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Middle East respiratory syndrome coronavirus (MERS-CoV) is an emergent coronavirus
that has caused frequent zoonotic events through camel-to-human spillover. An effective
camelid vaccination strategy is probably the best way to reduce human exposure risk.
Here, we constructed and evaluated an inactivated rabies virus-vectored MERS-CoV
vaccine in mice, camels, and alpacas. Potent antigen-specific antibody and CD8+ T-cell
responses were generated in mice; moreover, the vaccination reduced viral replication
and accelerated virus clearance in MERS-CoV-infected mice. Besides, protective
antibody responses against both MERS-CoV and rabies virus were induced in camels
and alpacas. Satisfyingly, the immune sera showed broad cross-neutralizing activity
against the three main MERS-CoV clades. For further characterization of the antibody
response induced in camelids, MERS-CoV-specific variable domains of heavy-chain-only
antibody (VHHs) were isolated from immunized alpacas and showed potent prophylactic
and therapeutic efficacies in the Ad5-hDPP4-transduced mouse model. These results
highlight the inactivated rabies virus-vectored MERS-CoV vaccine as a promising camelid
candidate vaccine.
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INTRODUCTION

The Middle East respiratory syndrome (MERS) is an acute viral
infectious disease caused by a zoonotic coronavirus (MERS-
CoV) that was first identified in Saudi Arabia in 2012 (1, 2).
From September 2012 to July 31, 2021, the WHO has been
officially notified of 2,578 laboratory-confirmed MERS cases in
27 countries from the Middle East, Europe, Asia, and Americas,
with 888 associated deaths (mortality rate, 34.44%) (3). The high
MERS-CoV infection case fatality rate, large geographic
distribution, and of licensed MERS-specific vaccines or
therapeutics available have drawn global pandemic concern,
and MERS was placed in the WHO R&D Blueprint list of
priority diseases (4).

Previous studies have shown that dromedary camels serve as
an important reservoir for the maintenance and diversification of
the MERS-CoV and are the main source of human infection (5,
6). It has been reported that camelids such as dromedary camels,
Bactrian camels, alpacas, and llamas are all susceptible to MERS-
CoV infection, and animal-to-animal transmission has been
demonstrated in the Camelidae family (7–11). Our previous
research has demonstrated that zoonotic MERS-CoV infection
is occurring in dromedary-exposed populations in Africa, and
the extent of MERS-CoV infections is underestimated (12). An
effective camelid inoculation strategy to interrupt the
transmission cycle is probably the best way to limit MERS-
CoV circulation among camelids and reduce human exposure
risk, which highlights the development of safe and effective
veterinary vaccines (13, 14). Camelid vaccine candidates
targeting MERS-CoV S surface glycoprotein developed by
different research groups have been reported, mainly utilizing a
viral vector-based vaccine, DNA-based vaccine, or subunit
vaccine platform (10, 11, 15–18). However, the limited
availability of animal models and diverse MERS-CoV clades
strains restricted the accurate evaluation of vaccine candidates.
The investment in the development of veterinary vaccines is
much lower than that of human vaccines. Consequently, the cost
is an important consideration regarding whether it will be widely
used. Veterinary vaccines must be safe, potent, and effective, and
importantly, they must be economical (19). Among the above
vaccine platforms, viral vector-based vaccines present advantages
of lower production cost and higher immunogenicity; therefore,
they are preferred and broadly used in the development of
veterinary vaccines (20–22). Rabies virus has been proven to be
a favorable vaccine vector and has been widely used to develop
recombinant bivalent vaccines. Compared with live viral vector-
based vaccines, inactivated recombinant rabies virus-vectored
vaccines lessen the concerns of safety and production scalability
(23–29). Based on our previous study, the S1 subunit of MERS-
CoV spike protein is an effective target able to elicit antigen-
specific humoral and cellular immune responses (30). Moreover,
viral vector expressing S1 domain induced a better antibody-
mediated neutralizing activity compared with the vector
expressing full-length S (31). Hence, in the current study, we
developed an inactivated viral vector vaccine against MERS-
CoV, based on a consensus MERS-CoV truncated S1 subunit
glycoprotein, and investigated the immune efficacy of the
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candidate vaccine in mice, camels, and alpacas against multiple
MERS-CoV clade strains. This study highlights inactivated rabies
virus vectored MERS-CoV vaccine as a safe, immunogenic, and
efficacious vaccine that warrants further assessment.
MATERIAL AND METHODS

Virus, Cell Lines, and Animals
Recombinant RABV strain rSRV9 was generated from the
vaccine strain SRV9 as previously described (23). The MERS-
CoV strains used in this research, including EMC/2012 (NCBI
accession No. NC_019843.3), ChinaGD01 (NCBI accession No.
KT006149.2) (32), and camel/Nigeria/NV1657/2016 (NCBI
accession No. MG923475.1) (33) strains, were isolated from
the clinical sample or rescued from BAC infectious clone. BSR
cells (a cloned cell line derived from BHK-21 cells), NA cells
(derived from mouse neuroblastoma), Huh-7 cells (a hepatocyte
carcinoma cell line originally derived from a liver tumor), and
Vero 81 cells (derived from African Green monkey kidney) were
all purchased from American Type Culture Collection (ATCC)
and grown in Dulbecco’s modified Eagle medium (DMEM)
(Gibco, San Diego, CA, USA) supplemented with 10% fetal
bovine serum (FBS) (Gibco, San Diego, CA, USA). All RABV
strains were passaged in BSR cells and titrated by direct
fluorescent antibody assay in NA cells. MERS-CoV was
passaged in Vero 81 cells and titrated by plaque assay in the
same cell line. Six- to eight-week-old specific pathogen-free
female C57BL/6 mice were purchased from the Changchun
Institute of Biological Products Co., Ltd. (Changchun, China)
or Hunan SJA Laboratory Animal Co., Ltd. (Changsha, China).
Camels and alpacas were provided by the Wildlife Rescue and
Breeding Centre of Jilin Province (Changchun, China).

Construction and Rescue of Recombinant
RABV Expressing MERS-CoV S1 Protein
The recombinant viral vector pD-SRV9-PM-eGFP carrying the
enhanced green fluorescent protein (eGFP) gene between
phosphoprotein (P) and matrix protein (M) genes of RABV
was constructed as previously described. The exogenous gene
expression component PE-PS-BsiWI-PmeI was inserted between
the stop codon and the transcription stop signal of RABV P gene.
To obtain a consensus MERS-CoV S glycoprotein immunogen
able to induce broad immune responses, the consensus sequence
of S gene was generated by aligning multiple sequences covering
the known MERS-CoV clades obtained from the GenBank
sequence database and choosing the most common amino acid
at each position (Supplementary Figure 1). The consensus S
sequence was then codon optimized and synthesized by Sangon
Biotech Company (Shanghai, China). Considering exogenous
antigen incorporation into rabies viral particles related to
membrane proximal external anchor region and the soluble
form MERSS1 protein lacking a membrane anchor, the MERSS1
membrane-anchoring chimera protein gene, which contains the
synthetic MERS-CoV S1 gene (amino acid 1–725) fused to the
gene of human CD4 transmembrane domain (TM) and RABV G
January 2022 | Volume 13 | Article 823949
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protein cytoplasmic domain (CD), was amplified and subcloned
into the enzyme cutting sites BsiWI/PmeI to replace eGFP gene,
generating the recombinant cDNA clone pD-SRV9-PM-MERSS1
(34). The recombinant RABV (rSRV9-MERSS1) was rescued
according to the procedures previously described (23). Briefly,
the full-length clone of pD-SRV9-PM-MERSS1 and four helper
plasmids expressing the N, P, G, and L genes of SRV9 parent
virus were co-transfected into BSR cells using Lipofectamine
3000 Transfection Reagent (Invitrogen, San Diego, CA, USA).
The rescued rSRV9-MERSS1 was detected using anti-rabies
monoc lona l g lobu l in con juga ted wi th fluoresce in
isothiocyanate (FITC) (Fujirebio Diagnostics, Seguin, TX,
USA) and mouse anti-MERS-S1 monoclonal antibodies (Sino
Biological, Beijing, China).

Electron Microscopy
Inactivated rSRV9-MERSS1 viral culture supernatants (virus titer
6.32 × 107 TCID50/ml) were loaded onto the carbon-coated TEM
support grid after a 5-min incubation at room temperature (RT)
and stained with 1% sodium phosphotungstate for 3 min. After
wicking the excess liquid off the grid by filter paper, the grid was
then examined by JEOL JEM-1200EXII series Transmission
Electron Microscope with acceleration voltages ranging at 80 kV.

Growth Curve
BSR cells were infected at a multiplicity of infection (MOI) of 0.1
with rSRV9-MERSS1 and rSRV9 in DMEM. One hour post-
incubation, the inoculum was removed. Cells were then washed
three times and cultured with DMEM supplemented with 2%
fetal calf serum (FCS). The viral culture supernatants were
collected at 24-h intervals from 24 to 120 h and titrated in NA
cells by direct fluorescent antibody assay.

Immunofluorescence
Indirect immunofluorescence assay (IFA) was used to detect S
protein expression in rSRV9-MERSS1-infected cells. NA cells were
plated on coverslips in 35-mm-diameter dishes and infected with
rSRV9-MERSS1 or rSRV9 at a MOI = 1. At 24 h post-infection,
cells were fixed in 4% paraformaldehyde (Solarbio Corporation,
Beijing, China) at 4°C for 30 min and blocked with phosphate-
buffered saline (PBS) containing 1% bovine serum albumin (BSA)
at RT for 1 h. Cells were incubated with rabbit anti-MERS-CoV S
protein polyclonal antibody (Sino Biologicals, Beijing, China) and
mouse anti-RABV G protein monoclonal antibody (Merck
Millipore, Hong Kong, China) 1:100 diluted in PBS containing
1% BSA at 37°C for 1 h. Then the cells were washed 3 times with
PBST and stained with 594-conjugated goat anti-rabbit antibody
(Abcam, Shanghai, China, 1:500 diluted in PBS containing 1%
BSA) and 488-conjugated goat anti-mouse antibody (Abcam,
Shanghai, China, 1:1,000 diluted in PBS containing 1% BSA) at
37°C for 1 h. After being washed 3 times, cells were stained with an
antifade mounting medium with DAPI (Vector Laboratories,
Burlingame, CA, USA). Cells were analyzed with an Axio
Scope.A1 microscope (Carl Zeiss MicroImaging GmbH,
Göttingen, Germany), and representative images were obtained
from the ZEN 2012 system (Carl Zeiss MicroImaging GmbH,
Göttingen, Germany).
Frontiers in Immunology | www.frontiersin.org 3
Recombinant Virus Proliferation,
Inactivation, and Purification
BSR cell monolayers in T225 flasks were infected with rSRV9 or
rSRV9-MERSS1 at a MOI = 0.1. The culture supernatants
containing recombinant viruses were collected 4 days post-
infection as the viral stock. The titers of the viral stock were
determined in NA cells as previously described (23). Beta-
propiolactone (BPL) was added at a ratio of 1:3,000 to
inactivate the recombinant virus and incubated for 24 h at 4°C,
followed by a 30-min incubation at 37°C for BPL hydrolyzation.
Then the viral stocks were verified of complete inactivation by
direct fluorescent antibody assay in BSR cells and NA cells. For
the virus purification, the inactivated viral stocks were
precipitated with 2% zinc acetate solution and purified by
ultracentrifugation on a discontinuous sucrose gradient. The
purified inactivated virus particles were resuspended with
sterile PBS, determined with the BCA Protein Assay Kit
(Thermo Fisher, Waltham, MA, USA) for protein concentration.

Sodium Dodecyl Sulfate–Polyacrylamide
Gel Electrophoresis and Western Blotting
For total protein analysis, 10 mg of purified inactivated
recombinant virus particles rSRV9 or rSRV9-MERSS1 was
separated on a 12% sodium dodecyl sulfate (SDS)–
polyacrylamide gel and stained with Coomassie blue staining
solution (Beyotime, Shanghai, China) according to the
manufacturer’s instructions. For Western blotting analysis of
target bands, an 12% SDS–polyacrylamide gel was transferred
onto a 0.45-mm nitrocellulose blotting membrane (GE
Healthcare, Madison, WI, USA) using mouse anti-MERS-S1
monoclonal antibodies (Sino Biologicals, Beijing, China) and
mouse anti-RABV-G monoclonal antibodies (Merck Millipore,
Hong Kong, China).

Neurovirulence
For analysis of viral neurovirulence, 4- to 6-week-old Institute of
Cancer Research (ICR) adult mice and 14-day-old ICR suckling
mice purchased from the Changchun Institute of Biological
Products Co., Ltd. (Changchun, China) were respectively
administered intracerebrally (i.c.) with injections of 25-ml serial
dilutions of the recombinant virus rSRV9-MERSS1 and the
parental virus rSRV9. Mice were individually weighed
periodically and monitored for signs of encephalitis and
morbidity for 21 days. Further decreasing the age of suckling
mice, 5-day-old ICR mouse pups were injected with rSRV9-
MERSS1 or rSRV9 and monitored daily for clinical signs of
encephalitis for 28 days. The number of surviving mice was
recorded daily.

Mice Immunizations
To determine the appropriate vaccine form of the recombinant
rabies virus-vectored MERS-CoV vaccine, groups of 10 six- to
eight-week-old specific pathogen-free female C57BL/6 were
injected intramuscularly (i.m.) in the quadriceps muscle with
2 × 107 TCID50 of the recombinant virus rSRV9-MERSS1 on day 0
or the BPL inactivated rSRV9-MERSS1 plus Imject Alum adjuvant
(Thermo Fisher, Waltham, MA, USA) on day 0 (one-dose group)
January 2022 | Volume 13 | Article 823949
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or days 0 and 14 (two-dose group). Vector control groups were
injected with the same dose of the live or inactivated parental
virus rSRV9 at the same time points. Meanwhile, the Alum
adjuvant control group and mock control group were set up.
Blood samples of each group were collected by retro-orbital
plexus puncture on days 14, 21, and 28 following the first
immunization (day 0).

To evaluate the immunogenicity of the inactivated
recombinant rabies virus-vectored MERS-CoV vaccine, 6- to 8-
week-old specific pathogen-free female C57BL/6 mice were
randomly divided into four groups of 12 mice each. Mice in
the experimental group were i.m. injected in the quadriceps
muscle with the inactivated recombinant rabies virus-vectored
MERS-CoV vaccine (BPL inactivated virus plus equal volumes of
Imject Alum adjuvant) on days 0 and 14. Mice in the control
group received the inactivated parental rabies virus vaccine or
PBS plus Alum adjuvant or PBS at the same time points. At
weeks 2, 4, 5, and 6 and months 2, 4, 8, and 10 following the
primary immunization (week 0), blood samples were collected by
retro-orbital plexus puncture.

Detection of Antibody Responses
Sera were isolated for the detection of antibody responses.
Indirect ELISA measurement of MERS-CoV S-specific IgG in
sera was conducted as previously described. Neutralizing
antibody titers of sera against MERS-CoV were detected by a
pseudovirus-based neutralization assay and live virus
neutralization assay as previously described (30, 35). For
pseudovirus assay, human MERS-CoV KOR/HIN strain,
dromedary camel MERS-CoV D1271 strain, and Human
betacoronavirus 2c EMC/2012 strain pseudoviruses were used.
For live virus assay, Human betacoronavirus 2c EMC/2012
strain, MERS-CoV isolate ChinaGD01 strain, and dromedary/
Nigeria/HKUNV1657 strain respectively from Clade A, B, and C
were used to evaluate the cross-neutralizing activity among
various MERS-CoV clades. Neutralizing antibody titers of sera
against RABV were measured using fluorescent antibody virus
neutralization (FAVN) (36).

Intracellular Cytokine Staining
One and 4 weeks following the second immunization, 3 mice from
each group were randomly selected and euthanized. Spleens were
harvested into a tissue culture dish and teased apart into single-cell
suspensions by pressing through a 5-ml syringe. After
ammonium–chloride–potassium (ACK) lysing buffer treatment,
splenocytes were washed twice and maintained in Roswell Park
Memorial Institute (RPMI) 1640 medium (Gibco, San Diego, CA,
USA) enriched with 10% FBS (Gibco, San Diego, CA, USA). Cells
were then added to a 6-well plate (2 × 106 per well) and stimulated
with 20 mM of peptide S434 (a previously identified MERS-CoV-
specific immunodominant CD8+ T-cell epitope in C57BL/6 mice
(37)) in the presence of protein transport inhibitor cocktail
(brefeldin A and monensin) (BD Biosciences, Franklin, VA,
USA) for 6 h at 37°C in 5% CO2. All cells were then labeled
with surface staining antibodies, fixed and permeabilized with the
Cytofix/Cytoperm Solution (BD Biosciences, Franklin, VA, USA),
and labeled with anti-intracellular cytokine antibodies. All labeled
Frontiers in Immunology | www.frontiersin.org 4
cells were analyzed by a FACSCalibur™ Flow Cytometer (BD
Biosciences, Franklin, VA, USA). The following antibodies were
purchased from BD Biosciences and used for label cells: PE anti-
mouse CD8a (Clone # 53-6.7), PE-Cy7 anti-mouse IFN-g (Clone #
XMG1.2), APC anti-Mouse TNF-a (Clone #MP6-XT22), and PE-
Cy7 anti-mouse IL-2 (Clone # JES6-5H4). Analysis of
fluorescence-activated cell sorting (FACS) data was performed
using the FlowJo flow cytometry analysis software.

IFN-g ELISpot Assays
One and 4 weeks following the second immunization,
splenocytes from 3 mice of each group were isolated as
described above. Then 5 × 105 cells were added to each well of
a 96-well ELISpot plate pre-coated with IFN-g (Mabtech AB,
Stockholm, Sweden) and stimulated with or without peptide
S434 (10 mM; specific peptide antigen) and concanavalin A (10
mg/ml; positive control). After being incubated at 37°C in 5%
CO2 for 24 h, cells producing IFN-g in the splenocytes were
measured using mouse enzyme-linked immunospot (ELISpot)
kits (Mabtech AB, Stockholm, Sweden) according to the
manufacturer’s instructions. Spot-forming cells (SFCs) were
enumerated by an automated ELISpot reader (AID ELISPOT
reader-iSpot, AID GmbH, Penzberg, Germany).

ELISA Measurement of Cytokines
Splenocytes were isolated, cultured (1 × 106 cells/ml) in a 6-well
plate, stimulated with 10 mM of specific peptide S434 as
described above, and then incubated at 37°C in 5% CO2. After
48 h, cell-free culture supernatants were harvested. Levels of
IFN-g, TNF-a, and IL-2 were measured using mouse ELISA
development kits (Mabtech AB, Stockholm, Sweden) according
to the manufacturer’s instructions.

MERS-CoV Challenge of the
Vaccinated Mice
For the live MERS-CoV challenge, 6- to 8-week-old specific
pathogen-free female C57BL/6 mice purchased from the
Changchun Institute of Biological Products Co., Ltd.
(Changchun, China) were randomly divided into two groups. A
total of 8 mice were i.m. injected with the inactivated recombinant
rabies virus-vectored MERS-CoV vaccine on days 0 and 14, while
the other 8 mice received the inactivated parental rabies virus
vaccine as a negative control. On day 24, blood samples of each
group were collected by retro-orbital plexus puncture. Mice were
sensitized to MERS-CoV infection after prior transduction with
adenovirus 5 expressing human DPP4 (Ad5-hDPP4) as previously
described (37). Mice were transduced with Ad5-hDPP4 5 days
before the intranasal challenge with 1 × 105 PFU MERS-CoV
(EMC/2012 strain) on day 42. At 3 days post-infection, the lungs
of 3mice of each groupwere harvested andmanually homogenized
into 3ml of PBS. Lung virus titers were determined inVero 81 cells
and expressed as PFU/g of tissue.

Camel Immunizations
For the immunization experiment of camels, four Bactrian
camels (2 females and 2 males) were allocated into three
groups. Camels were injected subcutaneously (s.c.) in the neck
January 2022 | Volume 13 | Article 823949
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(distributed in multiple injection sites) with 5 ml of the
inactivated recombinant rabies virus-vectored MERS-CoV
vaccine (n = 2) or the inactivated parental rabies virus vaccine
(n = 1) or PBS (n = 1) two times at 4-week intervals. The blood
samples of camels were collected before the first immunization
and collected at weeks 4 and 8 after the first immunization by
two licensed veterinarians.

Alpaca Immunizations
For the immunization experiment of alpacas, three alpacas (2
females and 1 male) were allocated into two groups. Alpacas (n =
2) in the experimental group received 3 ml of the inactivated
recombinant rabies virus-vectored MERS-CoV vaccine by
multiple sites through s.c. injection in the neck two times at 3-
week intervals. Alpacas (n = 1) in the control group received the
same volumes of PBS at the same time points. The blood samples
of alpacas were collected before the first immunization and
collected at weeks 3, 6, 12, and 28 after the first immunization
by two licensed veterinarians.

Selection and Expression of Recombinant
MERS-CoV-S-Specific VHHs
Alpacas (n = 2) in the experimental group were boosted with the
inactivated recombinant rabies virus-vectored MERS-CoV vaccine
three times at weeks 43, 46, and 49. On day 7 after the last
immunization, blood from the immunized alpacas was collected,
and then their peripheral blood mononuclear cells (PBMCs) were
isolated using Ficoll-Paque PLUS gradient centrifugation (GE
Healthcare, Madison, WI, USA). PBMCs were counted, and then
total RNAwas extracted using TRIZOL LS reagent (Invitrogen, San
Diego, CA, USA). cDNA was synthesized by reverse transcription-
PCR using a SuperScript III Reverse Transcriptase kit (Invitrogen,
San Diego, CA, USA). Alpaca variable domains of heavy-chain-
only antibody (VHH) genes were amplified using a two-step nested
PCR approach with HotStarTaq Plus DNA polymerase (Qiagen,
Hilden, Germany) using the following primer: the first PCR
forward primer VHH-L-F (5′-GGTGGTCCTGGCTGC-3′) and
the reverse primer CH2-R (5′-GGTACGTGCTGTTGAACTG
TTCC-3′) were used to amplify the N-terminal IgG heavy-chain
fragment; the second nested PCR forward primer AlpVh-FR1-
NheI (5′-CTAGCTAGCATGGCCCAGKTGCAGCTCGTGGAG
TCNGGNGG-3′) and the reverse primers (AlpVHHR1-BamHI,
5 ′ -CGCGGTACCGGGGTCTTCGCTGTGGTGCG-3 ′ ,
AlpVHHR2-BamHI, 5′-CGCGGTACCTTGTGGTTTTGGTG
TCTTGGG-3′) were used to amplify the VHH repertoire (~300
to 450 bp). Amplified VHH DNA was digested with NheI and
BamHI restriction enzymes and cloned into yeast surface display
vector pCTCON-2 to construct the alpaca immune VHH library
displayed on the surface of yeast Saccharomyces cerevisiae. Purified
MERS-S trimer was used as antigen bait to select the VHH library.
After three rounds of FACS with a FACSAri II cell sorter (BD
Biosciences, Franklin, VA, USA), DNA plasmids containing VHH
coding sequences were extracted from the sorted antigen-binding
yeast population and then transformed into Escherichia coli DH5a
for sequencing. Distinct VHH sequences were identified among the
total sequences analyzed. To extend the in vivo half-life through
Frontiers in Immunology | www.frontiersin.org 5
increasing antibody size, the selected VHH genes were cloned into
the backbone of antibody expression vectors containing a C-
terminal Fc domain of human IgG1. The recombinant VHH-Fcs
were expressed in 293T cells by transient transfection and
then purified.

Antibody Treatment and MERS-CoV
Infection of Mice
To evaluate the antibody contribution to the protection, the
prophylactic and therapeutic efficacies against the MERS-CoV
challenge were assessed in Ad5-hDPP4-transduced mice. Briefly,
5 days after intranasally transduction with Ad5-hDPP4, mice
were infected intranasally with 1 × 105 PFU MERS-CoV (EMC/
2012 strain). Mice in the experimental group were intravenously
injected with 200 ml of immune sera (from immunized alpacas
and camels) or VHH1-Fc 1 day before or after MERS-CoV
infection. Mice in the control group intravenously received the
same dose of negative sera from healthy alpacas, camels, or
negative control antibody (anti-HIV antibody 2G12) at the same
time points. The lungs were harvested at 3 days post-infection
and manually homogenized in PBS. Virus titers were determined
in Vero 81 cells and expressed as FFU/g of tissue.
RESULTS

Generation and Validation of the
Recombinant Rabies Virus Expressing
MERS-CoV S1 Protein
Recombinant genomic cDNA clone pD-SRV9-PM-MERSS1
was constructed based on the previously (23) established
rabies virus SRV9 strain reverse genetics system (Figure 1A).
Recombinant rabies virus (rSRV9-MERSS1) was successfully
rescued in BSR cells, showing typical bullet-shaped morphology
under transmission electron microscopy (Figure 1B). Similar
to the other recombinant rabies viruses (25, 38), the growth
kinetics of recombinant viruses is slower than that of the
parental rabies virus. Although the titers of rSRV9-MERSS1
were lower than those of rSRV9 at 24 and 48 hpi, which may be
related to the expression of MERS-CoV S1, overall, rSRV9-
MERSS1 showed similar growth kinetics as rSRV9 in BSR cells,
with the peak titers reaching 2 × 108.5 TCID50/ml (Figure 1C).
The expression of MERS-CoV S1 and RABV G proteins in
rSRV9-MERSS1-infected BSR cells was identified by indirect
immunofluorescence staining (Figure 1D). The neurovirulence
of the recombinant virus rSRV9-MERSS1 versus the parental
virus rSRV9 was also evaluated. Four- to 6-week-old ICR adult
mice and 14-day-old ICR suckling mice i.c. injected with serial
dilutions of rSRV9-MERSS1 did not show any clinical signs or
lethality. On the other hand, the results of intracerebral
challenge in 5-day-old ICR suckling mice demonstrate that
the neurovirulence of rSRV9-MERSS1 was reduced compared to
that of the parental virus rSRV9 (Table 1), indicating an
increased safety profile. Similar results were also observed in
other rabies-vectored vaccines, and neurovirulence attenuation
January 2022 | Volume 13 | Article 823949
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of rSRV9-MERSS1 may be due to its slower growth kinetics than
that of the parental rabies virus (25, 38).

To confirm the incorporation of MERS-CoV S1 protein into
the recombinant rabies virus particles, the inactivated viral stocks
were purified by a discontinuous sucrose gradient. As shown by
SDS-PAGE analysis, the L (180 kDa), G (65 kDa), N (55 kDa), P
(38-41 kDa), and M (180 kDa) proteins of RABV were detectable
in both purified rSRV9-MERSS1 and rSRV9 virions, while the
protein band corresponding in size to the MERS-CoV S1 protein
(120 kDa) was only detected in rSRV9-MERSS1 purified virions
(Figure 1E). The incorporation of MERS-CoV S1 protein into
the RABV virions was further confirmed by Western blotting
analysis (Figure 1F). All the results above indicated
the successful construction and stable expression of
Frontiers in Immunology | www.frontiersin.org 6
rSRV9-MERSS1, which may have the potential to serve as an
effective inactivated vaccine candidate.

Strong Antigen-Specific Antibody
Responses Was Induced by the
Inactivated Rabies Virus-Vectored MERS-
CoV Vaccine in Mice
To select an appropriate vaccine form of the recombinant rabies
virus-vectored MERS-CoV vaccine candidates, several
recombinant rabies virus-based vectored MERS-CoV vaccine
candidates were developed based on the rescued rSRV9-
MERSS1; in detail, the immunogenicity of these vaccine
candidates was evaluated in mice with different forms (live and
inactivated rabies virus-vectored MERS-CoV vaccine) and
A
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C

FIGURE 1 | Characterization and validation of rSRV9-MERSS1. (A) Schematic of the candidate vaccine rSRV9-MERSS1. The MERSS1 membrane-anchoring chimera
protein gene, which contains MERS-CoV S1 gene fused to the gene of human CD4 transmembrane domain (TM) and RABV G protein cytoplasmic domain (CD),
was amplified and subcloned into the enzyme cutting sites BsiWI/PmeI of the recombinant plasmid containing full-length RABV cDNA (pD-SRV9-PM-eGFP),
generating the recombinant cDNA clone pD-SRV9-PM-MERSS1. (B) TEM detection of rSRV9-MERSS1. The samples of inactivated rRABV-MERSS1 viral culture
supernatants were stained with 1% sodium phosphotungstate. Bar = 100 nm. (C) Multiple-step growth curves of rSRV9-MERSS1 and rSRV9 on BSR cells
(multiplicity of infection (MOI) = 0.1). Cell culture supernatants were then harvested at 24, 48, 72, 96, and 120 h post-infection. Data were obtained using
GraphPad Prism version 9.0 (GraphPad software). Data are shown as mean ± SD. (D) Validation of the expression of MERS-CoV S1 protein and RABV G
protein in rSRV9-MERSS1-infected NA cells by indirect immunofluorescence staining. NA cells infected with rSRV9 or mock-infected NA cells were used as
controls. (E) Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis of viral protein expression in purified rSRV9-MERSS1 virions and
rSRV9 virions. (F) Western blotting detection of MERS-CoV S1 protein and RABV G protein expressions in purified recombinant virus particles rSRV9-MERSS1 using
mouse anti-MERS-S1 monoclonal antibodies and mouse anti-RABV-G monoclonal antibodies. Purified parental virus particles rSRV9 were used as control.
TABLE 1 | The neurovirulence of rSRV9-MERSS1 compared to rSRV9 in 5-day-old suckling mice.

Virus Dose (TCID50) Survival (%) Mean ( ± SD) endpoint (days)

rSRV9 101 20 11.6 ± 1.7
103 0 9.5 ± 1.6
105 0 9.3 ± 0.9

rSRV9-MERSS1 101 80 12.5 ± 2.1
103 0 11.5 ± 1.5
105 0 9.8 ± 1.4
January 202
Institute of Cancer Research (ICR) mouse pups aged 5 days were intracerebrally (i.c.) injected with rSRV9-MERSS1 or rSRV9 and monitored daily for clinical signs of encephalitis for 28
days.
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delivery doses (one dose assayed for both live and inactivated
vaccines, two-dose vaccination assayed for the inactivated
vaccine). Of the MERS-CoV vaccine candidates developed, the
inactivated rabies virus-based vectored MERS vaccine with two
immunizations elicited the most robust antibody response in
immunized mice (Figure 2A) and thus was selected for further
experiments. Anti-MERS-CoV IgG antibody levels were
measured by indirect ELISA and shown as endpoint dilution
titers. Mice immunized with the inactivated rabies virus-vectored
MERS-CoV vaccine induced significant MERS-CoV S protein-
specific IgG as compared to the controls, with an increasing
trend after each immunization (Figure 2B). The dynamic
changes and duration of the anti-MERS-CoV antibody were
also evaluated. As shown in Figure 2C, the total anti-MERS-CoV
IgG antibody titers peaked at 5 weeks after the first
immunization and were still detectable 10 months after the
first immunization. Of note, the sera from inactivated vaccine
immunized mice were able to neutralize multiple MERS-CoV
pseudoviruses, including human MERS-CoV KOR/HIN strain
and dromedary camel MERS-CoV D1271 strain, indicating the
cross-neutralizing activity against divergent MERS-CoV isolates
from both human and camels (Figure 2D). These results
demonstrated that the inactivated rabies virus-vectored MERS-
CoV vaccine induces a robust binding and neutralizing antibody
response in mice.

Potent Antigen-Specific CD8+ T-Cell
Responses Were Elicited by the Rabies
Virus-Vectored MERS-CoV Vaccine in
Mice
Tomonitor the vaccine-inducedspecific cellular immune responses
of both T-cell activation and memory period, splenocytes were
harvested 1 and 4weeks following the second immunization. IFN-g
responses after stimulationwithMERS-CoV-specific peptides were
measured by mouse enzyme-linked immunospot (ELISpot) assay.
As indicated in Figure 3A, significantly more IFN-g-secreting cells
were detected in splenocytes from the rabies virus-vectoredMERS-
CoV vaccine immunized mice than the controls. Furthermore, the
frequencies of MERS-CoV-specific IFN-g-, TNF-a-, and IL-2-
secreting CD8+ T cells in splenocytes were counted and analyzed
using intracellular cytokine staining (ICS) assays. Theproportionof
CD8+ T cells that produce IFN-g, TNF-a, and IL-2 was superior in
the rabies virus-vectored MERS-CoV vaccine immunized mice,
indicating the vaccination markedly increased the antigen-specific
CD8+ T-cell responses in mice (Figure 3B). Similar results were
observed for the levels of cytokines secreted by splenocytes assayed
byELISA (Figure 3C). Notably, despite there being a downswing of
the vaccine-induced specific cellular immune responses betweenT-
cell activation and memory period, trends remained consistent
among groups in each phase.

Efficient Protection of MERS-CoV-Infected
Ad5-hDPP4-Transduced Mice by the
Rabies Virus-Vectored MERS-CoV Vaccine
The protective immunity of the rabies virus-vectored MERS-
CoV vaccine was evaluated in the Ad5-hDPP4-transduced
Frontiers in Immunology | www.frontiersin.org 7
mouse model and determined by virus load in the infected
lungs (Figure 4A). Immune sera at day 21 from the mice
receiving the rabies virus-vectored MERS-CoV vaccine
demonstrated binding activity to MERS-S (Figure 4B) and
neutralizing activities against live MERS-CoV (EMC/2012
strain) (Figure 4C). As shown in Figure 4D, all the rabies
virus-vectored MERS-CoV vaccine immunized mice had no
detectable viral loads on day 3 post-infection, while the control
mice had on average as high as 104 PFU/g of virus in their lungs,
demonstrating that the vaccination reduced viral replication and
accelerated virus clearance in the lungs.

Protective Antibody Responses Elicited by
the Rabies Virus-Vectored MERS-CoV
Vaccine in Camels
Camels were immunized twice at 4-week intervals with the
inactivated recombinant rabies virus-vectored MERS-CoV
vaccine, and sera were collected before the first immunization
and at 4 and 8 weeks after the first immunization (Figure 5A).
The antibody immune response against MERS-CoV as well as
RABV was evaluated. As expected, sera of the rabies virus-
vectored MERS-CoV vaccine immunized camels demonstrated
strong neutralizing activity against both pseudotyped MERS-
CoV derived from human and dromedary camel MERS-CoV
spike sequences (Figure 5B). Satisfyingly, the immune sera from
immunized camels at week 8 showed broad cross-neutralizing
activity against multiple authentic viruses including the three
major MERS-CoV clades (A, B, and C) (Figure 5C). Then the
immune sera collected at 8 w.p.i were selected for the subsequent
evaluation of prophylactic and therapeutic efficacies against live
MERS-CoV (EMC/2012 strain) challenge in Ad5-hDPP4-
transduced mice. Mice intravenously received 200 ml of
immune sera 1 day before or after challenge; passive transfer of
immune sera both resulted in a significant reduction of lung
virus titers in both the prophylactic and therapeutic groups,
indicating that the antibody responses elicited by the rabies
virus-vectored MERS-CoV vaccine in camels are protective
against MERS-CoV infection (Figure 5D). Besides, potent
RABV-specific neutralizing antibodies far above 0.5 IU/ml
were detected in sera of all camels at 8 weeks, with no
significant differences being observed between sera harvested
from the inactivated recombinant rabies virus-vectored MERS-
CoV vaccine and the inactivated parental rabies virus vaccine
immunized camels (Figure 5E).

Protective Antibody Responses Elicited by
the Rabies Virus-Vectored MERS-CoV
Vaccine in Alpacas
Alpacas were immunized twice at 3-week intervals with the
inactivated recombinant rabies virus-vectored MERS-CoV
vaccine, and sera were collected at the indicated time for the
detection of antibody responses against MERS-CoV as well as
RABV (Figure 6A). As shown in Figure 6B, potent neutralizing
antibody responses were elicited, and immunized alpaca sera
neutralized both human and camel MERS-CoV pseudoviruses.
Of note, immunized sera containing MERS-CoV-specific
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chi et al. MERS Camelid Vaccine Candidate
neutralizing antibodies remain robust and protective against
MERS-CoV for at least 28 weeks after the first immunization
(Figure 6C). So far, three clades (A, B, and C) of MERS-CoV
were recognized; immunized alpaca sera demonstrated high
neutralizing activities against multiple authentic MERS-CoV,
including clade A, B, and C MERS-CoV (Figure 6D). Immune
sera from immunized alpacas at week 6 were intravenously
Frontiers in Immunology | www.frontiersin.org 8
transferred into Ad5-hDPP4-transduced mice 1 day before or
after the MERS-CoV challenge. Both mice from the prophylactic
and therapeutic groups showed accelerated virus clearance in the
lungs (Figure 6E), and immunized sera treatment showed a
stronger protective effect in the prophylactic group, with reduced
viral loads of approximately 1.5 logs in the lungs at 3 dpi. In
addition, single-dose immunization of the rabies virus-vectored
A

B

D

C

FIGURE 2 | Humoral immune responses against MERS-CoV elicited by the inactivated rabies virus-vectored MERS-CoV vaccine in mice. (A) Evaluation of an
appropriate vaccine from recombinant rabies virus-vectored MERS-CoV vaccine candidates (n = 9 per group). The immunogenicity of the vaccine candidates with
different forms (live and inactivated) and delivery doses (one dose assayed for both live and inactivated vaccines, two doses assayed for inactivated vaccine) was
evaluated by anti-MERS-CoV IgG antibody through indirect ELISA. Endpoint dilution titers were calculated at the indicated time points. (B) The total anti-MERS-CoV
IgG antibody titers of sera from each group of mice (n = 8) were assessed on days 14, 28, and 35 after the first immunization and shown as endpoint dilution titers.
(C) The dynamic changes and duration of serum antibodies from each group of mice (n = 8) were evaluated by indirect ELISA at the indicated time. (D) The cross-
neutralizing activity against divergent MERS-CoV isolates (human MERS-CoV KOR/HIN strain and dromedary camel MERS-CoV D1271 strain) of sera from each
group of mice (n = 3) were evaluated by a pseudovirus-based neutralization assay. Data are shown as mean ± SD. Data were obtained using GraphPad Prism
version 9.0 (GraphPad software). Significance was calculated using a two-way ANOVA with multiple comparisons tests (not indicated in graph; *p < 0.05, **p < 0.01,
****p < 0.0001).
January 2022 | Volume 13 | Article 823949

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chi et al. MERS Camelid Vaccine Candidate
MERS-CoV vaccine induced potent anti-RABV neutralizing
antibodies (above 0.5 IU/ml) in alpacas, which were higher
than the standard 0.5-IU level considered protective by the
WHO and World Organisat ion for Animal Health
(OIE) (Figure 6F).

MERS-CoV-Specific Alpaca VHHs Showed
Potent Protective Effect Against
MERS-CoV In Vitro and In Vivo
Two immunized alpacas were boosted with the inactivated
recombinant rabies virus-vectored MERS-CoV vaccine three
times; after boost immunization, MERS-CoV-specific alpaca
VHHs were isolated for further characterization of the antibody
response induced by the inactivated recombinant rabies virus-
vectored MERS-CoV vaccine. Here, the alpaca immune VHH
library displayed on the surface of yeast S. cerevisiae was
constructed. Distinct VHH sequences were identified using
MERS S trimer as a selection bait. To extend the in vivo half-
life, the recombinant VHHs human-Fc-fused version (VHH-Fc)
were constructed with a C-terminal human IgG1 Fc tag. One
representative VHH-Fc was subsequently used for evaluation.
VHH1-Fc can efficiently bound to MERS-CoV RBD, S1, and S
Frontiers in Immunology | www.frontiersin.org 9
trimer (EC50 value of half-maximal effective concentration, 26.52
ng/ml for RBD, 25.08 ng/ml for S1, and 6.37 ng/ml for S trimer)
(Figure 7A). Neutralizing activity was assessed using MERS-CoV
spike pseudotyped virus neutralization assay. VHH1-Fc
demonstrated strong neutralizing activity against MERS-CoV
(value of half maximal inhibitory concentration, IC50, 1.028 mg/
ml) (Figure 7B). The prophylactic and therapeutic efficacies of
VHH1-Fc were evaluated in vivo using Ad5-hDPP4-transduced
mice challenged with MERS-CoV. As shown in Figures 7C, D,
mice in both the prophylactic and therapeutic groups showed
significantly reduced lung viral titer after infection as compared to
control mice, and lung virus titer decreased 1 log at 3 dpi.
Altogether, VHH1-Fc showed a potent protective effect against
MERS-CoV in vitro and in vivo.
DISCUSSION

Novel coronaviruses emerge periodically in different areas
globally. To date, three highly pathogenic beta-CoVs have been
associated with zoonotic outbreaks, including SARS-CoV in
2002, MERS-CoV in 2012, and SARS-CoV-2 in 2019. Among
A B C

FIGURE 3 | CD8+ T-cell responses elicited by the inactivated rabies virus-vectored MERS-CoV vaccine. Splenocytes from each group of mice (n = 3) were harvested 1
and 4 weeks following the second immunization and evaluated for the vaccine-induced specific cellular immune responses. (A) The MERS-CoV-specific IFN-g activities in
splenocytes were measured using commercial ELISpot kits. Spot-forming cells (SFCs) secreting IFN-g were enumerated in an automated ELISpot reader and shown as
mean responses in each group at the indicated time points. (B) The frequencies of MERS-CoV-specific IFN-g-, TNF-a-, and IL-2-secreting CD8+ T cells in splenocytes
were evaluated using intracellular cytokine staining (ICS) assays. (C) Levels of IFN-g, TNF-a, and IL-2 secreted by splenocytes were measured using commercial ELISA
kits. Data are shown as mean ± SD. Data were obtained using the GraphPad Prism version 9.0 (GraphPad software). Significance was calculated using a two-way
ANOVA with multiple comparisons tests (not indicated in graph; **p < 0.01, ***p < 0.001, ****p < 0.0001).
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these beta-CoVs, MERS-CoV infection has the highest case
fatality rate (~34%) in patients, and infections range from
asymptomatic or mild respiratory symptoms to severe acute
respiratory disease and even death. As there is no licensed
vaccine or specific treatment currently available, treatment is
supportive for MERS patients (39). Till now, MERS-CoV
continues to circulate, especially in the Arabian Peninsula (40).
MERS-CoV is important in its own right but also as an example
of a coronavirus that is highly pathogenic to humans.

The origins of MERS-CoV are not fully understood yet, but it
is believed that it may have originated in bats and transmitted to
camels at some time in the past (39, 41–43). So far, MERS-CoV
has been identified in dromedaries in the Middle East, South
Asia, and Africa, and multiple cases of animal-to-animal
transmission among camelids (dromedary camels, llamas, and
alpacas) as well as camel-to-human spillover have been reported
(44–48). Although infected camelids show minor clinical signs
from mild to moderate nasal discharge, the veterinary vaccine
was highlighted in WHO Target Product Profiles for MERS-CoV
Vaccines, which is noted that an animal vaccine strategy may be
the best way to prevent human outbreaks and may have the faster
development and licensing pathway (13).

In recent years, the rabies virus has been successfully used as a
vaccine vector for many zoonotic diseases, including Ebola virus
(EBOV) disease and COVID-19. Compared with another viral
vector, the rabies vaccine vector has an excellent safety profile
and impressive immunogenicity profiles in animals and humans
(24–28). Previous studies by us and other research groups have
demonstrated that the rabies vector could be desirable for the
development of the MERS vaccine. Wirblich et al. found that an
inactivated RABV/MERS-S-based vaccine could induce potent
Frontiers in Immunology | www.frontiersin.org 10
immune responses against MERS-CoV and RABV in mice (27).
It was the first report of the RABV-vectored MERS-CoV vaccine,
putting a tentative idea that this novel vaccine may be useful to
protect target animals like camels, as well as humans. In another
study, our team found that the rabies virus vector-based vaccine
could induce remarkably earlier antibody response and higher
levels of cellular immunity compared with the gram-positive
enhancer matrix (GEM) particle vector, showing encouraging
results of the use of rabies vector (49). Except for the replication-
competent rabies vector, a replication-incompetent P-gene-
deficient rabies vector was also used. Kato et al. generated an
attenuated bivalent-vaccine against MERS and rabies, RVDP-
MERS/S1, and evaluated its humoral immunogenicity in mice
after intraperitoneal inoculation. RVDP-MERS/S1 induced
significantly high titer neutralizing antibodies against RABV,
while the neutralizing activity against MERS-CoV was relatively
low, which required further animal-challenge tests to evaluate
whether protective immunity was induced against MERS-
CoV (50).

For vector-based vaccines, the presence of preexisting
immunity is a major concern. Some of the commonly
employed vectors, such as adenovirus especially adenovirus
serotype 5 (Ad5), have a high prevalence of preexisting
immunity in the host, which could significantly interfere with
the subsequent immune response (51). However, this is not a
problem for the rabies virus-vectored vaccines. Previous studies
have shown that preexisting rabies immunity does not affect the
immune response of the vaccine. Shuai et al. have proven that
dogs previously vaccinated with annual rabies vaccine still
developed increasing RABV and EBOV-specific responses after
vaccination with the inactivated rabies virus-vectored EBOV
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FIGURE 4 | Immunization with the rabies virus-vectored MERS-CoV vaccine provides protection in MERS-CoV-infected Ad5-hDPP4-transduced mice model.
(A) The schematic of the live challenge experiment. Six- to eight-week-old specific pathogen-free female C57BL/6 mice (n = 8 per group) were intramuscularly (i.m.)
injected with either the inactivated recombinant rabies virus MERS-CoV vaccine or inactivated parental rabies virus vaccine on days 0 and 14; sera from each group
of mice (n = 8) were collected on day 21. All mice were transduced with Ad5-hDPP4 5 days as previously described before intranasal challenge with 1 × 105 PFU
MERS-CoV (EMC/2012 strain) on day 42, and then the lungs from each group of mice (n = 3) were harvested for virus titration. (B) Binding and (C) neutralizing
activities of sera collected on day 21 were respectively measured by indirect ELISA and live MERS-CoV (EMC/2012 strain). (D) On day 3 post-infection, virus titers in
the lungs were measured on Vero 81 cells and expressed as FFU/g tissue. Data are shown as mean ± SD. Data were obtained using GraphPad Prism version 9.0
(GraphPad software). An unpaired Student’s t-test (two-tailed) was used for statistical analysis, and the relevant p-values are indicated (not indicated in graph;
***p < 0.001, ****p < 0.0001).
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vaccine, and a booster response could be induced in dogs both
with and without previous experience of rabies vaccine (38).
Similar to the rabies virus-vectored EBOV vaccine, our data
show that significantly enhancing immune responses could be
induced by the inactivated rabies virus-vectored MERS vaccine
after boost immunization in both mice and camelids.

Notably, it is proved that transcription attenuation occurs in
the process of RABV genome transcription. When rescuing
Frontiers in Immunology | www.frontiersin.org 11
recombinant virus based on RABV vector, the length and form
of foreign antigen expression frame as well as its location in the
RABV genome would be considered, as these factors have an
effect on the expression of target antigen protein and the
efficiency of rescued recombinant virus and its virus titer (34).
Several studies have demonstrated that the length of inserted
exogenous expression frame within 2,000 bp would be ideal (24–
29). Besides, of the two subunits of MERS-CoV spike protein, S1
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FIGURE 5 | Humoral immune responses elicited by the inactivated rabies virus-vectored MERS-CoV vaccine in camels. (A) The schematic of the camel immunization
experiment. Four Bactrian camels were injected subcutaneously (s.c.) in the neck with 5 ml of inactivated recombinant rabies virus-vectored MERS-CoV vaccine (n = 2) or
the inactivated parental rabies virus vaccine (n = 1) or phosphate-buffered saline (PBS) (n = 1) two times at 4-week intervals. Sera of camels from each group
were harvested before the first immunization and collected at weeks 4 and 8 after the first immunization. (B) Sera cross-neutralizing activity against representative
human and camel MERS-CoV strains (human MERS-CoV KOR/HIN strain and dromedary camel MERS-CoV D1271 strain) were evaluated by a pseudovirus-
based neutralization assay. (C) The cross-neutralizing activity against live viruses among the known MERS-CoV clade A (EMC/2012 strain), clade B (ChinaGD01
strain), and clade C (dromedary/Nigeria/HKU NV1657 strain) were measured by plaque reduction neutralizing assay. (D) Prophylactic and therapeutic efficacies of
passive transfer with the rabies virus-vectored MERS-CoV vaccine camel immune sera collected at 8 w.p.i in MERS-CoV-infected Ad5-hDPP4-transduced mice (n
= 3 per group). A total of 200 ml of camel immune sera collected was intravenously transferred 1 day before or after MERS-CoV (EMC/2012 strain) infection. Mice
in the control group (n = 3) intravenously received the same dose of negative sera from healthy camels at the same time points. (E) The RABV-specific neutralizing
antibody titers of sera from each group of mice (n = 3) were evaluated using fluorescent antibody virus neutralization (FAVN). Data are shown as mean ± SD. Data
were obtained using GraphPad Prism version 9.0 (GraphPad software). Significance was calculated using a one-way ANOVA with multiple comparisons tests (not
indicated in graph; *p < 0.05, ****p < 0.0001).
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is the one that contains the RBD and the N-terminal, which are
the regions against which more neutralizing antibodies are
generated (52). Hence, in the current study, the S1 subunit
rather than the full-length MERS-CoV spike protein was
chosen and inserted between phosphoprotein and matrix
protein genes of RABV. Recombinant rabies virus rSRV9-
MERSS1 was successfully rescued with S1 protein of MERS-
CoV incorporated into the virus particles, which provided the
basis for the development of inactivated vaccine candidate.
Frontiers in Immunology | www.frontiersin.org 12
The vaccine form (live and inactivated) and delivery doses
(one dose assayed for both live and inactivated vaccines and
two doses assayed for inactivated vaccines) of the recombinant
rabies virus-vectored MERS-CoV vaccine candidates were
evaluated in mice, and the inactivated form with two
immunizations was finally selected for further experiments in
C57BL/6 mice, alpacas, and camels. Our results show that the
rabies virus-vectored MERS-CoV vaccine induced robust and
durable neutralizing antibodies and T-cell responses in mice.
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FIGURE 6 | Humoral immune responses elicited by the inactivated rabies virus-vectored MERS-CoV vaccine in alpacas. (A) The schematic of the alpaca
immunization experiment. Three alpacas received 3 ml of inactivated recombinant rabies virus-vectored MERS-CoV vaccine (n = 2) or phosphate-buffered saline
(PBS) (n = 1) by multiple sites of subcutaneous (s.c.) injection in the neck two times at 3-week intervals. Sera of alpacas from each group were harvested before the
first immunization and collected at 3, 6, and 12 weeks after the first immunization. (B) Sera cross-neutralizing activity against representative human and camel
MERS-CoV strains (human MERS-CoV KOR/HIN strain and dromedary camel MERS-CoV D1271 strain) were evaluated by a pseudovirus-based neutralization
assay. (C) Sera MERS-CoV-specific neutralizing antibodies measured 28 weeks after the first immunization by a pseudovirus-based neutralization assay. (D) The
cross-neutralizing activity against live viruses among the known MERS-CoV clade A (EMC/2012 strain), clade B (ChinaGD01 strain), and clade C (dromedary/Nigeria/
HKU NV1657 strain) were measured by focus reduction neutralizing assay. (E) Prophylactic and therapeutic efficacies of passive transfer with the rabies virus-
vectored MERS-CoV vaccine alpaca immune sera collected at 6 w.p.i in MERS-CoV-infected Ad5-hDPP4-transduced mice. A total of 200 ml of alpaca immune sera
collected were intravenously transferred 1 day before or after MERS-CoV (EMC/2012 strain) infection. Mice in the control group intravenously received the same
dose of negative sera from healthy alpacas at the same time points. (F) Sera RABV-specific neutralizing antibodies were evaluated using fluorescent antibody virus
neutralization (FAVN). Data are shown as mean ± SD. Data were obtained using GraphPad Prism version 9.0 (GraphPad software). An unpaired Student’s t-test
(two-tailed) was used for statistical analysis, and the relevant p-values are indicated (not indicated in graph; *p < 0.05,).
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Further, the vaccination reduced viral replication and accelerated
virus clearance in the lungs of MERS-CoV-infected Ad5-hDPP4-
transduced mice. Protective antibody responses were also elicited
by the rabies virus-vectored MERS-CoV vaccine in camels and
alpacas. Of note, the MERS-CoV immunogen used for the
vaccine construction was based on a consensus S glycoprotein;
satisfyingly, the immune sera from immunized camelids showed
broad cross-neutralizing activity against live viruses among the
three major MERS-CoV clades (A, B, and C). For further
characterizing the antibody response induced by the
inactivated recombinant rabies virus-vectored MERS-CoV
vaccine in camelids, MERS-CoV-specific variable domains of
heavy-chain-only antibody (VHH) genes were also obtained
from immunized alpacas and constructed with human-Fc-
fused version, one of which showed potent prophylactic and
therapeutic efficacies in an Ad5-hDPP4-transduced mouse
model. Due to our accessible BSL-3 conditions, the in vivo
protection evaluation in camelid models was lacking in this
study. Future experiments should involve efficacy testing in
alpacas or camels. Collectively, the current results demonstrate
that the inactivated rabies virus-vectored MERS-CoV vaccine is
safe, efficacious, and able to induce robust protective immune
responses, representing a promising MERS camelid vaccine
candidate and warranting further efficacy study in camelids of
the main epidemic area, the Middle East area and Africa.
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