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Editorial

Silencing of immune activation with methotrexate in patients with COVID-19

It is becoming apparent that patients with COVID-19 are developing
a wide variety of autoimmune syndromes many of which involve the
nervous system (Table 1). These syndromes most often occur when
patients are recovering from the acute viral symptoms. Even in patients
with active infection in the lungs, the inflammatory response to the
viral infection can be overwhelming in some which is thought to be the
major cause of acute respiratory distress syndrome or the viral pneu-
monia [1,2]. The inflammation is also thought to mediate a hy-
percoagulable state leading to thromboses in multiple blood vessels and
organ systems including the brain [3,4]. Thus, these inflammatory
syndromes are a major cause of morbidity and mortality in this patient
population.

It is not unusual for viral infections to cause a massive immune
response that overwhelms the host. However, the genetic factors that
determine the susceptibility are not entirely clear. When a viral pa-
thogen first infects a new host, there is a massive immune attack
mounted by the immune system in an effort to control the organism,
however the process of heightened immunity results in substantial in-
jury to the host. This has been best studied in the context of retro-
viruses. For example, the simian immunodeficiency virus in the sooty
mangabey macaques is non-pathogenic even though it produces very
high titers of virus. There is a lack of immune response to the viral
infection [5]. The same virus when inoculated into other species of
macaques can cause an overwhelming inflammation and an AIDS like
syndrome. However the adaptation to the host can take thousands of
years and ultimately these retroviruses can become part of the mam-
malian genome itself [6]. Similarly, a number of viruses that cause little
pathogenicity in bats when transmitted to humans can induce devas-
tating syndromes. This has been attributed to the lack of stimulation of
the interferon pathway in bats [7]. These include Ebola, Marburg,
Nipah, Rabies, Hendra, MERS, SARS and now SARS-CoV-2 [8]. Massive
inflammation accompanies most of these infections resulting in by-
stander injury. Several terms have been used to describe this remark-
able inflammatory response that includes cytokine storm, viral sepsis
and PANIC (Prolific Activation of a Network-Immune Inflammatory
Crisis) [9–11].

At the early stage of severe COVID-19 infection, there are features of
macrophage activation syndrome with increased C reactive protein,
ferritin and cytokines like IL-1beta, IL-6, IL-8 and TNF-alpha [12].
Single cell sequencing of peripheral blood cells demonstrates a re-
markable increase in inflammatory monocytes particularly CD14 + IL-
1 beta+ cells at the early stage of recovery that normalizes later in the
course of recovery [13]. Lymphopenia and lower numbers of CD4 and
CD8 T cells if present in early COVID-19 infection [14] are associated
with more severe disease and poor prognosis [15]. However, percen-
tage of inflammatory CCL6+ Th17 cells increases and circulating reg-
ulatory T cells severely declines in these patients. [15,16]

In later stages of infection lymphopenia and atrophy of the spleen
and necrosis of the lymph nodes has been noted at autopsy, In these
autopsy cases macrophage infiltration is a key pathological finding in
the lung [17]. Additionally, ACE2+ CD169+macrophages are infected
with SARS-COV2 in spleen and lymph nodes and lead to IL-6 production
and lymphocyte apoptosis through FAS/FASL pathway [18]. Activation
of alternative complement pathway and complement deposition in
microvasculature of lung and other tissues has also been described [19]
Use of an anti-inflammatory drugs in the presence of an active infection
may sound counterintuitive. However, control of the inflammation is
critically important to prevent catastrophic end organ damage. Even
though the virus is the agent that triggers the immune response, control
of the virus alone may not be sufficient for rapid dampening the im-
mune response, which is driven by multiple positive feedback loops. For
example, there is extensive experience in the use of anti-inflammatory
drugs such as corticosteroids in patients with bacterial meningitis
where it is given early in the course of infection along with anti-
microbial drugs [20]. In the case of COVID-19, recent studies show that
Remdesivir which is a nucleoside analog has a modest effect on the
infection by decreasing the duration of hospitalization but no sig-
nificant effect on mortality [21,22]. It was recently approved by the
FDA for emergency use for treatment of the infection. Several immune
modulatory drugs have been used in patients with COVID-19 and some
are in clinical trials (Table 2). However, careful consideration needs to
be given to the choice of anti-inflammatory drugs, since they all have
different mechanisms of action and hence affect different arms of the
immune system. For CNS syndromes additional consideration for pe-
netration across the blood brain barrier needs to be considered as well.
Hence a thorough understanding of the pattern of immune activation by
SARS-CoV-2 is important. Many clinical studies are underway and im-
mune manifestations of the infection will soon become well char-
acterized. But even now it is clear that complement activation and
macrophage mediated lung injury is a major concern. And in some
patients antibody-mediated syndromes are becoming apparent. The
cause of hypercoagulability is also thought to be immune mediated and
antiphospholipid antibodies have been detected in these patients but
this needs further investigation [3].

In the current manuscript, the authors provide strong rationale for
the use of high dose methotrexate for treatment of the SARS-CoV-2
associated inflammatory syndromes [10]. As discussed by the authors,
the primary mode of action of methotrexate is via inhibition of folate
dependent pathways leading to inhibition of DNA synthesis in rapidly
dividing tumor cells [10]. However the anti-inflammatory effects of
methotrexate are broad particularly at high dosages and the mechan-
isms are not fully understood. Methotrexate significantly decreases IL-6
and TNFa in T cells and increase regulatory T cells [23]. Activated T
cells undergo cell division so the effects of methotrexate on
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inflammatory T cells can also be explained by action on the folate
pathway. In addition, the drug also binds directly to high-mobility
group box 1 (HMGB1) protein and by doing so inhibits its interactions
with RAGE leading to inhibition of cytokine production by macro-
phages [24]. High dose Methotrexate is shown to decrease monocyte
proliferation and modify their function towards less inflammatory cy-
tokine profile [25].

Administration of high dose methotrexate requires careful con-
sideration of a number of factors. The authors provide a detailed pro-
tocol and list potential drug-drug interactions. The authors share their
personal experience in treating neuroinflammatory disorders, which
includes a single case of adenovirus associated encephalomyelitis and
several other cases of autoimmune CNS diseases that had failed other
modes of treatment [10]. Another advantage of methotrexate is that it
is widely available, it is relatively inexpensive, there is extensive ex-
perience with the drug, it has good CNS penetration and can also be
administered intrathecally if necessary.

In conclusion, select patient populations COVID-19 in whom cyto-
kine storm or other autoimmune syndromes are a major consideration,
methotrexate is a reasonable choice but should be done in the context of
a clinical trial so that data on the effects on the virus and the immune
system can be collected. The recent approval of Remdisivir as an anti-
viral agent, now makes it possible to treat patients with a combination
of the two drugs. In fact combining Remdesivir with an anti-in-
flammatory agent will likely improve its efficacy.
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Table 1
Autoimmune and inflammatory syndromes associated with COVID-19.

Neurological
Acute disseminated encephalomyelitis [26]
Acute Necrotizing Hemorrhagic Encephalopathy [27]
Transverse myelitis [28]
Neuromuscular
Guillain Barre Syndrome [29]
Rhabdomyolysis [30]
Myocarditis [31]
Pulmonary
Acute Respiratory Distress Syndrome [17]
Systemic
Vascular occlusions [4]
Kawasaki Syndrome [32]
Chronic Fatigue Syndrome
Others
Purpuric rash [19]
Keratoconjunctivitis [33]
Orchitis [34]

Table 2
Anti-inflammatory Agents currently being used.

Corticosteroids: broad immunosuppressant effects but induces SARS-CoV-2 receptor,
ACE2

Tocilizumab; Kevzara: inhibits IL-6 receptor and downstream pathways
Anakinra: inhibits IL-1 and downstream pathways
Eculizumab: blocks complement pathway
Plasmaphoresis: Removes soluble mediators; little effect on immune cells,; also

removes antiviral antibodies; contamination of equipment, some patients are
hemodynamically unstable
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