of immune
response (Galon and Bruni, 2019; Zeng et al., 2019). Evaluation of
the density of CD3 and CD8 lymphocyte populations at the
tumor center and margin was found remarkedly correlated with
patients’ survival status and immunotherapeutic efficacy (Pagès
et al., 2018). We also confirmed that TME gene cluster II was
prominently related with antitumor lymphocyte infiltration and a
high expression level of immunosuppressive molecules,
indicating its potential value in predicting immunotherapeutic
benefits.

TABLE 2 | Significantly mutated genes between high and low TME score group.

High TME-score group Low TME-score group p-value

Wild Mutation Wild Mutation

CDH1 494 (83.73%) 96 (16.27%) 365 (95.3%) 18 (4.7%) <0.001
PIK3CA 370 (62.71%) 220 (37.29%) 282 (73.63%) 101 (26.37%) <0.001
GATA3 545 (92.37%) 45 (7.63%) 329 (85.9%) 54 (14.1%) 0.002
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FIGURE 7 | Characteristics of the TME-score in tumor somatic mutation. (A) Correlation analysis between TME-score and TMB. (B) Relative distribution of TMB in
high versus low TME-score groups. (C) Kaplan–Meier curve for high and low TMB patient groups (p = 0.001). (D) Kaplan–Meier curve for subgroup patients stratified by
both TME-score and TMB (p < 0.001). (E, F)Mutational landscape of SMGs in the TCGA-BRCA dataset stratified by high (left panel) versus low TME-score (right panel)
groups. Individual patients were represented in each column. The upper bar plot showed TMB, and the right bar plot showed the mutation frequency of each gene
in separate TME-score groups.
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FIGURE 8 | Correlation between the TME-score and immunotherapeutic benefits and chemotherapeutic efficacy. (A) The relative distribution of
immunosuppressive molecules was compared between TME-score high versus low groups in the meta-cohort. (B) Relative distribution of immunotherapeutic efficacy in
high TME-score versus low TME-score groups. (C)Relative distribution of IC50 for chemotherapeutic drugs commonly used in clinical practice between TME-score high
versus low groups.
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Furthermore, a scoring scheme named TME-score was
established to quantify the TME-mediated pattern level in
individual BC patients and direct therapeutic interventions more
precisely. As a result, gene cluster II characterized by a hot tumor
phenotype showed a high TME-score, while gene cluster I
characterized by a cold tumor phenotype exhibited a low TME-
score. In addition, we observed that TME-score could serve as a
prognostic biomarker in BC. Further analysis demonstrated that
TME-score was markedly linked to immunosuppressive molecules
and immunotherapy, implying that the TME-score could influence
immunotherapeutic efficacy. Based on these findings, we believed
that TME-score could be used in clinical practice to identify immune
profiles and direct therapeutic strategies.

Assessment of mutated genes capable of driving tumors is one
milestone toward cancer detection and therapeutic approach
selection. Here, we observed that compared with the low
TME-score group, PIK3CA and CDH1 exhibited elevated
mutation rates in the high TME-score group, while GATA3
showed augmented mutation rates in the low TME-score
group. Recent studies revealed that CDH1 and PIK3CA
mutation in genetically modified mice could result in an
immune-related subtype for invasive lobular carcinoma of the
breast, which was characterized by enhanced immune infiltration
and a strong signature for Treg cells and immunosuppressive
molecule-based immune checkpoint activation (An et al., 2018).
GATA3 is an essential regulator of immune cell function, and its
mutation could result in the dysfunction of normal T cells (Usary
et al., 2004). These TME-score mediated driver gene mutations
remarkedly correlated with immune activity, highlighting the
complicated connection between TME and tumor
immunogenomic features.

Although, we obtained seven retrospective BC datasets
(including a total of 3,738 samples) and performed a
comprehensive analysis toward the correlation between
TME and prognosis and immunotherapeutic efficacy in BC.
Prospective datasets of BC samples were required to verify our
results. Besides, it is appropriate to systematically assess the
infiltrating immune cells in the tumor core and
invasive margin, considering that distinct tumor regions are
essential.

CONCLUSION

In conclusion, we comprehensively analyzed TME-mediated
patterns of 3,738 BC patients based on tumor-infiltrating
immune cells and systematically linked this pattern with
prognosis and immunotherapeutic efficacy. This integrated
analysis demonstrated that assessing the TME-mediated
pattern of individual tumor will assist us in better
understanding TME characteristics and directing more
effective immunotherapeutic approaches.
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