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Proteins are the executors of cellular physiological activities, and accurate structural and function eluci-
dation are crucial for the refined mapping of proteins. As a feature engineering method, the reduction of
amino acid composition is not only an important method for protein structure and function analysis, but
also opens a broad horizon for the complex field of machine learning. Representing sequences with fewer
amino acid types greatly reduces the complexity and noise of traditional feature engineering in dimen-
sion, and provides more interpretable predictive models for machine learning to capture key features.
In this paper, we systematically reviewed the strategy and method studies of the reduced amino acid
(RAA) alphabets, and summarized its main research in protein sequence alignment, functional classifica-
tion, and prediction of structural properties, respectively. In the end, we gave a comprehensive analysis of
672 RAA alphabets from 74 reduction methods.
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1. Introduction

As the direct execution molecules of cellular life activities, the
study of proteins has received much attention in the past few dec-
ades. With the maturity of technologies such as high-throughput
sequencing, mass spectrometry, and co-immunoprecipitation,
more and more protein sequence, structure, and function data have
been annotated and published, which opened the way for human
proteomics research [1,2]. However, it has been gradually discov-
ered that there are many drawbacks in the method of annotating
protein information experimentally, such as time-wasting, expen-
sive consumables, inefficiency, etc.
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In recent years, the analysis and prediction methods based on
machine learning and artificial intelligence have been continuously
developed and applied to the research of biology and bioinformat-
ics, which greatly shorten the experimental time and improve the
experimental efficiency [3,4]. However, researchers’ work is hin-
dered by the cumbersome feature engineering, the increased com-
plex network model architectures, and ever-upgrading hardware
requirements [5,6]. To this end, people are also seeking balance,
resulting in various feature analysis and optimization methods,
such as principal component analysis (PCA), relief algorithm, F-
score, linear dimension reduction algorithm (LDA) and more
streamlined model architectures such as deep residual networks
(ResNet) [7–11].

The simplified amino acid composition greatly reduces the
dimensions of traditional feature engineering, effectively sup-
presses the negative effects of noise, and provides the model with
richer biological prior knowledge to extract key features [12,13]. In
addition, it is highly inclusive and has good compatibility with
many existing methods, which helps to promote the further inte-
gration of traditional machine learning and biology [14,15].

RAA alphabets are not a recent product, which had been men-
tioned as early as the 1960s. Morita et al. proposed in 1967 that
three-clusters random polypeptide segments (Glu, Lys, Ala) can
form a helix [16]. In 1992, Heinz et al. confirmed the existence
of a lot of redundant information in the amino acid sequence
through the phage T4 lysozyme mutation experiment [17]. In the
same year, the evolution of amino acid types from simple to com-
plex was demonstrated by Osawa et al. [18]. A five-clusters reduc-
tion scheme was proposed by Riddle et al. in 1997 through the
phage SH3 domain [19], which was tested by Wolynes from the
perspective of energy [20]. Schafmeister et al. also proposed the
use of a seven-clusters reduction scheme to synthesize 4 helical
protein bundles [21]. In 1999, Wang et al. proposed a minimal
mismatch-based RAA alphabets named HP, which laid a theoretical
foundation for the research on RAA alphabets [22]. Their model
still plays an important role in many theories until now.

As part of feature engineering, the most important feature of
the reduced amino acid (RAA) composition is the fundamental
redefinition of sequence. For any protein sequence, 20 amino acid
Fig. 1. A reduced amino acid alphabet of two-clusters (AMWLYCFIV-PGHTSDEKNQR) can
different colors on the left represent 20 different amino acids; the right side represents 20
clusters under the same reduction method (Size 2–11). C: Alignment of original sequence
right respectively represent the original Weblogo, RaacLogo by the first letter of each cl

3504
residues can be grouped by specific methods and assigned new
identifiers to each class (Fig. 1A). We construct sequences using
the c residues and map them one-to-one with the natural sequence
(Fig. 1C). According to specific clustering rules, we construct RAA
alphabets of different clusters (Size 2–19), which is more con-
ducive to the wide adaptation of the same reduced alphabet to dif-
ferent protein data (Fig. 1B).

In the following, we systematically review the methodological
studies of the reduced amino acid alphabets and their major pro-
gress in protein sequence alignment, functional classification, and
prediction of structural properties. The 672 RAA alphabets of the
74 reduction methods will be comprehensively discussed in the
end.
2. The reduction methods of natural amino acid alphabets

Since the 21st century, the rapid development of computer
technology and the raise of various amino acid mutation matrices
(such as Miyazawa and Jernigan’s MJ-matrix [23], BLOSUM matrix
[24,25], PAM matrix [26,27], JTT matrix [28], WAG matrix [29])
have expanded the application direction of RAA. Murphy et al. used
the BLOSUM50 mutation matrix to illustrate the effect of RAA on
protein folding and predict that only 10–12 clusters of RAA alpha-
bets would be required to represent different families of proteins
[30]. Kosiol et al. constructed the new RAA alphabets using a Mar-
kov model based on PAM matrix and WAG matrix which were
famous in the field of sequence alignments and phylogenetic trees
[31]. Cannata et al. used multiple substitution matrices such as
PAM and BLOSUM to perform an exhaustive analysis of all possible
RAA alphabets and built it into the WebServer platform AlphaSimp
[32].

Then, some biologists boldly put the RAA alphabets into practi-
cal application, trying to apply RAA alphabets to existing research.
Akanuma et al. replaced 88% of the amino acid sequence with AAA
reduced sequences (A, D, G, L, P, R, T, V, Y) by site-directed muta-
genesis of Escherichia coli whey phosphoglycosyltransferase,
which did not affect the structure and function of the protein
[33]. Davies et al. developed a G protein-coupled receptor (GPCR)
be represented in protein sequence by AP. A: Sankey diagram of RAA alphabet, the
amino acids are gradually clustered into two clusters. B: RAA alphabets of different
and RAA sequence. D: The application of RAA alphabet in WebLogo. Left, middle and
uster and RaacLogo by color of each cluster.
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classifier through artificial immune algorithm (AIS) combined with
RAA alphabets, and achieved great results [34].

In the past research, the RAA alphabets based protein prediction
methods mostly relied on traditional machine learning techniques
like support vector machine (SVM) [35]. They achieved superior
performance in many scenarios. For example, in 2004, Weathers
et al. used RAA alphabets based on SVM to classify and predict
intrinsically disordered proteins, and achieved an accuracy of
about 87% [36]. In 2009, Bohnstingl et al. used the RAA-based Bio-
HEL to predict the number of contacts and relative solvent accessi-
bility of protein structures [37]. Yang et al. proposed an RAA-SVM
model for predicting protein subcellular localization in 2015, and
compared the prediction performance of different machine learn-
ing models in detail [38].

A new generation of deep learning based machine learning
algorithms greatly enhanced the customization and application
of RAA alphabets. In 2001, Meiler et al. published an RAA alphabets
generation method based artificial neural network, and proposed
that each amino acid can be replaced by several sets of physical
features [39]. In 2020, Oberti et al. used a convolutional neural net-
work based RAA alphabets to predict the intrinsically disordered
regions of proteins [40].

3. The application of reduced amino acid alphabets for
sequence alignment

Sequence alignment and sequence search algorithms are not
only one of the most commonly used methods in bioinformatics
but also the cornerstone of many mainstream protein analysis
methods. However, with the continuous increase of protein data
and sequence complexity, the efficiency of multiple sequence
alignment in huge databases is gradually unsatisfactory. There
have been a lot of studies to improve the speed of sequence align-
ment from different methods, among which the RAA composition
has been used as a common dimension reduction method in many
excellent studies.

Algorithms for sequence alignment of proteins usually have
high time complexity due to the diversification of sequences. Mur-
phy et al. analyzed in detail the protein alignment effect of the RAA
alphabets with different sizes, and pointed out that alphabets with
less than 10 clusters would greatly lose sequence information. Ye
et al. developed the fast protein similarity search tools RAPSearch
and RAPSearch2 based on the 10-clusters RAA alphabet, which
are 20–90 times faster than BLAST, and more significantly for
shorter reads [41,42]. Buchfink et al. constructed DIAMOND, which
is a fast protein sequence alignment algorithm using an algorithm
based on a double index of the RAA alphabet [43]. It is 40–20,000
times faster than BLAST and has close sensitivity, which greatly
improves alignment efficiency in large databases. Steinegger
et al. proposed that the Kmer based on RAA alphabets and BLO-
SUM62 matrix can greatly improve the efficiency of sequence
alignment, and developed a series of sequence search/clustering
algorithms and tools for MMSeq based on this method [44–46].
Melo et al. used the RAA composition to align distant homologous
sequences, and pointed out that fewer amino acid species would
improve the alignment performance of conserved structures of dis-
tant homologous sequences [47].

4. The classification of protein function based on reduced
amino acid alphabets

With the exponential expansion of proteomic data, using
machine learning methods to mine the sequence intrinsic regular-
ities behind the functions of known proteins from massive data
and make accurate predictions about the functions, families and
cellular localization of unknown proteins has become a focus of
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the current research work. Simplified amino acid alphabets greatly
expand the method of protein sequence feature representation,
and restore the seemingly complex and disordered sequence due
to evolutionary mutation to a more conservative and concise state.
It not only explains the sequence properties and evolutionary
direction of proteins in biology, but also improves the prediction
performance of the model.

In 2007, Chen et al. constructed a six-clusters reduced alphabet
based on amino acid hydrophilicity and hydrophobicity, which
successfully predicted the subcellular localization of apoptotic pro-
teins, emphasizing the importance of hydrophilicity in the study of
protein subcellular localization sex [48]. In 2012, Lin et al. con-
structed a multi-classification model of the ketoacyl synthase fam-
ily based on RAA-SVM, which enabled SVM to obtain important
compositional features of proteins [49]. In 2013, Feng et al. devel-
oped iHSP-PseRAAAC for predicting heat shock proteins and
achieved good performance in complex classification tasks [50].
In 2014, Liu et al. published a prediction model for DNA-binding
proteins based on RAA alphabets, which greatly reduced the fea-
ture dimension of traditional pseudo-amino acids and improved
the prediction performance [51]. Similarly, our previous works
successfully applied RAA alphabets in important research fields
such as protein subtype classification, protein subfamily classifica-
tion, and protein subcellular localization [52–54]. Veltri et al. pub-
lished a reduced alphabet model based on deep learning in 2018,
and successfully improved the recognition accuracy of antimicro-
bial peptides [55].

It is worth noting that the reduction alphabets of amino acids
directly affect the performance of classification prediction, and it
is important to choose the most suitable reduction scheme among
a large number of imputation models. In 2008, Davies et al. used
the artificial immune system (AIS) to screen the RAA alphabetsmost
suitable for G protein-coupled receptors, and analyzed the contribu-
tion and significance of the reduced alphabet in the GPCR classifica-
tion model through classifier prediction results [34]. By comparing
different reduction alphabets, they found that cysteines always tend
to be grouped independently, which is closely related to the forma-
tion of disulfide bonds and the maintenance of spatial structure of
GPCRs, and is a key feature of GPCR classification. In 2019, we used
a RAA-based Kmermethod to predict defensins, small antimicrobial
proteins that play an important role in cellular nonspecific immu-
nity [12]. Bymodeling the predictions for the K = 2 andK = 3 features
of more than 600 reduced alphabets, the best prediction perfor-
mance was finally achieved in the ‘‘PGEKRQDSNTHClVW-YF-ALM”
scheme with K = 2, and the highest prediction scores were achieved
in different species and different excellent results were obtained in
the defensin prediction of the family.

In addition, a large number of researchers are also working on
the construction and popularization of RAA alphabets platforms,
which can also be obtained in Table 1. In 2007, Shimizu proposed
POODLE-S, a protein disorder prediction platform based on amino
acid physicochemical properties and position-specific scoring
matrix, which has received extensive attention and citations [56].
In 2017, our group built an RAA platform PseKRAAC based on
pseudo-amino acids and Kmers, and integrated 16 amino acid
sequence reduction schemes, which facilitated non-
bioinformatics researchers [57]. In 2019, Xi et al. proposed a map-
ping tool platform based on RAA method, RaaMLab. They organize
a large database of amino acid physicochemical properties and
support user-defined reduced alphabets [58]. In recent years, we
successively constructed iDEF-PseRAAC, RaacLogo, RaacBook,
OGFE-RAAC and other protein analysis and prediction platforms
based on RAA alphabets, which enriched the application scope of
RAA alphabets and emphasized the important role of simplified
amino acid composition in sequence-structure–function (Fig. 1D
and Table 1) [12–15,59].



Table 1
RAA Webserver platform summary.

Webserver Name Link Cite

PseKRAAC http://bigdata.imu.edu.cn/ [57]
RAACBook http://bioinfor.imu.edu.cn/raacbook [14]
RaacLogo http://bioinfor.imu.edu.cn/raaclogo [59]
iSP-RAAC http://bioinfor.imu.edu.cn/ispraac/public [60]
iDEF-PseRAAC http://bioinfor.imu.edu.cn/idpf [12]
iHEC-RAAC http://bioinfor.imu.edu.cn/ihecraac [13]
POODLE-S http://mbs.cbrc.jp/poodle/poodle-s.html (Inaccessible) [56]
RaaMLab https://github.com/bioinfo0706/RaaMLab [58]
iHSP-PseRAAAC http://lin-group.cn/server/iHSP-PseRAAAC [50]
OGFE-RAAC http://bioinfor.imu.edu.cn/ogferaac [15]
iDNA-Prot http://bioinformatics.hitsz.edu.cn/iDNA-Prot_dis/ [51]
PROFEAT http://jing.cz3.nus.edu.sg/cgi-bin/prof/prof.cgi (Inaccessible) [61]
cnnAlpha https://github.com/mauricioob/shiny-pred [40]
iDPF-PseRAAAC http://wlxy.imu.edu.cn/college/biostation/fuwu/iDPF-PseRAAAC/index.asp (Inaccessible) [54]
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5. The prediction of protein structure property based on
reduced amino acid alphabets

The structure of protein is a decisive factor in its functioning. A
large number of proteins with unique functions are obviously con-
served in their natural structures. For example, GPCRs have seven
transmembrane domains, and their structures show clear rules of
Fig. 2. Statistics of 672 RAA alphabets in 74 reduction methods. A: The 74 reduction met
on the timeline. B: The 672 RAA alphabets are divided into 6 categories according to diffe
2–19) in the 74 alphabets. D: Summarize all RAA alphabets contained in the 74 reduct
indicates the number of reduced clusters. See the attachment for the full content.
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solvent accessibility. However, the detection methods of protein
structure and properties are complicated, and the manual analysis
is inefficient, which has been plaguing the whole biological world.
The traditional identification of protein structure properties
requires professional technicians to gradually explore through
methods such as X-ray crystallography and nuclear magnetic reso-
nance, which takes a long time. After the rise of bioinformatics,
hods are divided into 6 categories according to different principles, and are arranged
rent principles, and correspond to Type. C: RAA alphabets of different clusters (Size
ion methods and cluster according to application scenarios, and the shade of color
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Table 2
The 6 reduction categories of 74 reduction methods.

Categories Reduction
Alphabets

Reduced
clusters

Cite

Clustering Algorithm 24 259 [55,63–71]
Mutation Matrix 20 239 [22,30–32,51,72–80]
Computer Method 12 60 [34,37,47,78,81,82]
Physical and Chemical

Method
12 52 [36,37,48,61,78,83–89]

Information Theory 3 32 [90–92]
Statistical Analysis 3 30 [63,78,93]
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people used early experimental data to analyze structural laws
through machine learning methods, and tried to predict protein
structure properties, such as intrinsic disorder, solvent accessibility
and contact number.

Weathers et al. used hydrophilicity and hydrophobicity as the
reduction rule for functional classification prediction of intrinsi-
cally disordered proteins, and pointed out that hydrophobic amino
acids play a central role in stabilizing folded proteins in 2004 [36].
In 2006, Melo proposed the use of RAA alphabets to improve
sequence alignment and protein folding accuracy [47]. They devel-
oped a new genetic algorithm to obtain a five-clusters reduction
scheme based entirely on structural information, and supposed
that the five-clusters-based reduction model also has good predic-
tive performance in evaluating protein folding. In 2009, Bacardit
et al. proposed a method for predicting protein structure contact
number and solute accessibility on the basis of the mutual infor-
mation reduced alphabet, and emphasized that the reduction well
preserved the physicochemical properties of amino acid residues
Fig. 3. Five high-frequency words and their structures. A: The word ST, which is compose
and their R groups are both polar OH�. B: The word FY, which is composed of phenylalani
groups are both phenyl rings. C: The word RK, which is composed of arginine and lysine,
amino groups in their R groups. D: The word IV, which is composed of isoleucine and val
nonpolar R groups. E: The word DE, which is composed of aspartic and glutamic is contain
groups.
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and improved the accuracy [37]. In 2020, Oberti et al. used a con-
volutional neural network based on simplified amino acid compo-
sition to predict the intrinsically disordered regions of proteins,
and proposed that RAA alphabets help convolution to recognize
complex patterns in sequences [40].

In recent years, the AlphaFold series created by Google Deep-
Mind has raised the accuracy and efficiency of protein structure
prediction to a new level based on a powerful artificial neural net-
work architecture. With the support of AlphaFold structure data-
base, a large number of protein structural properties analysis
predictions continue to emerge. Recently, a protein structure anal-
ysis platform RaacFold based on RAA alphabets has been con-
structed. It combines RAA alphabets with the structural database
predicted by AlphaFold2 and previous protein structure database,
which provides users with a convenient protein structure and
property analysis service by using different RAA alphabets [62].
The 3D rendering service of reduction structure properties pro-
vided by RaacFold enriched the application of RAA alphabets in
the analysis of protein sequence and structural properties.
6. A comprehensive analysis of the 672 reduced amino acid
alphabets

In recent years, we have collected a large number of RAA alpha-
bets and achieved many excellent results in predicting protein
functional classification by using these RAA alphabets. Based on
our research work, 672 RAA alphabets from 74 reduction methods
have been arranged, and annotated with the source and reduction
method of each reduced alphabet in detail (Please refer to the sup-
plementary file for full data). According to different principles, we
d of serine and threonine, is contained in 18 reduced methods and occurs 43 times,
ne and tyrosine, is contained in 23 reduced methods and occurs 77 times, and their R
is contained in 15 reduced methods and occurs 66 times, and both of them contain
ine, is contained in 20 reduced methods and occurs 94 times, and both of them have
ed in 23 reduced methods and occurs 77 times, and their R groups are both carboxyl
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summarize the 74 reduction methods into 6 types, namely Cluster-
ing Algorithm, Mutation Matrix, Computer Method, Physical and
Chemical Method, Information Theory and Statistical Analysis
(Fig. 2B and Table 2). Clustering Algorithm and Mutation Matrix
are widely used in RAA research, accounting for more than half
of the papers published in the past 20 years. Many RAA alphabets
are still in use today (Fig. 2A).

We counted 672 RAA alphabets and the reduced sizes they con-
tained (Fig. 2C), and classified them into seven categories accord-
ing to the application scenarios of each reduced alphabet, namely
protein folding, build reduced alphabets, functional classification,
secondary structure prediction, sequence alignment, structure pre-
diction, and protein interaction (Fig. 2D). Among all alphabets,
Size2-Size5 has the largest proportion, which is related to the early
results of a large number of RAA studies by Wang et al (Fig. 2C)
[22].

However, with the development of research, a large number of
research results pointed out that too small simplified alphabets can
easily lead to a large loss of sequence information. Reduced alpha-
bets of Size 10 and above perform better for most jobs while
retaining the protein information [30,75]. Of the 672 RAA alpha-
bets, nearly half of the alphabets have only been created and not
put into specific research work. Most of the rest are devoted to pro-
tein alignment, folding, and functional structure prediction, laying
a solid foundation for protein diversification analysis.

The combined frequencies of all words showed that the five
words ‘‘ST”, ‘‘FY”, ‘‘RK”, ‘‘DE” and ‘‘IV” were distributed more fre-
quently (over 40 times) in most alphabets (Fig. 3). This means that
these five words may be recognized by many researchers due to
their similar properties in a lot of cases. For example, Wang’s arti-
cle points out that ‘‘DE” (Asp and Glu) can be reduced to one class
by MJ matrix and contact potential, which is verified in Yu’s article
by a multi-species classification model, and the same reduction
results are obtained in Mirny’s article by structurally derived sub-
stitution matrices [22,84,86].
7. Conclusion

The research on the structure and function of proteins has been
accelerating, and the methods and tools that have been kept in
dust for many years have gradually shown their powerful advan-
tages. Protein analysis and prediction methods based on machine
learning improve analytical efficiency, achieve higher precision,
and solve deeper biological problems.

As an important part of protein feature engineering, the reduc-
tion of amino acid alphabets has realized the redefinition of
sequence and structure. It not only has strong inclusive power,
allowing it to be used as an upstream processing step for almost
all existing methods, but also provides the model with richer bio-
logical prior knowledge, which greatly optimizes the biological
background of traditional computer models and is expected to
decipher proteins under the complex structures.

In addition, it provides better solutions to problems such as the
cumbersomeness and dimension explosion of current machine
learning and artificial intelligence methods, and is more suitable
for deployment on small and medium-sized computers and servers
to reduce the computing pressure of equipment.

The current research results and evaluation criteria for RAA
alphabets have not formed a set of recognized systems, and RAA
alphabets have not been fully and maturely used in current
research. Under the joint promotion of all researchers, simplified
amino acid composition still has space for optimization and impor-
tant significance in the new era, and the technology and platform
based on RAA alphabets may still create higher and far-reaching
value in the future.
3508
Funding

This work was supported by the National Nature Scientific
Foundation of China (No: 62171241, 62061034, 61861036), the
Key Technology Research Program of Inner Mongolia Autonomous
Region (2021GG0398), and the Science and Technology Major Pro-
ject of Inner Mongolia Autonomous Region of China to the State
Key Laboratory of Reproductive Regulation and Breeding of Grass-
land Livestock (2019ZD031).
CRediT authorship contribution statement

Yuchao Liang: Writing - original draft, Investigation, Formal
analysis. Siqi Yang: Investigation, Writing - review & editing. Lei
Zheng: Software. Hao Wang: Writing - review & editing. Jian
Zhou: Writing - review & editing. Shenghui Huang: Software,
Investigation. Lei Yang: Writing - review & editing. Yongchun
Zuo: Writing - Review & Editing.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgements

We thank Mingzhu Liu, Pengfei Liang and others for their con-
tributions to the proofreading of the thesis.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2022.07.001.
References

[1] Zhang Z, Wu S, Stenoien DL, Paša-Tolić L. High-throughput proteomics. Annu
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