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Abstract

Studying the brain circuits that control behavior is challenging, since in addition to their struc-

tural complexity there are continuous feedback interactions between actions and sensed

inputs from the environment. It is therefore important to identify mathematical principles that

can be used to develop testable hypotheses. In this study, we use ideas and concepts from

systems biology to study the dopamine system, which controls learning, motivation, and

movement. Using data from neuronal recordings in behavioral experiments, we developed a

mathematical model for dopamine responses and the effect of dopamine on movement. We

show that the dopamine system shares core functional analogies with bacterial chemotaxis.

Just as chemotaxis robustly climbs chemical attractant gradients, the dopamine circuit per-

forms ‘reward-taxis’ where the attractant is the expected value of reward. The reward-taxis

mechanism provides a simple explanation for scale-invariant dopaminergic responses and

for matching in free operant settings, and makes testable quantitative predictions. We pro-

pose that reward-taxis is a simple and robust navigation strategy that complements other,

more goal-directed navigation mechanisms.

Author summary

Research on certain circuits in simple organisms, such as bacterial chemotaxis, has

enabled the formulation of mathematical design principles, leading to ever more precise

experimental tests, catalyzing quantitative understanding. It would be important to map

these principles to the far more complex case of a vertebrate behavioral circuit. Here, we

provide such a mapping for the midbrain dopamine system, a key regulator of learning,

motivation, and movement. We demonstrate a mathematical analogy between the regula-

tion of dopamine and movement by rewards and the well-characterized bacterial chemo-

taxis system. We use the analogy to quantitively explain previously puzzling observations

on the dopamine circuit, as well as classic empirical observations on operant behavior.
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Introduction

Dopamine transmission in the midbrain has several major biological functions for the regula-

tion of behavior and learning. Dopamine signals encode reward prediction errors (RPEs) [1–6]

(Fig 1A). Reward prediction errors are the difference between the experienced and predicted

rewards. They play a key role in a method of reinforcement learning called temporal difference

learning (TD learning) [5–8], and theory from reinforcement learning has been pivotal for

explaining dopamine function.

In addition to rapid sub-second responses encoding reward prediction errors, dopamine

may also slowly ramp up when approaching a reward [9–11]. A recent experiment by Kim

et al. showed that even on this slower timescale (seconds), dopamine levels track a derivative

of the input signal [12]. Kim et al. used virtual reality to manipulate the rate of change of the

movement of a mouse as it moved towards a target. Dopamine changed in a way that is consis-

tent with computing a temporal derivative of an input field that decays away from the reward

(Fig 1B, such an input field is referred to as the spatially-discounted expected reward).

Finally, another well-established function of dopamine is the invigoration of movement

and motivation [13–18]. Dopamine increases movement vigor [17] (Fig 1C) and defects in

dopamine transmission underlie movement difficulties in Parkinson’s disease [19]. While the

relation between RPEs and learning is well understood, it is unclear why an RPE signal should

invigorate movement [18,20]. Theoretical studies have analyzed this question from the per-

spectives of learning [21,22] and cost-benefit theories [13,18,23,24], while early work on TD

learning anticipated a connection with biological navigation [2].

Fig 1. Experimental observations on dopamine imply feedback between motion and sensing. (A) Dopamine responses represent predictions errors over

expected rewards, as observed in the classical experiments of Schultz [28]. Dopaminergic neurons fire at a constant rate of ~4-5Hz, and the delivery of a reward

causes them to fire over this baseline rate (upper panel); however, when reward delivery is preceded by a predictive cue, the increase in firing occurs following

the cue, and there is no increase following reward delivery (middle panel). Dopaminergic neurons fire below their baseline following the omission of an

expected reward (lower panel). (B) As the animal approaches a reward, dopamine activity may increase, a phenomenon known as dopamine ramps. In elegant

experiments based on virtual reality manipulations of animal movement (including change of movement velocity and teleportation), Kim et al. [12]

demonstrated that dopamine ramps correspond to a temporal derivative calculation over a spatial input field that decays away from the reward. Thus, for

example, movement at higher velocity leads to higher dopamine levels. (C) Finally, higher dopamine levels increase movement vigor. (D) There is thus

feedback between dopamine sensing and movement–the movement of the animal (including movement velocity) changes the temporal derivative of the sensed

input field, which affects dopamine levels, which then feed back on movement parameters. Figures were created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1010340.g001
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Considering both the signal processing and movement-invigorating properties of dopa-

mine reveals an intriguing feedback that is inherent to the system (Fig 1D). Since dopamine

computes a temporal derivative on a spatial input field, the modulation of movement speed by

dopamine should by itself affect dopaminergic output (as directly observed by Kim et al. [12],

Fig 1C). Thus, in the context of a moving animal, the different roles of dopamine become

tightly coupled. Analyzing such feedback interactions is challenging for current theoretical

frameworks for dopamine, which typically model behavior using discrete choice processes

occurring in discrete steps (see for example [25]).

Our study aims to use concepts from systems biology to analyze functional properties of the

interaction between sensing and movement in the dopamine system. We first develop a mini-

mal mechanistic model of dopamine responses. The model is similar to a continuous version

of the classic TD-RPE model, with an important modification based on dopaminergic

response curves–the circuit is activated by the logarithm of expected reward. Our model pro-

vides a new and simple explanation for the puzzling rescaling of dopaminergic responses [26].

Notably, the model establishes a connection between the dopamine circuit and the concepts of

exact adaptation and fold-change detection, which have fundamental importance in the sys-

tems biology of signaling circuits [27].

We then use the model to study the interaction between dopamine signaling and move-

ment. We considered one of the best-established empirical behavioral laws–the matching law

of operant behavior, where the ratio of responses to concurrent rewarding alternatives is pro-

portional to the ratio of obtained rewards raised to a power β (where β~1). Matching is typi-

cally observed in experiments where the animal is allowed to move freely, presenting a

challenge to modelling approaches based on discrete choices and time steps. By considering a

simple movement model, which we call reward-taxis, we show that the dopamine model pre-

dicts matching and provides a quantitative value for β as the ratio of dopamine gain to baseline

activity. Matching results from the mathematical analogy between stochastic movement

guided by reward-taxis and algorithms for the sampling of probability distributions. We con-

clude by proposing that reward-taxis is a simple and robust navigation strategy that comple-

ments other, more goal-directed navigation strategies employed by animals.

Results

Dopamine release as fold-change detection of expected reward

We begin by developing a minimal model for continuous dopamine dynamics (Fig 2A). Con-

sider a behaving animal exploring an open field for a reward of magnitude u, such as a food or

drink. For simplicity, we assume a uniform response amongst all dopaminergic neurons. In

reality, there are heterogeneities between and within midbrain structures, and some dopami-

nergic neurons may be specialized to specific cues [29–31,17,32–35]. As the animal approaches

the reward, there is an increase in expected reward R, which decays with distance from the tar-

get [9,12,36].

Here expected reward is defined based on TD learning: the expected temporally discounted

sum of present and future rewards (see Methods). According to the TD-RPE theory of dopa-

mine function, the difference between dopamine and its baseline Δd encodes a prediction

error signal about expected rewards [4,5]. The prediction error signal allows the agent to learn

about the spatial input field R with recursive learning rules [7,37].

What is the quantitative relationship between reward magnitude and the dopaminergic

response? Recordings from VTA dopaminergic neurons in mice reveal a sublinear relationship

between the magnitude of received rewards u and Δd(u) [30,38] (Fig 2B). The sublinear rela-

tionship indicates that dopamine neurons may (at least in some magnitude range) be
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Fig 2. Logarithmic activation of dopamine dynamics explains scale invariant responses. (A) Minimal circuit for dopamine responses. Dopamine (d) is

activated by the logarithm of expected reward (log R) and is inhibited by negative feedback from GABAergic input (g). See Methods for equations and

parameters. (B) The response of VTA dopaminergic neurons in mice (n = 5) to a water reward of variable volume (black squares, mean ± SEM, taken from Fig

1C in [38]) is well-described by the logarithmic relation Δd = μ log(au+b) (red line r2 = 0.999, best-fit parameters a = 0.5±0.1, b = 1.5±0.05, μ = 4.9±0.45, N = 7

reward magnitudes). When the reward is preceded by an odor cue (gray squares) the response is well-described by subtracting a constant from the uncued

response (pink line, r2 = 0.99, best-fit subtraction constant is −3.2±0.1). (C) Simulation of dopamine and GABA responses to a step increase in expected reward

input which corresponds to the presentation of a reward-predicting cue. The step is given by R(t) = R0+λθ(t−t0) where θ(t−t0) is a unit step function, R0 = 1 and

λ = 7 for the black line (large reward) and λ = 1.8 for the gray line (small reward). Insets. Average change in firing rates from dopaminergic (type I) and

GABAergic (type II) VTA neurons, in response to reward-predicting cues for a small reward (gray) or a large reward (black). Data from Fig 2D of [49]. (DE)

Population responses of dopaminergic neurons of two Macaque monkeys to variable size liquid reward, either without a preceding cue (left panels, n = 55

neurons), or with a preceding visual cue that predicts reward delivery with 50% probability (right panels, n = 57 neurons). (D) The expected-reward input

following the reward-predicting cue is R = 0.5(b+λu) (where λ is proportional to reward magnitude), which is doubled following reward delivery, R = b+λu,

where u is the reward magnitude (we use b = 2 and λ = 10ml−1). Dashed lines correspond to reward omission. (E) Experimentally measured average

dopaminergic responses, using data from Fig 2A and Fig 4B of [26]. When the reward is delivered without a cue, dopaminergic responses increase with reward

magnitude (left panel). When it is given after a cue that predicts reward delivery with 50% probability, dopaminergic responses to reward delivery are identical

(right panel), as predicted by the FCD property. This is despite the 10-fold difference in reward magnitude. (F) Simulations of the dopamine model capture the

experimentally observed dynamics. All simulation parameters are provided in Table 1.

https://doi.org/10.1371/journal.pcbi.1010340.g002

Table 1. Parameter values.

Parameter Value (mouse experiments) Value (primate experiments)

ωd 50 s-1 100 s-1

ω 15 s-1 30 s-1

C 15 spike s-1 15 spike s-1

μ 6 spike s-1 6 spike s-1

α 0.7 0.7

d0 5 spike s-1 5 spike s-1

https://doi.org/10.1371/journal.pcbi.1010340.t001
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responding to the logarithm of reward, namely Δd(u) = μ log(R(u)), with R(u) = au+b, where a
is a scaling factor and b is a magnitude-independent component of the reward activation. The

parameter μ is the gain of the dopaminergic response. Logarithmic responses are consistent

with widespread logarithmic coding in the brain [39–44] as well as with economic notions of

utility [45,46].

To test this, we fit the function μ log(au+b) to the average dopaminergic response to a vari-

able water reward in mice [30], finding an excellent fit (r2 = 0.999), with a gain of μ = 4.94

±0.45.

In addition to activation by expected reward, dopaminergic neurons in the VTA are inhib-

ited following the presentation of a predicting cue in a subtractive manner ([30,38], Fig 2B, the

presented cue is the same for all reward magnitudes). The subtractive inhibition is thought to

be due to the increase in the activity of adjacent GABAergic neurons [30,38]. We therefore

propose the following minimal description of dopamine release dynamics:

dðtÞ ¼ C þ mlogRðtÞ � agðtÞ ð1Þ

Where C is the baseline activity of the dopaminergic neurons when log R = g = 0, μ is the

gain, R is perceived expected reward, and α is the effectiveness of inhibition by the GABAergic

output g. Note that both the expected reward R(t) and the GABAergic output g(t) are dynam-

ical, time-dependent variables. Since our model focuses on the regulation of behavior, rather

than on learning or representation, we will assume that the log-transformed expected reward

log R is an input signal that is provided to the circuit. Additionally, while subtractive inhibition

was established for VTA dopaminergic neurons, we assume that similar regulation is shared

among all midbrain dopaminergic neurons.

To complete the model requires a minimal description of the dynamics of GABAergic out-

put g. The mechanisms of interaction between GABAergic and dopaminergic neurons are

complex and there are many local and remote interactions [47,48]. However, there are experi-

mental observations that impose constraints on these interactions. Upon presentation of a

reward-predicting cue—equivalent to a step increase in R(t)—dopamine d(t) rapidly increases

and then drops and adapts precisely to its baseline on a sub-second timescale [5,26,49] (Fig

2C), a phenomenon called exact adaptation, while GABAergic activity g(t) increases to a new

steady-state that tracks R(t) [49] (Fig 2C).

Exact adaptation is a well-studied property of biological circuits, which can be implemented

by a handful of specific feed-forward and feedback mechanisms [50,51]. Since we do not know

the mechanistic implementation of the adaptation property in the dopamine circuit, we make

the simple assumption of a negative feedback loop. In this design, inhibitory neuron activity g
is given by an integral-feedback equation with respect to dopamine release d:

_g ¼ o
d
d0

� 1

� �

ð2Þ

Or, more generally, _g ¼ FðdÞ where F(d) increases with d and has a single zero at d = d0.

This feedback loop generates exact adaptation of d: the only steady state solution is d = d0,

which is the homeostatic activity level of dopaminergic neurons. This is about ~5 spikes/s in

mice [30,52]. The parameter ω determines the adaptation time of the dopaminergic neurons

after a change in R(t). This timescale is on the order of hundreds of milliseconds. For the

GABAergic neurons, after a step change in R(t), the steady-state firing rate in the model

increases proportionally to the logarithm of R(t), such that g ¼ C� d0þmlogR
a

(this is because

GABAergic output integrates dopaminergic activity). Finally, dopamine release represents a

temporal-derivative-like computation of R(t) as observed by Kim et al. [12] (S1 Fig).
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Taken together, Eqs 1 and 2 provide a minimal model for dopamine responses to expected

reward inputs R(t). The model is similar to the classic TD-RPE model of dopamine function

and can explain the classic observations of prediction error signals that occur during learning.

However, there is an important difference: in the TD-RPE model dopamine is activated by

expected reward, whereas in our model it is activated by the logarithm of expected reward. For

learning R, this difference requires a slight modification of the recursive learning rules (Meth-

ods). In the following sections we will show that logarithmic sensing has crucial implications

for the dynamics of learning and behavioral regulation.

Model predicts scale-invariant dopamine responses

We now show that the model given by Eqs 1 and 2 can explain one of the most puzzling observa-

tions on dopaminergic responses–the scale invariant dopamine responses observed by Tobler et al.

[26] (Fig 2D and 2E). In their experiment, Tobler et al. recorded midbrain dopamine neurons of

primates presented with a visual cue that predicted liquid rewards with 50% probability. Three

cues were presented in pseudorandom order, and each of the cues predicted a reward of a different

magnitude over a 10-fold range (0.05ml, 0.15ml, 0.5ml, note that this is in contrast to the case pre-

sented in Fig 2B where the same cue was used for all reward magnitudes). Both predictive stimuli

and reward reception elicited a positive dopaminergic response, as expected from the TD-RPE the-

ory. However, while the response to the predictive stimuli increased with expected reward magni-

tude (S2 Fig), the response to the reward itself was invariant despite large differences in reward

magnitude. This scale invariance is not consistent with the classical TD-RPE model which predicts

that responses to rewards should also increase with reward magnitude [53]. In order to explain this

puzzling observation, it has been suggested that there is a normalization process that scales dopa-

mine responses, e.g. according to the standard deviation of the reward distributions [26,53].

Here we show that the observations of Tobler et al. [26] can be explained by our model with-

out invoking any additional normalization process (Fig 2F). The reason for this is that the

model has a circuit feature known in systems biology as fold-change detection (FCD) [54,55].

FCD is a property where after adaptation the circuit output depends only on relative changes in

the input, rather than absolute changes. FCD circuits output the temporal (logarithmic) deriva-

tive of low-frequency input signals [56–58]. We therefore call the dopamine model presented

here the dopamine-FCD model (see Methods for a proof that the model has the FCD property).

To see why the FCD property can explain the observations of Tobler et al., [26] consider the

input function for each of the cue-reward sequences. When a reward-predicting stimulus

appears, the expected reward changes from its previous baseline value in a step-like manner to

some value 0.5R that depends on predicted reward magnitude, causing a dopamine response

that increases with R. At the time point when the reward itself is received, the input function

increases by ~2-fold (from 0.5R to R, which again for simplicity is modeled as a step increase).

Since the dopaminergic response depends only on the fold-change in input, the model predicts

identical responses, as observed by Tobler et al. [26]

The FCD property causes the learning and behavior-regulating functions of dopamine to

be invariant (i.e., not affected by) multiplying the input field by a scalar [54]–in other words,

by multiplying all expected rewards by a constant factor λ. The model thus predicts scale-

invariance of the dopamine system. This property may be crucial for the dopamine circuit,

since rewards can vary widely in magnitude.

A reward-taxis model for dopamine regulation of behavior

In the following section we will consider whether we can use Eqs 1 and 2 to gain insight into

the regulation of behavior by dopamine. To link the dopamine circuit to animal behavior, we
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first provide an additional equation as a minimal model for dopamine control of motion. The

equation is motivated by the well-established role of dopamine as a regulator of action vigor

and locomotor activity [13,17,59–61]. The equation posits that dopamine d increases move-

ment speed v:

v ¼ v0

d
d0

ð3Þ

Where v0 is movement speed at the homeostatic level d = d0. Dopamine d in Eq 3 corre-

sponds to the (normalized) dopaminergic activity in the brain, so that loss of dopaminergic

neurons (as occurs in Parkinson’s disease) reduces d proportionally, which effectively reduces

homeostatic movement speed v0. We assume a proportional relation between movement

speed and d, which is consistent with the gradual increase in movement vigor with dopaminer-

gic activity (see Fig 1J and 1K in da Silva et al. [17]).

When the animal is moving towards higher expected rewards, that is, the input field R(x)
increases as the animal moves, d rises above its baseline and movement speed increases; con-

versely, when the animal moves down R(x), movement speed decreases. The change in d may

be transient if the change in the input is step-like or gradual (linear); veering away from the

reward, however, will result in an undershoot in d, and such movements will be inhibited.

More generally, since d tracks the temporal logarithmic derivative of the input, then as the ani-

mal moves its speed will be continuously modulated according the spatial gradients of log R
(x), with movements up the gradient invigorated and movements down the gradient inhibited.

This movement regulation, defined by Eq 1–3, results in spending longer times near the peaks

of the reward field R(x). We thus call this model reward-taxis.

Reward-taxis quantitatively provides the matching law of operant behavior

In the following section we will argue that the reward-taxis model provides a distinct and

quantitative explanation for the general matching law of operant behavior, one of the best-

established behavioral phenomena [62–66,66–70]. Matching is typically observed in concur-

rent reward schedules where a freely behaving animal harvests rewards that appear stochasti-

cally in two separate locations x1, x2. The rewards are depleted after harvesting and renew after

a random time-interval drawn from a memoryless distribution. In the simplest setting, the

same reward is provided in both locations but the average renewal time differs between the

locations. In more general settings other parameters (e.g. amount or quality of reinforcement)

can vary [71]. There is also usually a cost to switching between options. The matching law, in

its time-allocation form [72], posits that the long-term average of the relative amount of time

the animal chooses each reward location P(x1), P(x2) goes as a power β of the ratio of rewards

harvested from the locations R1, R2 (Fig 3A and 3B):

Pðx1Þ

Pðx2Þ
¼ k

R1

R2

� �b

ð4Þ

where R1, R2 correspond to the expected reward at each location (the product of rate and

amount of reinforcement [72]). The parameter k is a bias term which corresponds to the ten-

dency of the animal to prefer one reward over another even when reinforcement is equal (R1 =

R2). The bias term typically varies between experiments. The matching law was originally pro-

posed with perfect matching β = 1 [73]. A large number of studies in various vertebrate species

under different experimental conditions observed that β can be somewhat variable, showing

slight undermatching (β<1) and overmatching (β>1), with the former more commonly

observed [63–65,68,69,74,75]. Matching has also been observed in wild animal foraging
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[76,77]. Matching is a robust property which holds over orders of magnitude of reward ratios

(up to ~1:500 in pigeons [65]). The overall robustness of the matching law has led authors to

suggest that it reflects intrinsic properties of the vertebrate nervous system [69].

Matching is an emergent property of the free behavior of the animal, but its underlying ori-

gins are unclear. The continuous, free behavior of the animal contrasts with the discrete choice

Fig 3. Reward-taxis model provides the generalized matching law. (A) Matching is observed in experiments where the animal can harvest rewards from two

locations, which may be baited or empty. Following the consumption of the reward, the location becomes re-baited after some random amount of time, which

may be different between the locations. The generalized matching law, amply supported experimentally, is a power-law relation between the reward harvested

and the frequency of responses
Pðx1Þ

Pðx2Þ
¼

R1

R2

� �b
, R1, R2 are rewards harvested at locations A = x1, B = x2. Perfect matching occurs for β = 1, while undermatching/

overmatching are due to variations in β. Undermatching, with β<1, is often observed, as in (B) (data from Fig 1 of [65]). (C,D) To model stochastic choice

behavior of a freely behaving animal, we use a random walk model where the animal moves at speed v and reorients at frequency τ−1, with v modulated by

dopamine. Random walk model simulation for choice between two expected rewards R1, R2. Expected reward input field is the sum of two Gaussians: R xð Þ ¼

R1e
� 1

2

x� x1
2bð Þ

2

þ R2e
� 1

2

x� x2
bð Þ

2

(the exact distribution is not important for matching) with τ = 100ms, μ = 4, d0 = 5, v = 10cm s−1, x1 = +30cm, x2 = −30cm, b = 10cm
(b ¼ md� 1

0
¼ 0:8, Methods). An example of a simulation is presented in panel C. The model was simulated for different ratios of R1/R2, and the response ratio

was estimated by the ratio of the time spent ±2.5cm from A = x1, B = x2. Figures were created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1010340.g003
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trials processes that are typical for reinforcement learning models. Matching is not optimal–

the optimal policy would be for the animal to regularly switch between the alternatives [78],

whereas behavior in experiments is characterized by a memoryless switching process (that is,

fixed switching probabilities) [79]. Previous explanations for the general matching law

assumed an underlying choice process, such as competition between the groups of neurons

representing each reward location [80–83].

Here we provide a novel and distinct explanation for the matching law based on the

reward-taxis mechanism (Eqs 1–3). We show that matching is a robust emergent property of

the dopamine system, and, moreover, we provide an estimate for β in terms of parameters of

the dopamine system that can be directly inferred from neuronal recordings (Fig 3C and 3D).

To test whether the model provides the matching law, we model the dynamics of the loca-

tion of a behaving animal as a stochastic process. Let R(x) be the input field, which is the

expected reward R as a function of location x. We assume that R(x) is fixed at x1, x2 by the har-

vested rewards R1, R2. To account for the stochastic behavior of the animal in the matching

experiments, we model its movement as a biased random walk process, where the animal

moves in straight lines at speed v (modulated by dopamine) and reorients at random with

some fixed probability τ−1. Allowing the new direction to be correlated with the previous

direction does not affect the conclusions, and a model where τ (rather than v) is modulated by

dopamine leads to the same conclusions.

This biased random walk model is analogous to bacterial chemotaxis: bacteria such as

E. coli use a run-and-tumble navigation strategy to climb gradients of chemical attractants

(Fig 4A–4E) [54,56,84,85]. The bacterial chemotaxis signaling network is based on an FCD

Fig 4. Dopamine regulation of behavior in the model is analogous to bacterial chemotaxis. (A) The behavior of an animal in an open field is modelled as a

series of directed movements (runs). The direction of each run is chosen at random (or, more generally, stops between runs decorrelate motion direction), and

the duration of each run increases with dopamine level. (B) Dopamine is controlled by an FCD circuit activated by expected reward. (CD) The reward-

dopamine-behavior circuit is analogous to the chemotaxis circuit that underlies bacterial navigation towards chemo-attractants. Bacterial motion is composed

of a series of runs. The direction of each run is randomized by tumbling events, and run duration increases with the inactivation of a receptor-kinase complex,

which is controlled by an FCD circuit activated by chemoattractant concentration. (E) Table detailing the mapping between the dopamine system and the

chemotaxis system. Figures were created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1010340.g004
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circuit that controls run duration [54,86]. It therefore maps onto dopamine release dynamics,

where expected-reward inputs play the role of chemoattractant concentration in chemotaxis.

The key difference is that in chemotaxis the input field results from the diffusion of attractant

molecules, whereas in the dopamine system the input field (expected reward) is learned by the

animal.

At long time- and length-scales, run-and-tumble motion resembles Brownian motion [87],

with a diffusion coefficient D�m−1v2τ, where m is the dimension (we assume that d is close to

the adapted level d0). Brownian motion in the model is biased by longer runs when the agent is

moving up the gradient. To account for this, one can add to the diffusion process an advection

term that is proportional to the logarithmic gradient: χr log R(x) [88–90]. The advection term

corresponds to the average flow at location x. Taken together, the stochastic dynamics of the

agent are approximated by a Langevin equation similar to the classic Keller-Segel equation

used to model chemotaxis [91]:

dx ¼ wrlogRðxÞdt þ
ffiffiffiffiffiffi
2D
p

dW ð5Þ

where W is an m-dimensional Wiener process (see S1 Text for the derivation of Eq 5). For rela-

tively short runs compared with the adaptation time (sub-second timescale), the advection

parameter χ, also called chemotactic drift, is given by: w � m� 1v2t � md� 1
0

[88], and thus rises

with velocity v, gain μ and mean run duration τ. It is important to note that Eq 5 holds also for

the model variant in which dopamine modulates τ (see S1 Text).

Eq 5 captures how animal movement depends on the parameters of the dopamine circuit,

as well as on movement parameters τ, v. Decreasing the average run duration τ or average

movement speed v (as in Parkinson’s disease) decreases both diffusivity D and advection χ,

resulting in slower effective motion and gradient climbing. Gradient climbing efficiency (che-

motactic drift) increases with md� 1
0

, which is the gain of dopamine neurons normalized by

their baseline activity. Other circuit parameters do not affect movement dynamics.

Eq 5 is equivalent to the Langevin Monte Carlo algorithm, a widely-used algorithm from

statistical physics for sampling probability distributions and for global optimization [92–95].

The steady-state distribution can be readily solved, using standard methods of statistical phys-

ics, similar to a Boltzmann distribution in a potential field. The motion samples a probability

distribution P(x) proportional to a power β of the expected-reward distribution:

PðxÞ / eblogRðxÞ ¼ RðxÞb ð6Þ

where the power-law β equals the normalized gain of the dopaminergic neurons:

b ¼ w

D ¼ md
� 1
0

. From Eq 6 we infer that for any two expected rewards R1, R2 the response rates

P(x1), P(x2) obey the general matching law of Eq 4. We note that this results in matching with

k = 1, but any biases in reward preference, which are multiplicative in R1 or R2, will result in a

fixed bias term k6¼1.

The reward-taxis model therefore predicts operant matching with a power law of b ¼ md� 1
0

.

Thus, β is equal to the average ratio of gain to baseline activity in dopaminergic neurons. As

mentioned above, these values can be estimated from the neuronal measurements of Eshel

et al. [30], μ�5 spikes/s and d0�5 spikes/s. These values yield β�1, in agreement with the

matching law. Similar parameters are found also in primates (S2 Fig). The agreement is strik-

ing since there is no a-priori reason for the gain and baseline to be similar; normalized gain

md� 1
0

could in principle have a wide range of values including md� 1
0
� 1 or md� 1

0
� 1.

The matching exponent β only depends on parameters that are intrinsic to the dopaminer-

gic neurons; β is independent of movement speed v or run duration τ, which may vary

depending on animal physiology and the environmental context, as well as on the number of
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dopaminergic neurons. This may explain the robustness of the matching phenomena across

species and experimental conditions. The logarithmic derivative property is crucial for obtain-

ing the matching law. A non-logarithmic derivative, or absolute responses, do not provide

matching (S1 Text). Taken together, the reward-taxis model can provide a physiological mech-

anism underpinning operant matching.

Variation in intrinsic neuronal parameters can affect gain μ and baseline firing rate d0. The

model predicts that manipulating the relative gain of dopamine neurons md� 1
0

will change the

reward sensitivity parameter β in the matching law. This prediction can be tested by measuring

md� 1
0

in genetically modified animals where matching behavior is different from wild-type.

One such case is mice that are deficient in the cannabinoid type-1 receptor (CB-/-), which have

β that is lower by ~30% compared with wild-type mice [96]. In agreement with the model pre-

diction, CB-/- mice also have deficient dopaminergic responses relative to baseline [97].

Other disorders can be due to reduction in the number of functional dopaminergic neu-

rons, as in Parkinson’s disease, where SNc dopaminergic neurons are lost. Such damage is pre-

dicted to change v0. If the damage does not sizably affect the intrinsic properties of surviving

neurons, such as gain and baseline, they are not expected to change β in matching

experiments.

Discussion

In this study we showed that concepts from systems biology, including exact adaptation, fold-

change detection and stochastic navigation, can be mapped to the dopamine system in the

brain. We showed that the dopamine circuit may implement a ‘reward-taxis’ mechanism that

shares core analogies with bacterial chemotaxis. To show this we developed a mechanistic

model of dopamine dynamics based on experimental measurements. The model has similar

behavior to the classic TD-RPE model, with a key difference–the circuit is activated by the log-

arithm of expected reward. The model predicts that dopamine output is invariant to the scale

of the distribution of rewards, as observed by Tobler et al. [26], and explains matching in free-

operant behavior. Reward-taxis results from the interaction between sensing and movement

and implements a simple strategy for climbing gradients of expected reward.

Scale invariance is a recurring motif in biological sensory systems [55]. The model of dopa-

mine transmission as fold-change detection (FCD) of expected reward is thus in line with the

conceptualization of dopamine neurons as sensory neurons for reward [98]. FCD includes the

classic Weber’s law of sensory systems, which posits that the maximal response to a change in

input is normalized by the background level of the signal [99]. FCD is more general than

Weber’s law in that the entire dynamics of the output, including amplitude and duration, is

normalized by the background input level. FCD allows the system to function in a scale-invari-

ant manner across several decades of background input [54]. It also provides a common scale

to compare different types of sensory inputs, by referring to their relative (rather than abso-

lute) changes [100].

While the model focused on the average activity of dopaminergic neurons, the proposed

mechanism for FCD (inhibition from neighboring GABAergic neurons) may apply at the level

of individual dopaminergic neurons or groups of neurons. This raises the possibility that dif-

ferent dopaminergic neurons could become adapted to different expected-reward levels at the

same time, consistent with a recent study that demonstrated that a single reward can simulta-

neously elicit positive and negative prediction errors in different neurons [101].

The FCD model proposes that RPEs become normalized by the scale of the rewards, but

does not account for possible effects of the reward distribution. Such distribution-based effects

are evident in the dopamine system. In a recent study, Rothenhoefer et al. showed that rare
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rewards appear to amplify RPEs more than commonly observed rewards [102]. To further dis-

entangle effects of reward distribution vs. reward scale, we propose the following set of experi-

ments. The FCD model predicts that for a reward schedule with a fixed distribution and a

shifted mean X, the dopaminergic responses should decay as X is increased. To test this we

may consider a reward schedule where the animal is randomly rewarded with rewards of mag-

nitudes r1 = X+Y, r2 = X−Y, preceded by a cue that predicts that some reward will be delivered.

The FCD model predicts that dopaminergic responses should decay as X increases. For exam-

ple, when the reward schedule alternates between rewards of magnitude r1 = 1.5, r2 = 0.5

(X = 1, Y = 0.5), the dopaminergic response to the reward of magnitude 1.5 should be larger

than the dopaminergic response to a reward of magnitude 11.5 under an alternating schedule

with rewards of magnitude r1 = 11.5, r2 = 10.5 (X = 11, Y = 0.5). This contrasts with models

based on std. normalization which predict identical responses in both scenarios. Similarly, the

FCD model predicts that dopaminergic responses should increase with Y, while models based

on std. normalization predict identical dopaminergic responses in this scenario as well.

The present study unifies two main effects of dopamine, encoding reward-derivative and

increasing movement vigor, by mapping them to a reward-taxis navigational circuit. The cir-

cuit is analogous to the bacterial chemotaxis circuit, where in the dopamine case navigation is

along gradients of expected reward. The mapping is based on mathematical analogies at both

the physiological and behavioral levels. At the physiological level both circuits have the FCD

property. At the behavioral level, dopamine increases the probability and vigor of movements,

thus increasing the duration of correlated motion (“runs”) compared with reorientations

(“tumbles”). Both aspects map to the well-characterized chemotaxis navigation circuit in

bacteria.

The stochastic model is sufficient for explaining matching behavior, and provides an accu-

rate mechanistic estimate for the matching constant β. The estimate is derived under mild

mechanistic assumptions–that movement speed (or run length) is controlled proportionally

by dopamine levels, and that run times are relatively short compared with adaptation time.

Improved experimental characterization of movement control by dopamine will allow us to

relax these assumptions to obtain better estimates for β. For example, a nonlinear gain for

movement speed regulation by dopamine v/dh would result in multiplication by a constant

prefactor β = hμ/d0, and longer run times would result in a proportional decrease in β [103].

As long as these effects are mild, we expect our estimate β�1 to hold. Importantly, we still

expect the matching constant β to be proportional to μ and inversely proportional to d0.

Our study connects between vertebrate motion regulation and the wider family of run-and-

tumble stochastic navigation circuits, which includes motion regulation in bacteria, algae, and

simple animals [104–107]. Reward-taxis was anticipated in the early work on TD learning,

where Montague et al. showed that run-and-tumble dynamics driven by reward prediction

errors can explain observations on bee foraging [2].

There are also differences between bacterial chemotaxis and the reward-taxis model for

dopamine. The value of β in bacterial chemotaxis is much larger than in the dopamine reward-

taxis model, with β>10 in E. coli [108,109] and β~1 estimated for the dopamine system. The

high β value in bacteria indicates a strong preference for higher rewards, akin to an optimiza-

tion for accumulation near attractant peaks. It also allows for collective migration [91]. A value

of β~1 (which results in the matching law) allows a greater range for exploration of submaxi-

mal rewards.

The reward-taxis model was presented for whole-body spatial movement, but its assump-

tions are general and may potentially extend to other aspects of behavior. One such aspect is

hippocampal replay, the activation of hippocampal place cells during sharp-wave ripples [110–

112]. Hippocampal replay consists of a firing sequence of neurons that represents temporally
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compressed motion trajectories [111,113,114]. It can occur either during sleep or rest (“off-

line”) or when the animal is awake and engaged in a task (“online”). Online replay plays an

important role in planning and navigation [114]. The activation of the place neurons corre-

sponds to stochastic movement trajectories with a characteristic speed [115] that are biased

towards the location of rewards [114]; when foraging is random, the trajectories are diffusive,

resembling Brownian motion [112]. Hippocampal activity during online replay is tightly coordi-

nated with reward-associated dopamine transmission [110]. To map reward taxis to hippocampal

replay requires that dopamine transmission modulate the stochastic trajectories of hippocampal

replay, for example through the modulation of velocity or reorientation frequency.

Another potentially relevant system is eye movements. Eye movements are modulated by dopa-

mine and impaired in Parkinson’s disease [34,116,117], and their vigor is modulated by reward

prediction errors [118]. Additionally, random walk models capture gaze dynamics during tasks

such as visual search [119–121]. Since eye movements are commonly studied in behavioral experi-

ments such as reward matching, they may be a good candidate to test the reward-taxis model.

While taxis navigation systems in organisms such as E. coli are based on gradients that are

created due to diffusion, for the dopamine system the input field is generated by learning—TD

learning is sufficient for generating gradients of expected reward. From the point of view of

signal processing, TD learning smooths away the high-frequency (or “phasic”) input compo-

nents [122], leaving a low-frequency input signal that is used for navigation. In this way the

dopamine system can allow for gradient-based navigation over fields that are derived from

arbitrary sensory inputs.

The reward-taxis model does not assume any explicit choice process–in the model, naviga-

tion towards regions of higher expected reward is only due to the modulation of movement

statistics by dopamine. This may at first sight appear more primitive than standard reinforce-

ment strategies, where the agent compares the expected reward of different alternatives before

acting. However, reward-taxis may be advantageous in certain settings. The first advantage is

that reward-taxis is computationally cheap–it only requires activation by a single local scalar–

which allows for efficient continuous modulation of movements, rather than discrete move-

ment adjustments. The second advantage is that it provides effective sampling of the rewards

distributed in the environment by implementing a search algorithm (Eq 5) mathematically

analogous to the Langevin Monte Carlo (LMC) algorithm for sampling probability distribu-

tions [92–95] and for global optimization [123–128]. Sampling allows the animal to incorpo-

rate uncertainty on reward magnitude, probability, or location into its navigation. It also

allows the animal to efficiently navigate in complex input fields that include many local min-

ima and maxima [109]. Finally, run-and-tumble navigation provides benefits beyond the Lan-

gevin Monte Carlo algorithm by boosting gradient climbing only on sufficiently steep reward

gradients due to the positive feedback between behavior and sensing. The positive feedback

occurs since running along the gradient provides an increasing input that further enhances the

run duration [129]. These advantages suggest that reward-taxis may be a useful strategy when

the expected reward input field is complex or uncertain.

The relation between the dopaminergic system and sampling, and in particular the relation

between dopaminergic parameters and the matching law parameter β, may be relevant to

recent findings on dopamine and exploration [130,131]. In mice and humans, dopaminergic

antagonists appear to specifically increase random exploration, rather than affect learning

[130,131]. Under our modelling framework, this effect may correspond to a decrease in β by

the treatment, for example, due to a reduction in the effective dopaminergic gain. This would

result in altered behavioral output, without necessarily affecting learning. More generally, the

sampling framework can provide a quantitative theoretical framework to model the relation
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between dopamine and various aspects of stochastic exploration, such as novelty-driven explo-

ration [132,133].

A more realistic and complete model would include other aspects of decision making such

as goal-directed behavior and planning. It is important to note that since the FCD model does

not hinder learning, it is compatible with these aspects and they are likely to complement

reward-taxis with more directed movement. Such a combination of navigation mechanisms is

evident also in simple organisms that employ run-and-tumble navigation. For example, in C.

elegans thermotaxis, run-and-tumble navigation is combined with biased reorientations in

order to navigate towards an optimal temperature range [106]. Formally, while run-and-tum-

ble navigation resembles Langevin-based sampling, directed reorientations are more closely

related to gradient descent, which is efficient for local optimization but poor for global optimi-

zation [127,134,135]. We thus propose that the reward-taxis mechanism we describe can com-

plement other navigation and decision making-mechanisms to allow for efficient navigation

in complex environments.

Methods

Model equations and fold-change detection

The equations for dopamine (d) and GABAergic inhibition (g) are provided by:

_d ¼ odðC þ mlogR � ag � dÞ ð7Þ

_g ¼ o
d
d0

� 1

� �

ð8Þ

For the dopamine equation, ωd determines the dopamine degradation rate, μ is dopamine

gain, R is expected reward (defined in the next Methods section), and α is GABAergic inhibi-

tion strength. For the GABAergic inhibition equation, ω determines the adaptation rate and d0

is the adapted steady-state of dopamine. For simplicity, we assume that dopamine dynamics

are faster than the dynamics of adaptation due to g (i.e., ωd is large compared with ω, this

assumption is not important for our conclusions) so we take:

d ¼ C þ mlogR � ag ð9Þ

Eqs 7, 8 and 9 can represent the average activity of individual neurons, or the total activity

of many neurons. We therefore used the same equations both to model average individual

neuron recordings (as in Fig 2), and to model the effect of dopamine on movement, which is

likely to be the sum of the activity of many neurons.

Consider now a constant input R = R0, so that after some time the system reaches

steady-state. To find the steady state, we solve Eqs 7 and 8, taking _d ¼ 0; _g ¼ 0, which

yields the steady-state solutions dst = d0 and gst = α−1(C−d0+μ log R0). The observation

that dst = d0 regardless of R0 and other circuit parameters is an important circuit feature

from systems biology known as exact adaptation [27,50,136–138]. This feature is essential

for explaining why dopamine activity returns precisely to baseline after a step increase in

expected reward, while GABAergic activity increases in a way that tracks expected

reward.

Beyond exact adaptation, the system has an even stronger property of fold-change detection
(FCD). FCD is defined as dynamics of dopamine (d) in response to an input λR(t) that are

independent of λ, starting from initial conditions at steady-state for λR(0). To show this we
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relabel g = g0+α−1 μ log λ:

_d ¼ odðC þ mloglR � ag � dÞ ¼ odðC þ mlogRþ mlogl � ag � dÞ
¼ odðC þ mlogR � ag

0 � dÞ ð10Þ

g 0
_

¼ o
d
d0

� 1

� �

ð11Þ

Note that the rate equation for _g 0 is the same as for _g since
dg0

dt ¼
dg0
dg

dg
dt ¼

dg
dt. Eqs 10 and 11 are

completely independent of λ, and their steady-state g 0st ¼ a
� 1ðC � d0 þ mlogR0Þ and dst = d0 is

also independent of λ. This means that the dynamics of the system have the FCD property.

The FCD property is essential for explaining the scale invariance of the dopaminergic

responses to rewards in Fig 2 –the response only depends on the fold-change of expected

reward (two-fold change upon reception of reward at p = 0.5) but not on reward magnitude.

While Eqs 7, 8 and 9 provide FCD, they are not the only possible model that provides FCD

for this system. In particular, a feed-forward model where expected reward activates g is also

possible, i.e.:

_d ¼ odðd0 þ C þ mlogR � ag � dÞ ð12Þ

_g ¼ o
C þ mlogR

a
� g

� �

ð13Þ

For this circuit, the steady state for a constant input R = R0 is gst ¼
aþmlogR0

a
and dst = d0. FCD

can also be analogously shown. Given an input λr(t), we can take g = g0+α−1 μ log λ, which

again provides equations and steady-state that are independent of λ:

_d ¼ odðd0 þ C þ mloglR � ag � dÞ ¼ odðd0 þ C þ mlogR � ag 0 � dÞ ð14Þ

g 0
_

¼ o
C þ mloglR

a
� g

� �

¼ o
C þ mlogR

a
� g 0

� �

ð15Þ

While this simple log-linear model captures various important experimental observations, it is

important to note that it has some clear limitations. One limitation is that both d and g can in

principle reach negative values when R is small. Measurements of dopamine responses in

monkeys indeed show deviations from sub-linearity for small rewards [139]. The model can

be adjusted to prevent negative undershoots (S3 Fig). Future studies may build on improved

measurements and better mechanistic characterization of the dopamine circuit to refine this

model. Finally, the original studies quantifying the input/output relation between reward mag-

nitude and dopaminergic output, presented in Fig 2, considered fits by strongly sublinear

power- and hill-functions [30,38]. It is not possible to discriminate between these functions

and the logarithmic relation with the available data, and such a fit would require more accurate

measurements over large magnitude ranges.

Definition of expected reward and relation between the circuit and TD

learning

Here we will define the input to the circuit, which is the logarithmic expected reward log R,

and present it in the context of the temporal difference (TD) learning theory of dopamine
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function [5,7]. We first define the expected temporally discounted sum of future rewards V
(also known as the value function in TD learning):

Vðt0Þ ¼ E½
P1

t¼t0
gtrðtÞdt� ð16Þ

Where γ<1 is a “future discounting” factor and r(t) is the reward received at time t into the

future (here for simplicity we take discrete time; for equivalent formulation for continuous

time, see Doya [140]). It is possible to think of V as a function of the current state s of the

agent, which may include for example its location in space x. This is known as the Markovian

setting, where we denote the value function as V(s). The value function plays an important role

in decision making—learning the value function is a principal focus of reinforcement learning

algorithms [5,7].

In our model, the input to the circuit for an agent moving into a state s at time t is defined

using the expected reward R:

Rðt; sÞ ¼ rðtÞ þ VðsÞ ¼ rðtÞ þ VðtÞ ð17Þ

As an example, consider the setting of Fig 2D–2F, where a reward of size r = y is delivered

with probability p at Δt time-units into future: the expected reward would in this case be R
(0)�pγΔty. An actual delivery of the reward would then increase R to R(Δt)�y, so the ratio
RðDtÞ
Rð0Þ ¼

1

pgDt is independent of reward magnitude.

Note that due to discounting and uncertainty, R decays with the distance from a location

where a reward is delivered, as in Fig 1D [36].

We will now show that our model is consistent with the TD learning theory of dopamine

function with a slight modification to the TD learning rule. We will first briefly present the TD

learning algorithm. In reinforcement learning, the agent usually does not know V and needs to

learn it from experience. This presents a computational problem, since V is an infinite sum

over unknown future events. A way to get around this is to update the learned V using

dynamic programming [141]. The key insight is that Eq 16 can be rewritten as:

Vðt0Þ ¼ E½
P1

t¼t0
gtrðtÞdt� ¼ E½rðt0Þ� þ gVðt0 þ 1Þ ð18Þ

The above equation implies that V can be estimated iteratively with a simple update rule,

which is at the heart of TD learning. If the agent is at state s at time t, and at state s’ at time t+1,

the update rule is:

Vðt þ 1; sÞ  Vðt; sÞ þ a ðrðtÞ þ gVðt; s0Þ � Vðt þ 1; sÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

prediction error

ð19Þ

Where V(t, s) is the computed estimate of the expected reward at state s at time t, α is the

learning rate, r(t) is the reward delivered at time t and γ is the discounting factor. There is

extensive literature demonstrating correspondence between TD learning and midbrain dopa-

mine function (reviewed by [8]); specifically, experiments show a correspondence between

phasic dopamine secretion and the prediction error term of Eq 19 [5,8], in the sense that posi-

tive or negative firing of dopamine neurons relative to baseline corresponds positive and nega-

tive predictions errors in TD models of learning.

We will now show that our model is capable of learning the logarithm of V (that is, the loga-

rithm of the entire discounted sum over future rewards), in a manner similar to the learning of

V by classic TD learning. Since both are equivalent, our model is sufficient for explaining TD

learning by dopaminergic responses. For this we will develop a plausible temporal difference

learning rule based on logarithmic prediction errors: dlog ¼ logðrðtÞ þ gVðt; s0ÞÞ � logVðt; sÞ.
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The learning rule is an extension of the learning rule presented in Eqs 15–17 in Coulthard

et al. [142]. To devise the learning rule, consider the Taylor expansion of the logarithm of the

update rule given in Eq 19 around r(t)+γV(t, s0) = V(t, s):

logVðt þ 1; sÞ  logðVðt; sÞ þ aðrðtÞ þ gVðt; s0Þ � Vðt; sÞÞÞ � logVðt; sÞþ

a
rðtÞ þ gVðt; s0Þ

Vðt; sÞ
� 1

� �

¼ logVðt; sÞ þ a elogðrðtÞþgVðt;s0ÞÞ� logVðt;sÞ � 1
� �

¼ logVðt; sÞþ

aðedlog � 1Þ

ð20Þ

The above equation represents an update rule that only needs the modified prediction error

term δlog in order to learn the value function. In the continuous limit, and in the absence of

reward, the error term is approximately proportional the logarithmic derivative of the value

function. This corresponds to the output of our proposed FCD model for low frequency

signals.

The output of the circuit to a delivered reward in a transition from a state s to a state s’ is

also approximately proportional to the above error term:

Dd ¼ C þ mlogRðtÞ � agðtÞ � d0 ¼ mðlogðrðtÞ þ Vðs0 ÞÞ � logðVðsÞÞ ð21Þ

The final equality is due to the fact that prior to reward delivery, GABAergic output adapts

to α−1(C−d0+μ log V(s)). The FCD model is therefore compatible with the TD learning theory

of dopamine function. In S4 Fig we provide simulations for learning with the modified learn-

ing rule, where we show that it indeed learns log V.

Analysis

The fit of the dopaminergic responses in Fig 2 (including confidence intervals) was performed

using the NonlinearModelFit function of Mathematica (version 12.1.1). All other figures and

simulations were produced using Python (version 3.8.5). The source code and data to produce

all the figures is available at https://github.com/omerka-weizmann/reward_taxis.

Supporting information

S1 Text. Supplementary theory, including derivation of Langevin dynamics and matching

law from run-and-tumble model.

(DOCX)

S1 Fig. Model dynamics are consistent with derivative-like dopamine dynamics on a sec-

onds timescale. Dopamine output to movement in a reward gradient given by RðxÞ ¼ e� gxh ,

with h = 1.5, x0 = 1, v0 = 1 and γ = 0.04, and perturbations as described in Fig 2 of [12]. Insets.
Corresponding dopaminergic outputs from mice (left to right: n = 11, n = 11, n = 15, n = 5)

VTA neurons measured by calcium imaging, from Fig 2C, 2G, 2K and 2O in [12], smoothed

using a Savitzky–Golay filter. All simulations were performed with the parameters provided in

Table 1.

(DOCX)

S2 Fig. Dopaminergic responses to variable size liquid rewards in monkeys. Dopamine

responses in Macaque monkeys to cues predicting variable size liquid rewards (dashed lines)

correspond to model simulations, given by a step R(t) = R0+λuθ(t−t0) where θ(t−t0) is a unit

step function, R0 = 1 and λ = 20 ml−1, and u is the expected value of the liquid volume that the

cue predicts. Data is from the population neuron recordings of Fig 1B in Tobler et al. [26], cor-

responding to, from left to right: 0.0 ml with probability p = 1, 0.05 ml with probability p = 0.5,
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0.15 ml with probability p = 0.5, 0.15 ml with probability p = 1, and 0.5 ml with probability

p = 0.5. The probabilistic responses correspond to the responses where scale invariance is

observed in Fig 2.

(DOCX)

S3 Fig. Responses to reward gain / omission in unadjusted and adjusted FCD models. (A)

Reward reception and omission was simulated according to Eqs 1,2 in the manuscript in a

manner similar to the simulations in Fig 1. The input is given by R(t) = R0+λθ(t−t0) where θ(t
−t0) is a unit step function, R0 = 1 and λ = 7 for the reward reception and R0 = 7, λ = −6 for

reward omission. Note that Eq 1 reaches negative values upon reward omission. (B) Dynamics

for model where Eq 1 is adjusted as d ¼ C þ m logR � ag d
dþkd

(here taking kd = 1). This model

does not reach negative values of d, and behaves similarly to the FCD model if kd�d0.

(DOCX)

S4 Fig. Learning the logarithm of expected rewards with recursive rules. (A) Simulation

setup. The agent progresses through a series of N states S1,. . .,SN, where in the final stage SN a

reward is drawn according to a distribution with a fixed mean reward value. In the simulations

we use three distributions (deterministic reward, normal distribution with CV = 0.3, and Ber-

noulli trials). A logarithmic value function log V is learned recursively according to the rule

logVtþ1ðsÞ  logVtðsÞ þ aðelogðrðtÞþgVtðsþ1ÞÞ� logVtðsÞ � 1Þ. (B,C) Learning simulations with reward

magnitude 50 (B) and 200 (C). Thick line denotes a log Vt+1(S1) in a single simulation, while

thin dashed line denotes expected logVtþ1ðsÞ ¼ logE½
P1

t¼t0
gtrðtÞdt�. Simulation parameters

are N = 5, α = 0.02. Figures were created with BioRender.com.

(DOCX)
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