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Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These

technologies hold great potential for large-scale ecological understanding, but are limited by

current processing approaches which inefficiently distill data into relevant information. We

argue that animal ecologists can capitalize on large datasets generated by modern sensors by

combining machine learning approaches with domain knowledge. Incorporating machine

learning into ecological workflows could improve inputs for ecological models and lead to

integrated hybrid modeling tools. This approach will require close interdisciplinary colla-

boration to ensure the quality of novel approaches and train a new generation of data

scientists in ecology and conservation.

Animal diversity is declining at an unprecedented rate1. This loss comprises not only
genetic, but also ecological and behavioral diversity, and is currently not well understood:
out of more than 120,000 species monitored by the IUCN Red List of Threatened Species,

up to 17,000 have a ‘Data deficient’ status2. We urgently need tools for rapid assessment of
wildlife diversity and population dynamics at large scale and high spatiotemporal resolution,
from individual animals to global densities. In this Perspective, we aim to build bridges across
ecology and machine learning to highlight how relevant advances in technology can be leveraged
to rise to this urgent challenge in animal conservation.
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How are animals currently monitored? Conventionally, man-
agement and conservation of animal species are based on data
collection carried out by human field workers who count animals,
observe their behavior, and/or patrol natural reserves. Such efforts
are time-consuming, labor-intensive, and expensive3. They can
also result in biased datasets due to challenges in controlling for
observer subjectivity and assuring high inter-observer reliability,
and often unavoidable responses of animals to observer
presence4,5. Human presence in the field also poses risks to
wildlife6,7, their habitats8, and humans themselves: as an example,
many wildlife and conservation operations are performed from
aircraft and plane crashes are the primary cause of mortality for
wildlife biologists9. Finally, the physical and cognitive limitations
of humans unavoidably constrain the number of individual ani-
mals that can be observed simultaneously, the temporal resolu-
tion and complexity of data that can be collected, and the extent
of physical area that can be effectively monitored10,11.

These limitations considerably hamper our understanding of
geographic ranges, population densities, and community diversity
globally, as well as our ability to assess the consequences of their
decline. For example, humans conducting counts of seabird
colonies12 and bats emerging from cave roosts13 tend to sig-
nificantly underestimate the number of individuals present.
Furthermore, population estimates based on extrapolation from a
small number of point counts have large uncertainties and can fail
to capture the spatiotemporal variation in ecological relation-
ships, resulting in erroneous predictions or extrapolations14.
Failure to monitor animal populations impedes rapid and effec-
tive management actions3. For example, insufficient monitoring,
due in part to the difficulty and cost of collecting the necessary
data, has been identified as a major challenge in evaluating the
impact of primate conservation actions15 and can lead to the
continuation of practices that are harmful to endangered
species16. Similarly, poaching prevention requires intensive
monitoring of vast protected areas, a major challenge with
existing technology. Protected area managers invest heavily in
illegal intrusion prevention and the detection of poachers. Despite
this, rangers often arrive too late to prevent wildlife crime from
occurring17. In short, while a rich tradition of human-based data
collection provides the basis for much of our understanding of
where species are found, how they live, and why they interact,
modern challenges in wildlife ecology and conservation are
highlighting the limitations of these methods.

Recent advances in sensor technologies are drastically
increasing data collection capacity by reducing costs and
expanding coverage relative to conventional methods (see the
section “New sensors expand available data types for animal
ecology”, below), thereby opening new avenues for ecological
studies at scale (Fig. 1)18. Many previously inaccessible areas of
conservation interest can now be studied through the use of high-
resolution remote sensing19, and large amounts of data are being
collected non-invasively by digital devices such as camera traps20,
consumer cameras21, and acoustic sensors22. New on-animal bio-
loggers, including miniaturized tracking tags23,24 and sensor
arrays featuring accelerometers, audiologgers, cameras, and other
monitoring devices document the movement and behavior of
animals in unprecedented detail25, enabling researchers to track
individuals across hemispheres and over their entire lifetimes at
high temporal resolution and thereby revolutionizing the study of
animal movement (Fig. 1c) and migrations.

There is a mismatch between the ever-growing volume of raw
measures (videos, images, audio recordings) acquired for ecological
studies and our ability to process and analyze this multi-source
data to derive conclusive ecological insights rapidly and at scale.
Effectively, ecology has entered the age of big data and is
increasingly reliant on sensors, advanced methodologies, and

computational resources26. Central challenges to efficient data
analysis are the sheer volume of data generated by modern col-
lection methods and the heterogeneous nature of many ecological
datasets, which preclude the use of simple automated analysis
techniques26. Crowdsourcing platforms like eMammal
(emammal.si.edu), Agouti (agouti.eu), and Zooniverse
(www.zooniverse.org) function as collaborative portals to collect
data from different projects and provide tools to volunteers to
annotate images, e.g., with species labels of the individuals therein.
Such platforms drastically reduce the cost of data processing (e.g.,
ref. 27 reports a reduction of seventy thousand dollars), but the
rapid increase in the volume and velocity of data collection is
making such approaches unsustainable. For example, in August
2021 the platform Agouti hosted 31 million images, of which only
1.5 million were annotated. This is mostly due to the manual
nature of the current annotation tool, which requires human
review of every image. In other words, methods for automatic
cataloging, searching, and converting data into relevant informa-
tion are urgently needed and have the potential to broaden and
enhance animal ecology and wildlife conservation in scale and
accuracy, address prevalent challenges, and pave the way forward
towards new, integrated research directives.

Machine learning (ML, see glossary in Supplementary Table 1)
deals with learning patterns from data28. Presented with large
quantities of inputs (e.g., images) and corresponding expected
outcomes, or labels (e.g., the species depicted in each image), a
supervised ML algorithm learns a mathematical function leading
to the correct outcome prediction when confronted with new,
unseen inputs. When the expected outcomes are absent, the (this
time unsupervised) ML algorithm will use solely the inputs to
extract groups of data points corresponding to typical patterns in
the data. ML has emerged as a promising means of connecting the
dots between big data and actionable ecological insights29 and is
an increasingly popular approach in ecology30,31. A significant
share of this success can be attributed to deep learning (DL32), a
family of highly versatile ML models based on artificial neural
networks that have shown superior performance across the
majority of ML use cases (see Table 1 and Supplementary
Table 2). Significant error reduction of ML and DL with respect to
traditional generalized regression models has been reported rou-
tinely for species richness and diversity estimation33,34. Likewise,
detection and counting pipelines moved from rough rule of thumb
extrapolations from visual counts in national parks to ML-based
methods with high detection rates. Initially, these methods pro-
posed many false positives which required further human
review35, but recent methods have been shown to maintain high
detection rates with significantly fewer false positives36. As an
example, large mammal detection in the Kuzikus reserve in 2014
was improved significantly by improving the detection meth-
odologies, from a recall rate of 20%35 to 80%37 (for a common
75% precision rate). Finally, studies involving human operators
demonstrated that ML enabled massive speedups in complex tasks
such as individual and species recognition38,39 and large-scale
tasks such as animal detection in drone surveys40. Recent advances
in ML methodology could accelerate and enhance various stages
of the traditional ecological research pipeline (see Fig. 2), from
targeted data acquisition to image retrieval and semi-automated
population surveys. As an example, the initiative Wildlife
Insights41 is now processing millions of camera trap images
automatically (17 million in August 2021), providing wildlife
conservation scientists and practitioners with the data necessary to
study animal abundances, diversity, and behavior. Besides pure
acceleration, use of ML also massively reduces analysis costs, with
reduction factors estimated between 2 and 1042.

A growing body of literature promotes the use of ML in various
ecological subfields by educating domain experts about ML
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approaches29,43,44, their utility in capitalizing on big data26,45,
and, more recently, their potential for ecological inference (e.g.,
understanding the processes underlying ecological patterns,
rather than only predicting the patterns themselves)46,47. Clearly,
there is a growing interest in applying ML approaches to pro-
blems in animal ecology and conservation. We believe that the
challenging nature of ecological data, compounded by the size of
the datasets generated by novel sensors and the ever-increasing
complexity of state-of-the-art ML methods, favor a collaborative
approach that harnesses the expertise of both the ML and animal

ecology communities, rather than an application of off-the-shelf
ML methodologies to ecological challenges. Hence, the relation
between ecology and ML should not be unidirectional: integrating
ecological domain knowledge into ML methods is essential to
designing models that are accurate in the way they describe
animal life. As demonstrated by the rising field of hybrid envir-
onmental algorithms (leveraging both DL and bio-physical
models48,49) and, more broadly, by theory-guided data
science50, such hybrid models tend to be less data-intensive, avoid
incoherent predictions, and are generally more interpretable than

Fig. 1 Examples of research acceleration by machine learning-based systems in animal ecology. a The BirdNET algorithm61 was used to detect Carolina
wren vocalizations in more than 35,000 h of passive acoustic monitoring data from Ithaca, New York, allowing researchers to document the gradual
recovery of the population following a harsh winter season in 2015. b Machine-learning algorithms were used to analyze movement of savannah herbivores
fitted with bio-logging devices in order to identify human threats. The method can localize human intruders to within 500m, suggesting `sentinel animals'
may be a useful tool in the fight against wildlife poaching148. c TRex, a new image-based tracking software, can track the movement and posture of hundreds
of individually-recognized animals in real-time. Here the software has been used to visualize the formation of trails in a termite colony149. d, e Pose
estimation software, such as DeepPoseKit (d)75 and DeepLabCut (e)74,142 allows researchers to track the body position of individual animals from video
imagery, including drone footage, and estimate 3D postures in the wild. Panels b, c, and d are reproduced under CC BY 4.0 licenses. Panels b and d are
cropped versions of the originals; the legend for panel b has been rewritten and reorganized. Panel e is reproduced with permission from Joska et al.142.
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purely data-driven models. To reach this goal of an integrated
science of ecology and ML, both communities need to work
together to develop specialized datasets, tools, and knowledge.
With this objective in mind, we review recent efforts at the
interface of the two disciplines, present success stories of such
symbiosis in animal ecology and wildlife conservation, and sketch
an agenda for the future of the field.

New sensors expand available data types for animal ecology
Sensor data provide a variety of perspectives to observe wildlife,
monitor populations, and understand behavior. They allow the
field to scale studies in space, time, and across the taxonomic tree
and, thanks to open science projects (Table 2), to share data
across parks, geographies, and the globe51. Sensors generate
diverse data types, including imagery, soundscapes, and posi-
tional data (Fig. 3). They can be mobile or static, and can be
deployed to collect information on individuals or species of
interest (e.g., bio-loggers, drones), monitor activity in a particular
location (e.g., camera traps and acoustic sensors), or document
changes in habitats or landscapes over time (satellites, drones).
Finally, they can also be opportunistic, as in the case of

community science. Below, we discuss the different categories of
sensors and the opportunities they open for ML-based wildlife
research.

Stationary sensors. Stationary sensors provide close-range
continuous monitoring over long time scales. Sensors can be
image-based (e.g., camera traps) or signal-based (e.g., sound
recorders). Their high level of temporal resolution allows for
detailed analysis, including presence/absence, individual identi-
fication, behavior analysis, and predator-prey interaction.
However, because of their stationary nature, their data is highly
spatiotemporally correlated. Based on where and when in the
world the sensor is placed, there is a limited number of species
that can be captured. Furthermore, many animals are highly
habitual and territorial, leading to very strong correlations
between data taken days or even weeks apart from a single
sensor52.

● Camera traps are among the most used sensors in recent
ML-based animal ecology papers, with more than a million
cameras already used to monitor biodiversity worldwide20.
Camera traps are inexpensive, easy to install, and provide

Table 1 Resources for machine and deep learning-based wildlife conservation.

Name Description URL

AIDE150 Tasks: Annotation; detection; classification; segmentation
Free, open source, web-based, collaborative labeling platform specifically designed for large-scale ecological image
analyses. Users can concurrently annotate up to billions of images with labels, points, bounding boxes, or pixel-wise
segmentation masks. AIDE tightly integrates ML models through Active Learning151, where annotators are asked to
provide inputs where the model is the least confident. AIDE further offers functionality to share and exchange trained ML
models with other users of the system for collaborative annotation efforts in image campaigns across the globe.

GitHub

MegaDetector36 Tasks: Detection
Free and open source detector based on deep learning hosted by Microsoft AI4Earth. The current model is trained with
the TensorFlow Object Detection API using several hundred thousand camera trap images labeled with bounding boxes
from a variety of ecosystems. The model identifies animals (not species-specific), humans, and vehicles, and is robust to
novel sensor deployment locations and taxa not seen during training. Updates of the model, trained with additional data,
are periodically released. Microsoft AI4Earth provides support to assist ecologists in using the model, including a public
API for batch inference, and integration with commonly-used camera trap data management platforms such as TimeLapse
and Camelot.

GitHub

Wildbook99 Tasks: Individual re-identification
Wildbook blends structured wildlife research with artificial intelligence, community science, and computer vision to speed
population analysis and develop new insights to help fight extinction. They host community-run individual re-identification
systems and global data repositories for a broad and expanding set of species, including Grevy’s zebra, whale sharks,
manta rays, and many more.

URL

Wildlife Insights41 Tasks: Filtering
Large-scale platform for camera trap data management with computer vision in the backend. Currently open for
whitelisted users, extensible via a waitlist. Wildlife Insights filters blank images and provides species identification for
images that the computer vision model scores highly, allowing expert ecologists to focus on labeling only challenging
images.

URL

DeepLabCut74 Tasks: Pose estimation and behavioral analysis
Free and open-source pose estimation toolbox based on deep learning. Pre-trained models (for instance for primate faces
and bodies, as well as quadruped) as well as a light-weight, real-time version are available.

GitHub

DeepPoseKit75 Tasks: Pose estimation and behavioral analysis
Free and open-source pose estimation toolbox based on deep learning.

GitHub

Fig. 2 Incorporating ML into the ecological scientific process. Traditional ecological research pipeline (colored text and boxes) and contributions of ML to
the different stages discussed in this paper (black text).
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high-resolution image sequences of the animals that trigger
them, sufficient to specify the species, sex, age, health,
behavior, and predator-prey interactions. Coupled with
population models, camera-trap data has also been used to
estimate species occurrence, richness, distribution, and
density20. But the popularity of camera traps also creates
challenges relative to the quantity of images and the need for
manual annotation of the collections: software tools easing
the annotation process are appearing (see, e.g., AIDE in
Table 1) and many ecologists have already incorporated
open-source ML approaches for filtering out blank images
(such as the Microsoft AI4Earth MegaDetector36, see
Table 1) into their camera trap workflows52–54. However,
problems related to lack of generality across geographies,
day/night acquisition, or sensors are still major obstacles to
production-ready accurate systems55. The increased scale of
available data due to de-siloing efforts from organizations
like Wildlife Insights (www.wildlifeinsights.org) and
LILA.science (www.lila.science) will help increase ML
accuracy and robustness across regions and taxa.

● Bioacoustic sensors are an alternative to image-based
systems, using microphones and hydrophones to study
vocal animals and their habitats56. Networks of static
bioacoustic sensors, used for passive acoustic monitoring
(PAM), are increasingly applied to address conservation
issues in terrestrial57, aquatic58, and marine59 ecosystems.
Compared to camera traps, PAM is mostly unaffected by

light and weather conditions (some factors like wind still
play a role), senses the environment omnidirectionally, and
tends to be cost-effective when data needs to be collected at
large spatiotemporal scales with high resolution60. While
ML has been extensively applied to camera trap images, its
application to long-term PAM datasets is still in its infancy
and the first DL-based studies are only starting to appear
(see Fig. 1a, ref. 61). Significant challenges remain when
utilizing PAM. First and foremost among these challenges
is the size of data acquired. Given the often continuous and
high-frequency acquisition rates, datasets often exceed the
terabyte scale. Handling and analyzing these datasets
efficiently requires access to advanced computing infra-
structure and solutions. Second, the inherent complexity of
soundscapes requires noise-robust algorithms that general-
ize well and can separate and identify many animal sounds
of interest from confounding natural and anthropogenic
signals in a wide variety of acoustic environments62. The
third challenge is the lack of large and diverse labeled
datasets. As for camera trap images, species- or region-
specific characteristics (e.g., regional dialects63) affect
algorithm performance. Robust, large-scale datasets have
begun to be curated for some animal groups (e.g.,
www.macaulaylibrary.org and www.xeno-canto.org for
birds), but for many animal groups as well as relevant
biological and non-biological confounding signals, such
data is still nonexistent.

Table 2 Examples of community science projects in digital wildlife conservation.

Name Spatial coverage Sensor Task Ref.

iNaturalist Global Human photographers Classification detection 132

SAVMAP Kuzikus reserve, Namibia UAV images Detection 152

Zooniverse Global Images, text, video Classification detection 153

iRecord United Kingdom Photographic records Classification 154

Great Grevy’s Rally Northern Kenya Safari pictures Classification detection identification 92

Fig. 3 A variety of sensors used in animal ecology. Studies frequently combine data from multiple sensors at the same geographic location, or data from
multiple locations to achieve deeper ecological insights. Sentinel-2 (ESA) satellite image courtesy of the U.S. Geological Survey.
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Remote sensing. Collecting data on free-ranging wildlife has been
restricted traditionally by the limits of manual data collection
(e.g., extrapolating transect counts), but have increased greatly
through the automation of remote sensing35. Using remote sen-
sing, i.e., sensors mounted on moving platforms such as drones,
aircraft, or satellites—or attached to the animals themselves—
allows us to monitor large areas and track animal movement over
time.

● On-animal sensors are the most common remote sensing
devices deployed in animal ecology10. They are primarily
used to acquire movement trajectories (i.e., GPS data) of
animals, which can then be classified into activity types that
relate to the behavior of individuals or social groups10,64.
Secondary sensors, such as microphones, video cameras,
heart rate monitors, and accelerometers, allow researchers
to capture environmental, physiological, and behavioral
data concurrently with movement data65. However, power
supply and data storage and transmission limitations of
bio-logging devices are driving efforts to optimize sampling
protocols or pre-process data in order to conserve these
resources and prolong the life of the devices. For example,
on-board processing solutions can use data from low-cost
sensors to identify behaviors of interest and engage
resource-intensive sensors only when these behaviors are
being performed66. Other on-board algorithms classify raw
data into behavioral states to reduce the volume of data to
be transmitted67. Various supervised ML methods have
shown their potential in automating behavior analysis from
accelerometer data68,69, identifying behavioral state from
trajectories70, and predicting animal movement71.

● Unmanned aerial vehicles (UAVs) or drones for low-
altitude image-based approaches, have been highlighted as
a promising technology for animal conservation72,73.
Recent studies have shown the promise of UAVs and deep
learning for posture tracking74–76, semi-automatic detec-
tion of large mammals42,77, birds78, and, in low-altitude
flight, even identification of individuals79. Drones are agile
platforms that can be deployed rapidly—theoretically on
demand—and with limited cost. Thus, they are ideal for
local population monitoring. Lower altitude flights in
particular can provide oblique view points that partially
mitigate occlusion by vegetation. The reduced costs and
operation risks of UAVs further make them an increasingly
viable alternative to low-flying manned aircraft.
Common multi-rotor UAV models are built using
inexpensive hardware and consumer-level cameras, and
only require a trained pilot with flight permissions to
perform the survey. To remove the need for a trained pilot,
fully autonomous UAV platforms are also being
investigated79. However, multi-rotor drone-based surveys
remain limited in the spatial footprint that can be covered,
mostly because of battery limitations (which become even
more stringent in cold climates like Antarctica) and local
legislation. Combustion-driven fixed wing UAVs flying at
high altitudes and airplane-based acquisitions can over-
come some of these limitations, but are significantly more
costly and preclude close approaches for visual measure-
ments of animals. Finally, using drones also has a risk of
modifying the behavior of the animals. A recent study80

showed that flying at lower altitudes (e.g., lower than
150 m) can have a significant impact on group and
individual behavior of mammals, although the severity of
wildlife disturbance from drone deployments will depend
heavily on the focal species, the equipment used, and
characteristics of the drone flight (such as approach speed

and altitude)81—this is a rapidly changing field and
advances that will limit noise are likely to come. More
research to quantify and qualify such impacts in different
ecosystems is timely and urgent, to avoid both biased
conclusions and increased levels of animal stress.

● Satellite data is used to widen the spatial footprint and
reduce invasive impact on behavior. Public programs such
as Landsat and Sentinel provide free and open imagery at
medium resolution (between 10 and 30 m per pixel), which,
though usually not sufficient for direct wildlife observa-
tions, can be useful for studying their habitats34,82.
Meanwhile, commercial very high resolution (less than
one meter per pixel) imagery is narrowing the gap between
UAV acquisitions and large-scale footprinting with satel-
lites. Remote sensing has a long tradition of application of
ML algorithms. Thanks to the raster nature of the data,
remote sensing has fully adopted the new DL methods83,
which are nowadays entering most fields of application that
exploit satellite data49. In animal ecology, studies focused
on large animals such as whales84 or elephants85 attempt
direct detection of the animals on very high-resolution
images, increasingly with DL. When focusing on smaller-
bodied species, studies resort to aerial surveys to increase
resolution in order to directly visualize the animals or focus
on the detection of proxies instead of the detection of the
animal itself (e.g., the detection of penguin droppings to
locate colonies86). More research is currently required to
really harness the power of remote sensing data, which lies,
besides the large footprint and image resolution, in the
availability of image bands beyond the visible spectrum.
These extra bands are highly appreciated in plant ecology87

and multi- and hyperspectral DL approaches88 are yet to be
deployed in animal ecology, where they could help
advancing the characterization of habitats.

Community science for crowd-sourcing data. An alternative to
traditional sensor networks (static or remote) is to engage com-
munity members as wildlife data collectors and processors89,90. In
this case, community participants (often volunteers) work to collect
the data and/or create the labels necessary to train ML models.
Models trained this way can then be used to bring image recog-
nition tasks to larger scale and complexity, from filtering out
images without animals in camera trap sequences to identifying
species or even individuals. Several annotation projects based on
community science have appeared recently (Table 2). For simple
tasks like animal detection, community science effort can be open
to the public, while for more complex ones such as identifying bird
species with subtle appearance differences (“fine-grained classifi-
cation”, also see the glossary), communities of experts are needed
to provide accurate labels. A particularly interesting case is Wild-
book (see Box 1 and Table 1), which routinely screens videos from
social media platforms with computer vision models to identify
individuals; community members (in this case video posters) are
then queried in case of missing or uncertain information. Recent
research shows that ML models trained on community data can
perform as well as annotators91. However, it is prudent to note that
the viability of community science services may be limited
depending on the task and that oftentimes substantial efforts are
required to verify volunteer-annotated data. This is due to anno-
tator errors, including misdetected or mislabeled animals due to
annotator fatigue or insufficient knowledge about the annotation
task, as well as systematic errors from adversarial annotators.
Another form of community science is the use of images acquired
by volunteers: in this case, volunteers replace camera traps or
UAVs and provide the raw data used to train the ML model.
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Box 1 | Wildbook: successes at the interface between community science and deep learning

Wildbook, a project of the non-profit Wild Me, is an open-source software platform that blends structured wildlife research with artificial intelligence,
community science, and computer vision to speed population analysis and develop new insights to help conservation (Fig. 4). Wildbook supports
collaborative mark-recapture, molecular ecology, and social ecology studies, especially where community science and artificial intelligence can help
scale-up projects. The image analysis of Wildbook can start with images from any source—scientists, camera traps, drones, community scientists, or
social media—and use ML and computer vision to detect multiple animals in the images100 to not only classify their species, but identify individual
animals applying a suite of different algorithms101,147. Wildbook provides a technical solution for wildlife research and management projects for non-
invasive individual animal tracking, population censusing, behavioral and social population studies, community engagement in science, and building a
collaborative research network for global species. There are currently Wildbooks for over 50 species, from sea dragons to zebras, spanning the entire
planet. More than 80 scientific publications have been enabled by Wildbook. Wildbook data has become the basis for the IUCN Red List global
population numbers for several species, and supported the change in conservation status for whale sharks from “vulnerable” to “endangered”.
Wildbook’s technology also enabled the Great Grevy’s Rally, the first-ever full species census for the endangered Grevy’s zebra in Kenya, using
photographs captured by the public. Hosted for the first time in January 2016, it has become a regular event, held every other year. Hundreds of people,
from school children and park rangers, to Nairobi families and international tourists, embark on a mission to photograph Grevy’s zebras across its range
in Kenya, capturing ~50,000 images over the 2-day event. With the ability to identify individual animals in those images, Wildbook can enable an
accurate population census and track population trends over time. The Great Grevy’s Rally has become the foundation of the Kenya Wildlife Service’s
Grevy’s zebra endangered species management policy and generates the official IUCN Red List population numbers for the species. Wildbook’s AI
enables science, conservation, and global public engagement by bringing communities together and working in partnership to provide solutions that
people trust.

Fig. 4 The Wildbook Ecosystem. Wildbook allows scientists and wildlife managers to leverage the power of communities and ML to monitor wildlife
populations. Images of target species are collected via research projects, community science events (e.g., the Great Grevy’s Rally; see text), or by
scraping social media platforms using Wildbook AI tools. Wildbook software uses computer vision technology to process the images, yielding species
and individual identities for the photographed animals. This information is stored in databases on Wildbook data management servers. The data and
biological insights generated by Wildbook facilitates exchange of expertise between biologists, data scientists, and stakeholder communities around
the world.
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Although this approach sacrifices control over image acquisitions
and is likewise prone to inducing significant noise to datasets, for
example through low-quality imagery, it provides a substantial
increase in the number of images and the chances of photo-
graphing species or single individuals in different regions, poses,
and viewing angles. Community science efforts also increase public
engagement in science and conservation. The Great Grevy’s Rally,
a community science-based wildlife census effort occurring every 2
years in Kenya92, is a successful demonstration of the power of
community science-based wildlife monitoring.

Machine learning to scale-up and automate animal ecology
and conservation research
The sensor data described in the previous section has the
potential to unlock ecological understanding on a scale difficult to
imagine in the recent past. But to do so, it must be interpreted
and converted to usable information for ecological research. For
example, such conversion can take the form of abundance
mapping, individual animal re-identification, herd tracking, or
digital reconstruction (three-dimensional, phenotypical) of the
environment the animals live in. The measures yielded by this
conversion, reviewed in this section, are also sometimes referred
to as animal biometrics93. Interestingly, the tasks involved in the
different approaches show similarities with traditional tasks in
ML and computer vision (e.g., detection, localization, identifica-
tion, pose estimation), for which we provide a matching example
in animal ecology in Fig. 5.

Wildlife detection and species-level classification. Conservation
efforts of endangered species require knowledge on how many
individuals of the species in question are present in a study area.
Such estimations are conventionally realized with statistical

occurrence models that are informed by sample-based species
observations. It is these observations where imaging sensors
(camera traps, UAVs, etc.), paired with ML models that detect
and count individuals in the imagery, can provide the most sig-
nificant input. Early works used classical supervised ML algo-
rithms (algorithms needing a set of human-labeled annotations
to learn, see Supplementary Table 2): these algorithms were used
to make the connection between a set of characteristics of interest
extracted from the image (visual descriptors, e.g., color histo-
grams, spectral indices, etc., also see the glossary) and the
annotation itself (presence of an animal, species, etc.)35,94. Par-
ticularly in camera trap imagery, foreground (animal) segmen-
tation is occasionally performed as a pre-processing step to
discard image parts that are potentially confusing for a classifier.
These approaches, albeit good in performance, suffer from two
limitations: first, the visual descriptors need to be specifically
tailored to the problem and dataset at hand. This not only
requires significant engineering efforts, but also bears the risk of
the model becoming too specific to the particular dataset and
external conditions (e.g., camera type, background foliage
amount, and movement type) at hand. Second, computational
restrictions in these models limit the number of training exam-
ples, which is likely to have detrimental effects on variations in
data (temporal, seasonal, etc.), thus reducing the generalization
capabilities to new sensor deployments or regions. For these
reasons, detecting and classifying animal species with DL for the
purpose of population estimates is becoming increasingly popular
for images52,53, acoustic spectrograms95, and videos96. Models
performing accurately and robustly on specific classes (e.g., the
MegaDetector - see Box 2 - or AIDE; see Table 1) are now being
used routinely and integrated within open systems supporting
ecologists performing both labeling and detection, respectively
counting of their image databases. Issues related to dependence of

Fig. 5 Setting a common vocabulary: ecology tasks vs corresponding ones in computer vision. Imagery can be used to capture a range of behavioral and
ecological data, which can be processed into usable information with ML tools. Aerial imagery (from drones, or satellites for large species) can be used to
localize animals and track their movements over time and model the 3D structure of landscapes using photogrammetry. Posture estimation tools allow
researchers to estimate animal postures, which can then be used to infer behaviors using clustering algorithms. Finally, computer vision techniques allow
for the identification and re-identification of known individuals across encounters.
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the models performance to specific training locations are still at
the core of current developments52, an issue known in ML as
“domain adaptation” or “generalization”.

Individual re-identification. Another important biometric is
animal identity. The standard for identification of animal species
and identity is DNA profiling97, which can be difficult to scale to
large, distributed populations54,93. As an alternative to gene-
based identification, manual tagging can be used to keep track of
individual animals10,93. Similar to counting and reconstruction
(see next section), computer vision recently emerged as a pow-
erful alternative for automatic individual identification54,98–100.
The aim is to learn identity-bearing features from the appearance
of animals. Identifying individuals from images is even more
challenging than species recognition, since the distinctive body
patterns of individuals might be subtle or not be sufficiently
visible due to occlusion, motion blur, or overhead viewpoint in
the case of aerial imagery. Yet, conventional101 and more
recently DL-based38,54,102 methods have reached strong perfor-
mance for specific taxa, especially across small populations. Some

species have individually-unique coat or skin markings that assist
with re-identification: for example, accuracy exceeded 90% in a
study of 92 tigers across 8000 video clips103. However, effective
re-identification is also possible in the absence of patterned
markings: a study of a small group of 23 chimpanzees in Guinea
applied facial recognition techniques to a multi-year dataset
comprising 1 million images and achieved >90% accuracy38. This
study compared the DL model to manual re-identification by
humans: where humans achieved identification accuracy between
20% (novices) and 42% (experts) with an annotation time
between 1 and 2 h, the DL model achieved an identification
accuracy of 84% in a matter of seconds. The particular challenges
for animal (re-)identification in wild populations are related to
the difficulty of manual curation, larger populations, changes in
appearance (e.g., due to scars, growth), few sightings per indi-
vidual, and the frequent addition of new individuals that may
enter the system due to birth or immigration, therefore creating
an “open-set” problem104 wherein the model must deal with
“classes” (individuals) unseen during training. The methods
must have the ability to identify not only animals that have been
seen just once or twice but also recognize new, previously unseen

Box 2 | AI for Wildlife Conservation in Practice: the MegaDetector

One highly-successful example of open source AI for wildlife conservation is the Microsoft AI for Earth MegaDetector36 (Fig. 6). This generic, global-
scale human, animal, and vehicle detection model works off-the-shelf for most camera trap data, and the publicly-hosted MegaDetector API has been
integrated into the wildlife monitoring workflows of over 30 organizations worldwide, including the Wildlife Conservation Society, San Diego Zoo
Global, and Island Conservation. We would like to highlight two MegaDetector use cases, via Wildlife Protection Solutions (WPS) and the Idaho
Department of Fish and Game (IDFG). WPS use the MegaDetector API in real-time to detect threats to wildlife in the form of unauthorized humans or
vehicles in protected areas. WPS connect camera traps to the cloud via cellular networks, upload photos, run them through the MegaDetector via the
public API, and return real-time alerts to protected area managers. They have over 400 connected cameras deployed in 18 different countries, and that
number is growing rapidly. WPS used the MegaDetector to analyze over 900K images last year alone, which comes out to 2.5K images per day. They
help protected areas detect and respond to threats as they occur, and detect at least one real threat per week across their camera network.
Idaho is required to maintain a stable population of protected wolves. IDFG relies heavily on camera traps to estimate and monitor this wolf population,
and needs to process the data collected each year before the start of the next season in order to make informed policy changes or conservation
interventions. They collected 11 million camera trap images from their wolf cameras last year, and with the MegaDetector integrated into their data
processing and analysis pipeline, they were able to fully automate the analysis of 9.5 million of those images, using model confidence to help direct
human labeling effort to images containing animals of interest. Using the Megadetector halved their labeling costs, and allowed IDFG to label all data
before the start of the next monitoring season, whereas manual labeling previously resulted in a lag of ~5 years from image collection to completion of
labeling. The scale and speed of analysis required in both cases would not be possible without such an AI-based solution.

Fig. 6 AI for Wildlife Conservation in Practice: the MegaDetector. The near-universal need of all camera trap projects to efficiently filter empty images
and localize humans, animals, and vehicles in camera trap data, combined with the robustness to geographic, hardware, and species variability the
MegaDetector provides due to its large, diverse training set makes it a useful, practical tool for many conservation applications out of the box. The work
done by the Microsoft AI for Earth team to provide assistance running the model via hands-on engineering assistance, open-source tools, and a public
API have made the MegaDetector accessible to ecologists and a part of the ecological research workflow for over 30 organizations worldwide.
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animals, as well as adjust decisions that have been made in the
past, reconciling different views and biological stages of an
animal.

Animal synthesis and reconstruction. 3D shape recovery and
pose estimation of animals can provide valuable, non-invasive
insights on wild species in their natural environment. The 3D
shape of an individual can be related to its health, age, or
reproductive status; the 3D pose of the body can provide finer
information with respect to posture attributes and allows, for
instance, kinematic as well as behavioral analyses. For pose esti-
mation, marker-less methods based on DL have tremendously
improved over the last years and already impacted biology105.
Various user-friendly toolboxes are available to extract the 2D
posture of animals from videos (Fig. 1d, e), while the user can
define which body parts should be estimated (reviewed in ref. 76).
Extracting a dense set of body surface points is also possible, as
elegantly shown in ref. 106, where the DensePose technique ori-
ginally developed for humans was extended to chimpanzees. The
reconstruction of the 3D shape and pose of animals from images
often follows a model-based paradigm, where a 3D model of the
animal is fit to visual data. Recent work defines the SMAL
(Skinned Multi-Animal Linear) model, a 3D articulated shape
model for a set of quadruped families107. Biggs et al. built on this
work for 3D shape and motion of dogs from video108 and for
recovery of dog shape and pose across many different breeds109.
In ref. 110, the SMAL model has been used in a DL approach to
predict 3D shape and pose of the Grevy’s zebra from images. 3D
shape models have been recently defined also for birds111. Image-
based 3D pose and shape estimation methods provide rich
information about individuals but require, in addition to accurate
shape models, prior knowledge about the animal’s 3D motion.

Reconstructing the environment. Wildlife behavior and con-
servation cannot be dissociated from the environment animals
evolve and live in. Studies have shown that animal observations like
trajectories highly benefit from additional cues included in the
environmental context112. Satellite remote sensing has become an
integral part to study animal habitats, biological diversity, and spa-
tiotemporal changes of abiotic conditions113, since it allows to map
quantities like land cover, soil moisture, or temperature at scale.
Reconstructing the 3D shape of the environment has also become
central in behavior studies: for example, 3D reconstructions of kill
sites for lions in South Africa revealed novel insights into the
predator-prey relationships and their connection to ecosystem sta-
bility and functioning114, while 3D spatial reconstructions shed light
on the impact of forest structures on bat behavior115. Such spatial
reconstructions of the environment can either be extracted by using
dedicated sensors such as LiDAR116 or can be reconstructed from
multiple images, either by stitching the images into a unified two-
dimensional panorama (e.g., mosaicking117) or by computing the
three-dimensional environment from partially overlapping images
(e.g., structure from motion118 or simultaneous localization and
mapping119). All these approaches have strongly benefited from
recent ML advancements120, but have seldom been applied for
wildlife conservation purposes, where they could greatly help when
dealing with images acquired by moving or swarms of sensors121.
However, applying these techniques to natural wildlife imagery is
not trivial. For example, unconstrained continuous video recordings
at potentially high frame-rates will result in large image sets which
require efficient image processing117. Moreover, ambiguous envir-
onmental appearances and structural errors such as drift accumulate
over time and therefore decrease the reconstruction quality118. Last
but not least, a variety of inappropriate camera motions or

environmental geometries can result in so-called critical configura-
tions which cannot be resolved by the existing optimization
schemes122. As a consequence, cues from additional external sensors
are usually integrated to achieve satisfactory environmental recon-
structions from video data123.

Modeling species diversity, richness, and interactions. Analyses
of biodiversity, represented by such measures as species abun-
dance and richness, are foundational to much ecological research
and many conservation initiatives. Spatially explicit linear
regression models have been conventionally used to predict
species and community distribution based on explanatory vari-
ables such as climate and topography124,125. Non-parametric ML
techniques like Random Forest126 have been successfully used to
predict species richness and have shown significant error reduc-
tion with respect to the traditional counterparts used in ecology,
for example in the estimation of richness distributions of
fishes127,128, spiders 129, and small mammals130. Tree-based
techniques have also been used to predict species interactions: for
example, regression trees significantly outperformed classical
generalized linear models in predicting plant-pollinator
interactions33. Tree-based methods are well-suited to these
tasks because they perform explicit feature ranking (and thus
feature selection) and are able to model nonlinear relationships
between covariates and species distribution. More recently, graph
regression techniques were deployed to reconstruct species
interaction networks in a community of European birds with
promising results, including better causality estimates of the
relations in the graph131.

Attention points and opportunities
Machine and deep learning are becoming necessary accelerators for
wildlife research and conservation actions in natural reserves. We
have discussed success stories of the application of approaches from
ML into ecology and highlighted the major technical challenges
ahead. In this section, we want to present a series of “attention points"
that highlight new opportunities between the two disciplines.

What can we focus on now? State-of-the-art ML models are now
being applied to many tasks in animal ecology and wildlife
conservation. However, while an out-of-the-box application of
existing open tools is tempting, there are a number of points and
potential pitfalls that must be carefully considered to ensure
responsible use of these approaches.

● Inherent model biases and generalization. Most ecological
datasets suffer from some degree of geographic bias. For
example, many open imagery repositories such as
Artportalen.se, Naturgucker.de, and Waarneming.nl collect
images from specific regions, and most contributions on
iNaturalist132 (see Table 2) come from the Northern
hemisphere. Such biases need to be understood, acknowl-
edged, and communicated to avoid incorrect usage of
methods or models that by design may only be accurate in
a specific geographic region. Biases are not limited to the
geographical provenance of images: the type of sensors
used (RGB vs. infrared or thermal), the species they depict,
and the imbalance in the number of individuals observed
per species55,132 must also be considered when training or
using models to avoid potentially catastrophic drop-offs in
accuracy, and transparency around the training data and
the intended model usage is a necessity133.

● Curating and publishing well-annotated benchmark datasets
without doing harm. The long-term advancement of the
field will ultimately require the curation of large, diverse,
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accurately labeled, and publicly available datasets for
ecological tasks with defined evaluation metrics and
maintained code repositories. However, opening up exist-
ing datasets (and especially when using private-owned
images acquired by non-professionals as in ref. 92) is both a
necessary and difficult challenge for the near future.
Fostering a culture of individual and cross-institutional
data sharing in ecology will allow ML approaches to
improve in robustness and accuracy. Furthermore, proper
credit has to be given to the data collectors, for example
through appropriate data attribution and digital object
identifiers (DOIs) for datasets133.

● Understanding the ethical risks involved. Computer scien-
tists must also be aware of the ethical and environmental
risks of publishing certain types of datasets. It is important
to understand the limits of open data sharing in animal
conservation in nature parks. In some cases, it is imperative
that the privacy of the data be preserved, for instance to
avoid giving poachers access to locations of animals in
near-real-time134. Security of rangers themselves is also at
stake; for example, the flight path of drones might be
backtracked to reveal their location.

● Standards of quality control are urgently needed. Account-
ability for open models needs to be better understood. The
estimations of models remain approximations and need to
be treated as such: population counts without uncertainty
estimation can lead to erroneous and potentially devastat-
ing conclusions. Increased quality control on the adequacy
of a model to a new scientific question or study area is
important and can be achieved by close cooperation
between model developers (who have the ability to design,
calibrate, and run the models at their best) and practi-
tioners (who have the domain and local knowledge).
Without such quality control measures, relying on model-
based results is risky and could have difficult-to-evaluate
impacts on research in animal ecology, as incorrect results
hidden in a suboptimally trained model will become more
and more difficult to detect. Computer scientists must be
aware that errors by their models can lead to erroneous
decisions on site that can be catastrophic for the population
they are trying to preserve or for the populations that live at
the border of human/wildlife conflicts.

● Environmental and financial costs of machine learning. ML
is not free. Training and running models with millions of
parameters on large volumes of data requires powerful,
somewhat specialized hardware. Purchasing prices of such
machines alone are often prohibitively high especially for
budget-constrained conservation organizations; program-
ming, running, and maintenance costs further add to the
bill. Although cloud computing services exist that forgo the
need of hardware management, they likewise pose per-
resource costs that quickly scale to several thousands of
dollars per month for a single virtual machine. Besides
monetary costs, ML also uses significant amounts of
energy: recently, it has been estimated that large, state-of-
the-art models for understanding natural language emit as
much carbon as several cars in their entire lifetime135. Even
though the models currently used in animal ecology are far
from such a carbon footprint, environmental costs of AI are
often disregarded, as energy consumption of large calcula-
tions is still considered an endless resource (assuming that
the money to pay for it is available). We believe this is a
mistake, since disregarding environmental costs of ML
models equals exchanging one source environmental harm
(loss and biodiversity) for another (increase of emissions
and energy consumption). Particular care needs to be paid

to designing models that are not oversized and that can
be trained efficiently. Smaller models are not only less
expensive to train and use, their lighter computational costs
allow them to be run on smaller devices, opening
opportunities for real-time ML “on the edge”—i.e., within
the sensors themselves.

What’s new: vast scientific opportunities lie ahead. In the
previous sections, we describe the advances in research at the
interface of ML, animal ecology, and wildlife conservation. The
maturity of the various detection, identification, and recognition
tools opens a series of interesting perspectives for genuinely novel
approaches that could push the boundaries towards true inte-
gration of the disciplines involved.

● Involving domain knowledge from the start. The ML and
DL fields have focused mainly on black box models that
learn correlations from data directly, and domain knowl-
edge has been repeatedly ignored in favor of generic
approaches that could fit to any kind of dataset. Such
universality of ML is now strongly questioned and the
inductive bias of traditional DL models is challenged by
new approaches that bridge domain knowledge, funda-
mental laws, and data science. This “hybrid models”
paradigm48,50 is one of the most exciting avenues in
modern ML and promises real collaboration between
domains of application and ML, especially when coupled
with algorithmic designs that allow interpretation and
understanding of the visual cues that are being used136.
This line of interdisciplinary research is small but growing,
with several studies published in recent years. A repre-
sentative one is Context R-CNN52 for animal detection and
species classification, which leverages the prior knowledge
that backgrounds in camera trap imagery exhibit little
variation over time and that camera traps acquire data with
low sampling frequency and occasional dropouts. By
integrating image features over long time spans (up to a
month), the model is able to increase mean species
identification precision in the Snapshot Serengeti dataset137

by 17.9%. In another example138, the hierarchical structure
of taxonomies, as well as locational priors, are leveraged to
constrain plant species classification from iNaturalist in
Switzerland, leading to improvements of state-of-the-art
models of about 5%. Similarly ref. 139, incorporate knowl-
edge about the distribution of species as well as
photographer biases into a DL model for species classifica-
tion in images and report accuracy improvements of up to
12% in iNaturalist over a baseline without such priors.
Finally ref. 140, used expert knowledge of park rangers to
augment sparse and noisy records of poaching activity,
thereby improving predictions of poaching occurrence and
enabling more efficient use of limited patrol resources in a
Chinese nature reserve. These approaches challenge the
dogma of ML models learning exclusively from data and
achieve more efficient model learning (since base knowl-
edge is available from the start and does not have to be re-
learnt) and enhanced plausibility of the solutions (because
the solution space can be constrained to a range of
ecologically plausible outcomes).

● Laboratories as development spaces. In recent years, modern
ML has rapidly changed laboratory-based non-invasive
observation of animals76,105. Neuroscience studies in
particular have embraced novel tools for motion tracking,
pose estimation (Fig. 1d, e), and behavioral classification
(e.g., ref. 141). The high level of control (e.g., of lighting
conditions, sensor calibration, and environment) afforded
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by laboratory settings facilitated the rapid development of
such tools, many of which are now being adopted for use in
field studies of free-moving animals in complex natural
environments75,142. In addition, algorithmic insights
gained in the lab can be transferred back into the wild—
studies on short videos or camera traps can leverage lab-
generated data that is arguably less diverse, but easier to
control. This opens interesting research opportunities for
the adaptation of lab-generated simulation to real-world
conditions, similar to what has been observed in the field of
image synthesis for self driving143 and robotics144 in the
last decade. Thus, laboratories rightly serve as the ultimate
development space for such in-the-wild applications.

● Towards a new generation of biodiversity models. Statistical
models for species richness and diversity are routinely used
to estimate abundances and study species co-occurrence
and interactions. Recently, DL methods have also started to
be employed to model species’ ecological niches82,145,
facilitated by the development of machine-learning-ready
datasets such as GeoLifeCLEF. GeoLifeCLEF curated a
dataset of 1.9 million iNaturalist observations from North
America and France depicting over 31,000 species, together
with environmental predictors (land cover, altitude,
climatic data, etc.), and asked users to predict a ranked
list of likely species per geospatial grid cell. The task is
complex: only positive counts are provided, no absence
data are available, and predictions are counted as correct if
the ground truth species is among the 30 predicted with
highest confidence. This challenging task remains an open
challenge—the winners of the 2021 edition achieved only
an approximate 26% top-30 accuracy.
A recent review of species distribution modeling aimed at
ML practitioners146 provides an accessible entry point for
those interested in tackling the challenges in this complex,
exciting field. Open challenges include increasing the scale
of joint models geospatially, temporally, and taxonomically,
building methods that can leverage multiple data types
despite bias from non-uniform sampling strategies, incor-
porating ecological knowledge such as species dispersal and
community composition, and expanding methods for the
evaluation of these models.

Finally, we wish to re-emphasize that the vision described here
cannot be achieved without interdisciplinary thinking: for all
these exciting opportunities, processing big ecological data is
necessitating analytical techniques of such complexity that no
single ecologist can be expected to have all the technical expertise
(plus domain knowledge) required to carry out groundbreaking
studies65. Cross-disciplinary collaborations are undeniably a
critical component of ecological and conservation research in
the modern era. Mutual understanding of the field-specific
vocabularies, of the fields’ expectations, and of the implications
and consequences of research ethics are within reach, but require
open dialogs between communities, as well as cross-domain
training of new generations.

Conclusions
Animal ecology and wildlife conservation need to make sense of
large and ever-increasing streams of data to provide accurate
estimations of populations, understand animal behavior and fight
against poaching and loss of biodiversity. Machine and deep
learning (ML; DL) bring the promise of being the right tools to
scale local studies to a global understanding of the animal world.

In this Perspective, we presented a series of success stories at
the interface of ML and animal ecology. We highlighted a number
of performance improvements that were observed when adopting

solutions based on ML and new generation sensors. Although
often spectacular, such improvements require ever-closer coop-
eration between ecologists and ML specialists, since recent
approaches are more complex than ever and require strict quality
control and detailed design knowledge. We observe that skillful
applications of state-of-the-art ML concepts for animal ecology
now exist, thanks to corporate (e.g., Wildlife Insights) and
research (AIDE, MegaDetector, DeepLabCut) efforts, but that
there is still much room (and need) for genuinely new concepts
pushed by interdisciplinary research, in particular towards hybrid
models and new habitat distribution models at scale.

Inspired by these observations, we provided our perspective on
the missing links between animal ecology and ML via a series of
attention points, recommendations, and vision on future exciting
research avenues. We strongly incite the two communities to work
hand-in-hand to find digital, scalable solutions that will elucidate
the loss of biodiversity and its drivers and lead to global actions to
preserve nature. Computer scientists have yet to integrate ecolo-
gical knowledge such as underlying biological processes into ML
models, and the lack of transparency of current DL models has so
far been a major obstacle to incorporating ML into ecological
research. However, an interdisciplinary community of computer
scientists and ecologists is emerging, which we hope will tackle
this technological and societal challenge together.

Data availability
Data sharing is not applicable to this article as no datasets were generated or analyzed
during the current study.
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