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Abstract: The design of a remotely operated vehicle (ROV) with a size of 18.41 cm × 29.50 cm × 33.50 cm,
and a weight of 15.64 kg, is introduced herein. The main goal is to capture underwater video by remote
control communication in real time via Ethernet protocol. The ROV moves under the six brushless motors
governed through a smart PID controller (Proportional + Integral + Derivative) and by using pulse-wide
modulation with short pulses of 1 µs to improve the stability of the position in relation to the translational,
ascent or descent, and rotational movements on three axes to capture images of 800 × 640 pixels on a
video graphic array standard. The motion control, 3D position, temperature sensing, and video capture
are performed at the same time, exploiting the four cores of the Raspberry Pi 3, using the threading
library for parallel computing. In such a way, experimental results show that the video capture stage can
process up to 42 frames per second on a Raspberry Pi 3. The remote control of the ROV is executed under
a graphical user interface developed in Python, which is suitable for different operating systems, such as
GNU/Linux, Windows, Android, and OS X. The proposed ROV can reach up to 100 m underwater, thus
solving the issue of divers who can only reach 30 m depth. In addition, the proposed ROV can be useful
in underwater applications such as surveillance, operations, maintenance, and measurement.

Keywords: ROV; underwater exploration; video capture; subsea inspection and intervention; marine
robotics; underwater technology; real time; vision; complementary filter; Raspberry Pi

1. Introduction

Recently, several works on remotely operated vehicles (ROVs) have been reported for applications
in ocean research [1–4]. In particular, ROVs have been used for underwater intervention, repair, and
maintenance operations in offshore industries, including oil and gas industries, marine structures, marine
sciences, naval defense, marine renewable energy, and scientific purposes [5–9]. Within submarine
applications, recognition tasks stand out; for example, in [10–12] ROVs are employed for tracking mines
and are programmed to carry out high-risk tasks, executing algorithms related to prediction, diagnosis,
and classification. Other research efforts have been focused for underwater surveillance [13,14] and they
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are configured to manage continuous tasks with specific objectives. Some other research attempts have
focused on the support in an optical fiber cable laying system on the seabed [15–17]. In [18,19], they
are key to oceanographic research related to obtaining highly dynamic tidal data. In marine archeology,
they are used for the exploration of underwater pools of toxic brine [20] and observation of underwater
structures [21]. Regarding underwater communication, the authors of [22] proposed the use of a secure
communication framework concealing the information under certain characteristics of pulses used by
mammals. In addition, ROVs can be used to capture underwater images, of which nowadays there are
open research lines [23–26]. However, despite the significant advances that have been achieved in the
different areas of application and development of ROVs, it is a fertile field for research given the wide range
of specialties that come into play in achieving optimal functionality. The precise sensing of underwater
applications is a current topic in the research community. Efforts related to positioning a system based on
GPS have been made; the characterization of the whole system in this case was done by means of a statistical
study, considering different numbers of beacons [27]. Additionally, a novel programmable event-driven
acoustic detector featuring audio pattern recognition for underwater deployment has been developed
in [28]. Even a robust algorithm related to an autonomous underwater vehicle (AUV) was proposed to
improve the supervised missions [29]. Currently, a real-time proposal of underwater acoustical imaging
systems has been developed in [30], with the contribution of high-resolution underwater 3D acoustical
imaging. Results based on implementation and experimental analysis of underwater stereo fusion and an
algorithm for real-time 3D dense reconstruction with camera tracking have been reported [31]. In [32],
the design and fabrication of an underwater remotely operated vehicle with single thruster configuration
is reported. In [33], the design and implementation of an aquatic robot type ROV is described. The authors
are focused on the design and implementation of an aquatic robot suitable for underwater exploration in
order to improve its stability performance and achieving an efficient exploration system.

Nevertheless, aspects such as the ROV’s autonomy, efficiency in energy consumption, processing and
information storage, hydrodynamic structure, position control, and limitations in communication are some
of the topics on which current research could contribute [34–37]. Another factor that can affect the ROV
design and implementation is the high cost involved, but it is important to consider an adequate balance
between the cost and the functionality of the system in relation to its application [38–41]. On this issue,
one can take advantage of embedded systems, which are very useful for solving real-world problems for
different fields of application. For example, the System on a Chip (SoC) Raspberry Pi has been used to
solve different problems of practical applications, such as the accounting of underwater fish [42] as special
case in a fish farm, or to perform complex tasks such as parallel computing [43].

In this paper, we propose the use of an SoC Raspberry Pi 3 as an onboard computer, since it can
be programmed by using open source software, it is cheap, it has multiprocessing capabilities, easy
scheduling tasks, and the programming language Python can be used. In addition, it is proposed to add
a complementary filter to a smart PID (Proportional + Integral + Derivative) controller reported in [44].
Therefore, experimental results show that the use of the complementary filter to the output signals of
inertial measurement unit (IMU) helps to improve the performance of the smart PID controller used for
the trajectory control, allowing to capture better quality of underwater images. Furthermore, experimental
results show that the proposed ROV can process up to 42 frames per second for underwater video capture,
due to its capability of performing parallel processing taking advantage of the threading library.

The rest of this paper is organized as follows: Section 2 describes the development, hardware
organization, complementary filter, smart PID controller, and mechanical design of the proposed ROV.
Section 3 describes the main algorithms performed by the computer onboard the ROV: (i) remote
communication; (ii) motor control and temperature measurement; (iii) 3D position sensing; and (iv)
video capture in real-time. Section 4 presents the experimental results, such as ROV performance, some



Sensors 2019, 19, 5387 3 of 25

images captured in real-world underwater environments, and a comparison versus commercial ROVs.
Finally, Section 5 summarizes the conclusions of the paper.

2. Design and Construction of the ROV

2.1. Electronic Design

Figure 1 shows the block diagram of the proposed hardware that consists of two parts: the remotely
controlled vehicle and the remote control. These two subsystems are communicated through an Ethernet
cable with Kevlar reinforcement, so that the user can control the ROV from a personal computer, laptop
or SoC, all with Virtual Network Computing (VNC) connectivity. The ROV hardware involves a SoC
Raspberry Pi 3 that is responsible for executing parallel tasks, such as: (i) acquisition of video by means of
a digital camera; (ii) measurement and recording of the different variables associated with the sensors of
the system; (iii) motors control in coordination with an Arduino Nano microcontroller; (iv) battery voltage
monitoring for energy consumption and internal temperature; and (v) communication management with
the remote control. The used digital camera is a Vemont full HD 1080 p of 12 Megapixels, which is built-in
with an IP68 waterproof case, allowing to dive underwater. Besides, two power sources are integrated into
the system, one with a power bank of 5 V with 10,000 mAh for the Raspberry Pi 3, an Arduino Nano
microcontroller, and digital sensors, and the other one is a bank of six batteries of 11.1 V with 19,800 mAh to
power six brushless motors. With these battery banks, the ROV has an autonomy of up to 2 h. The remote
control shown in Figure 1 consists of an Ethernet network hub (Ethernet switch/router) interconnected
by an Ethernet network cable to a computer or SoC, from which the user controls the ROV through a
touchscreen type graphical user interface (GUI).
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Electronic Speed
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Figure 1. Block diagram of the proposed ROV.

The brushless motors are model QF-2611 manufactured by XCSOURCE with a turning speed of
4500 KV three-phase voltage, are connected in a star configuration. The brushless motors are controlled
by an electronic speed controller (ESC), which generates a three-phase output signal, having as an input
a pulse width modulation (PWM) signal generated by an Arduino Nano microcontroller. Based on the
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experiments, it was found that 1 µs is the most efficient time to provide the best ROV stability underwater
for video capture. The ESC30A delivers up to 30 A.

The speed controllers are unidirectional, and the changes in their rotation directions are shown in
Figure 2. The circuit includes a pair of relays per motor, so that two phases reach the motor’s terminals,
generating the change in the direction of rotation of the ROV according to the operation requirements.

NC NO

COM

NC NO

COM

Brushless motor

ACA C B

From ESC30 outputs 

A B C

NC NO

COM

NC NO

COM

Brushless motor

ACA C B

From ESC30 outputs

A B C

(a)   (b)

NC: Nornally closed
NO: Normally open

Figure 2. Electric circuit to invert the rotation direction of the motors: (a) turning the motor clockwise; and
(b) turning the motor counterclockwise.

Regarding Figure 1, the ROV incorporates the digital sensor DS18B20 for measuring the
temperature inside its capsule, which is communicated through the I2C protocol directly to the Arduino
Nano microcontroller.

Due to the fact that at several meters underwater there is no line of sight between the remote control
and the ROV, it is necessary to measure the precise position and orientation. That is why, knowing the
3D angular position of the ROV serves to automatically control its movement. This is done by using
an MPU6050 sensor, which has six degrees of freedom. This means that there are three accelerometers
and three gyroscopes inside the MPU6050. Figure 3 shows the measurements of one of the signals achieved
directly at the output of the MPU6050. It can be appreciated that in both conditions of movement and static
there exists the presence of small variations (noise vibrations), i.e., the forces driving the ROV are also
perceptible in the sensor, which affect the stability of the ROV’s movements. To reduce these variations,
a complementary filter [45–47] is used to filter undesired effects and therefore the Raspberry Pi 3 is used
to process the MPU6050 data. In the complementary filter, the cutoff-frequency of the low-pass filter is
designed considering the accelerometer measurements, while for the high-pass filter, its design depends
on the signal measured by the gyroscope. The schematic of the complementary filter is shown in Figure 4.
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Figure 3. Output signal of the MPU6050 sensor without conditioning: (a) ROV in motion with direction in
y; and (b) ROV without movements (parked).

Accelerometer
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LPF
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Output

Figure 4. Scheme of the complementary filter [45–47] implemented on the ROV.

By mixing data from the accelerometer and gyroscope, the next transfer function for the
complementary filter is obtained [45–47],

θe(z) =
ωc1

(1 − z−1)/dt + ωc1
θm(z) +

dt
1 − z−1 · (1 − z−1)/dt

(1 − z−1)/dt + ωc2
θ̇m(z), (1)

where θm is the angular data measured with the accelerometer in degrees [◦], θ̇m is the angular velocity data
measured with the gyroscope [◦/s], θe is the output of the complementary filter in degrees [◦], ωc1 = 5 Hz
is the cutoff frequency of the low pass filter, ωc2 = 2 Hz is the cutoff frequency of the high pass filter, and dt
is the differential time [s]. By simplifying and rearranging the transfer function, the following is obtained:

θe(z) · [(1 − z−1)/dt + ωc] = ωc · θm(z) + ˙θm(z), (2)

by applying the inverse Z transform,

θe(k) · (1/dt + ωc) = θe(k − 1)/dt + ωc · θm(k) + ˙θm(k), (3)
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therefore,
θe(k) = (1 − α) · [θe(k − 1) + ˙θm(k) · dt] + α · θm(k), (4)

where α = 0.02 and k is the sample time.
By implementing the complementary filter, greater ROV handling stability is obtained, as shown in

Figure 5. It can be appreciated that, when the complementary filter is used, the ROV gains better stability,
because the noise is significantly reduced. Hence, the above contributes in a quality improvement of
captured images.

  

(a) (b)

Figure 5. Motion sensor signal by using complementary filter: (a) ROV in motion with direction in y; and
(b) ROV parked.

Control and Actuation Subsystems

It is well known that ROVs are subject to parametric changes (weight, buoyancy, added mass, payload,
etc.) or external disturbances such as ocean currents; thus, the control subsystem used in the proposed
ROV is inspired by the smart PID controller reported by Hernández-Alvarado et al. [44], which has the
advantage of online tuning the gains of the PID controller as it is based on an artificial neural network
(ANN). However, in this paper, it is proposed to add a complementary filter on the MPU6050 sensor
output to improve PID controller performance and ROV stability, with the purpose of improving the
quality of underwater images.

In the domain of discrete time, the digital PID algorithm can be expressed as [44]:

τ(k) = τ(k − 1) + Kp(e(k)− e(k − 1)) + Kie(k) + Kd(e(k)− 2e(k − 1) + e(k − 2)), (5)

where τ(k) is the original control signal, e(k) = ηd(k)− η f (k) represents the position tracking error, ηd(k)
denotes the desired trajectory, η(k) is the real trajectory without processing, η f (k) are the filtered data
of real trajectory, Kp is the proportional gain, Ki the integral gain, Kd is the derivative gain, and k is the
sample time. Figure 6, depicts the block diagram of self-tuning PID controller based on ANN [44]. It can be
observed that the use of the complementary filter described in Figure 4 reduces noise levels at the output
of the MPU 6050 sensor. The stage of the actuation subsystem, as depicted in Figure 1, is integrated with
an Arduino Nano microcontroller, the power stage with six ESC30A speed controllers, twelve relays for
controlling the rotation direction of thrusters (Figure 2), and six QF2611 thrusters/motors with propellers.
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Figure 6. Block diagram of smart PID controller with actuation subsystem and complementary filter.

Figure 7 shows a simulation of smart PID controller’s response to unit step input during a time lapse
of 50 ms. It can be observed that, when an abrupt change is produced in the input, its stabilization response
time is less than 10 ms.
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Figure 7. Simulation of smart PID controller’s response to unit step input.
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2.2. Mechanical Design

The physical characteristics of materials that were used in designing the ROV to operate in underwater
conditions can be seen in [48]. In this work, polyvinyl chloride (PVC pipe with steel bars inside) is used as
a structural element since it complies with mechanical characteristics for the ROV to function properly, and
determines the maximum depth that can be reached. The depth is calculated by Equation (6); it requires
knowing the fracture point of the material provided by the manufacturer, which in this case corresponds
to a pressure of 1724 kPa. Under these conditions, the maximum depth for a PVC pipe with schedule 40 is
h = 125.65 m.

P = ρ · g · h, (6)

where P is pressure, ρ = 1400 kg/m3 is seawater density, g is gravity, and h is depth in meters. The
3D structural design of the proposed ROV is shown in Figure 8. The design takes into account aspects
of hydrostatic and buoyancy depending on the application environment, either a marine environment
(saltwater) or under controlled conditions (fresh water). The structure presented considers a weight
balance configuration to facilitate the implementation in the topology of the motors, and it was developed
in the 3D figure simulator software known as SolidWorks. Its physical dimensions are 18.41 cm × 29.50 cm
× 33.50 cm, with an estimated volume of V = 18.19 × 10−3 m3 and an estimated weight of W = 15.64 kg.
Based on these data and considering a saltwater density of ρ = 1400 kg/m3, the buoyancy corresponds to
249.6 N, which can be obtained by Equation (7), where E is the total thrust, ρ is the density of the fluid,
g is the gravity, and V is the volume. Therefore, the proposed topology for the six motors in the ROV
considers a minimum thrust force of 9.82 kg.

Figure 8. 3D design view of the proposed ROV.

E = −ρ · g · V, (7)

Figure 9 shows the locations of the six brushless motors: four are located on the top for the ascent and
descent movements and two on the front for translational and rotational movements.
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Figure 9. Movements of the ROV: (a) translational; (b) ascent and descent; and (c) rotation.

According to Figure 8, Table 1 shows the materials used in the construction of the mechanical structure
of the ROV. The designed mechanical structure allows the placement of the six brushless motors, as can be
seen in Figure 9. Table 2 shows the components with their estimated weights that give the total weight of
15.64 kg. To achieve mechanical stability within the water and operate with the buoyancy estimated by
Equation (7), eight steel bars are incorporated into the structure. The final design of the ROV structure
allows placing the camera in different positions, i.e. it can be placed in front, under, or on the sides of
the ROV.

Table 1. Materials for the construction of the ROV structure.

Quantity (Pieces) Description Size [cm]

4 PVC pipe φ1.27 × 25
4 Corner connector φ1.27
2 PVC pipe φ1.27 × 11.5
5 T-connector φ1.27
4 PVC pipe φ1.27 × 5
4 L-connector φ1.27
1 PVC pipe φ10.16 × 25

Table 2. Weights of the ROV’s materials.

Item Quantity Weight [kg] Total Weight [kg]

PVC structure 1 6.940 6.940
Battery 11.1 V 6 0.200 1.200
Battery 5.0 V 1 0.200 0.200
Raspberry Pi 1 0.100 0.100

Arduino Nano 1 0.001 0.010
Relays 6 0.150 0.900

ESC30A 6 0.050 0.300
Brusless motor 6 0.225 1.350

Steel bars 8 0.580 4.640
Total weight 15.64
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3. ROV Algorithms

Figure 10 shows the main algorithms executed by the SoC Raspberry Pi 3 that is used as the
ROV’s onboard computer, which are divided into four parts: (i) main control of the whole structure
and communication (ROV_Parallel_computing); (ii) motors control and temperature measurement
(Motors_Control_and_Temperature); (iii) 3D position sensing (Acquire_3D_Position); and (iv) video
capture (Video_capture). For the programming and execution of these algorithms, Python software
version 2.7.9 was used.

ROV_Parallel_Computing()

Motors_Control_
and_Temperature()

Acquire_3D_ 
Position()

Figure 10. Algorithms executed on the Raspberry Pi 3 performing parallel computing.

Furthermore, the Raspberry Pi 3 SoC contains four cores inside its microprocessor with a 1 GHz clock,
so each algorithm is mapped to each core for execution. Figure 11 depicts an outline of the multicore
organization. The communication between the ROV and the remote control is via Ethernet and can be
controlled remotely with different computer hardware or SoC, allowing the use of different operating
systems in the computer connected to the Ethernet network hub, as described in Figure 1. The Raspberry
Pi 3 works with the GNU/Linux operating system Raspbian distribution, and the remote computer/SoC
works using the VNC protocol, which is compatible with Windows, Android, OS X, or GNU/Linux.

Core 1

ROV_Parallel_
Computing()

Core 2

Motors_Control_
and_Temperature()

Core 3

Acquire_3D_ 
Position()

Core 4

Video_
Capture()

1 GB RAM

Parallel computing on Raspberry Pi 3

Internal communication bus

Figure 11. Block Diagram of multicore SoC Raspberry Pi 3.
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The code fragment shown in Algorithm 1 describes the main algorithms executed on the SoC
Raspberry Pi 3. On Line 1–5, the sys, Tkinter, cv2, threading, and serial libraries are included. The sys
library is included in the ROV application; commands from the GNU/Linux operating system can be
executed. The Tkinter Library is used for the development of graphical user interface. The cv2 library
contains subroutines for image processing, such as acquisition, display, etc. The threading library is used
to execute the algorithms shown in Figure 10 in parallel. The serial library is used to manage the serial
communication between Raspberry Pi and the Arduino Nano microcontroller. On Line 6, the main function
ROV_Parallel_Computing() is declared. On lines 7–25, the function Motors_Control_and_Temperature()
is declared, which is used to control the motors for the movement of the ROV by using the smart PID
controller, as depicted in Figure 6, and to measure the internal temperature by using the DS18B20 sensor.
On lines 26–30, the function Acquire_3D_Position() is declared, which is used to check the 3D position of
the ROV by means of the MPU 6050 sensor. On Lines 31–45, the Video_Capture() function is declared,
which is used to capture video in real time through the camera. On Lines 46–52, the code is used to
setup the serial communication between Raspberry Pi and the Arduino Nano microcontroller. On Lines
53–55, the program sends a message in the case of a connection error and to exit the ROV application.
Finally, Lines 57–64 execute the ROV’s algorithms by using parallelism with threads. The function
Motors_Control_and_Temperature() controls the movements required by the ROV via the smart PID
controller, such as those shown in Figures 6 and 9, which are carried out by an embedded algorithm
developed for the Raspberry Pi 3, and it communicates with the Arduino Nano microcontroller to generate
the PWM signals that will control the motors’s speed, which is composed of four algorithms: (i) calibration
of the speed controllers; (ii) adjustment of the direction of rotation through relays; (iii) speed adjustment
through a signal using pulse width modulation (PWM) with steps of 1 µs; and (iv) motor control via
the smart PID controller. This function also measures the capsule’s interior temperature where the
ROV electronics are located. Regarding the function Acquire_3D_Position(), the acquisition of the ROV
position is performed by the SoC Raspberry Pi, providing information on the acceleration about inclination
angles and angular velocity data. It also provides six-axis digital information, uses communication with
I2C protocol, and operates at 3.3 V. The code fragment presents the three algorithms of execution: (i)
declaration of the communication port; (ii) acquisition of data from the acceleration and rotation; and (iii)
angle filtering.

Since the algorithms are programmed using open software tools, the whole system allows the
addition of more sensors and functionalities to the ROV, according to the operational needs, maintenance,
supervision, and sense of physical-chemical variables underwater.
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Algorithm 1 Executing the ROV’s algorithms by performing parallel computing.
1: import sys # System parameters and functions
2: from Tkinter import # Library for GUI
3: import cv2 # Library for image processing
4: import threading # Library for parallel computing by threats
5: import serial # Library for serial communication
6: def ROV_Parallel_Computing ( )
7: def Motors_Control_and_Temperature( ) # Function for motor control and temperature sensing.
8: switch( PushButton ( ) ) # Configuration of the motions
9: case 1:

10: def Config_UP ( )
11: case 2:
12: def Config_DOWN ( )
13: case 3:
14: def Config_LEFT ( )
15: case 4:
16: def Config_RIGHT ( )
17: case 5:
18: def Config_STOP ( )
19: case 6:
20: def Config_CALIBRATE ( )
21: if(Serial.read == TEMP) # Read temperature
22: Read Temperature
23: Print Temperature.
24: Store Temperature.
25: endif
26: def Acquire3D_Position( ) # Read 3D position
27: def Read_Acl( ) # Read the accelerometer data
28: def Read_Gyr( ) # Read the gyroscope data
29: def filter_Comp( ) # Filtering accelerometer and gyro.
30: print( ’positon’ )
31: def Video_Capture( ):
32: print ("Camera")
33: cap=cv2.VideoCapture(0) # Video capture.
34: while (1)
35: ret, FPS = cap.read().
36: cv2.imshow(’ROV CAM’,frame)
37: CPUTEMP = Read_CPU_temp.
38: print (FPS, CPUTEMP)
39: key= cv2.waitKey(1)
40: if key == 27:
41: break
42: endwhile
43: cap.release.
44: cv2.destroyallWindows.
45: ROV_Parallel_Computing.mainloop()
46: try: # Setup communication with Arduino Nano Microcontroller.
47: ard = serial.Serial()
48: ard.port = ’/dev/ttyUSB0’.
49: ard.baudrate = 9600.
50: ard.timeout = 3.
51: ard.open().
52: print(’Wait a moment....’).
53: except:.
54: print(’Connection Error’)
55: sys.exit().
56: # Parallel algorithms execution.
57: # Assign a thread for parallel execution.
58: CAMERA=threading.Thread(target = Video_Capture )
59: CAMERA.start(). .
60: POSITION=threading.Thread(target = Acquire_3D_Position )
61: POSITION.start().
62: MOTORS=threading.Thread(target = Motors_Control_and_Temperature )
63: MOTORS.start(). .
64: APP=threading.Thread(target = ROV_Parallel_Computing)
65: APP.start()
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4. Experimental Results

The experimental results using the Raspberry Pi 3 as the ROV’s onboard computer are summarized
herein, as well as the hardware resources used by each algorithm and other processes running
simultaneously. The captured images in a controlled aquatic environment, as well as obtained images in
the sea environment are also shown. In addition, the results obtained in the implementation of the smart
PID controller and a comparison of the main features versus two commercial ROV are presented.

4.1. ROV Performance

4.1.1. Motors Test

The Arduino Nano microcontroller and Ardu-Pilot development boards were used for the brushless
motors speed and operation tests to identify which one is more efficient for the generation of the PWM
signals required by the ESC30A. We found that the change made by the Ardu-Pilot flight controller
was quite sudden for the brushless motors used in this paper. Due to this limitation, a program was
implemented on the Arduino Nano microcontroller to generate higher resolution PWM signals for the
speed changes. Based on the experimentation, it was found that 1 µs is the most efficient time and that
it provides the best ROV stability under water. Figure 12 shows an example of PWM signals generated
by the Arduino Nano microcontroller for the control of brushless motors. Figure 12a depicts the PWM
signal of average speed, Figure 12b shows the PWM signal of maximum speed, Figure 12c depicts the
PWM signal of minimum speed and the corresponding output signal of ESC30A controller, and Figure 12d
depicts the PWM signal of maximum speed and output signal of ESC30A controller.

(d)

(a) (b)

(c)

Figure 12. PWM signals generated by the Arduino Nano microcontroller: (a) PWM signal of average speed;
(b) PWM signal of maximum speed; (c) PWM signal of minimum speed and output signal of ESC30A
controller; and (d) PWM signal of maximum speed and output signal of ESC30A controller.
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4.1.2. Temperature in SoC Raspberry Pi 3 and ROV Capsule

Figure 1 shows that the ROV incorporates the DS18B20 digital sensor for measuring the temperature
inside the capsule, which is communicated through the I2C protocol directly to the Arduino Nano
microcontroller. An experimental behavior analysis of the internal temperature in the ROV capsule was
required due to the heating produced by the ESC30 when operating the motors. For these measurements,
an embedded algorithm on the Arduino Nano microcontroller was employed, obtaining temperature
data from the DS18B20 sensor. Additionally, an algorithm was implemented in the SoC Raspberry Pi 3 to
measure the temperature of its chipset, given that the maximum operating temperature must not exceed
65 ◦C. Figure 13a shows the temperature behavior from the Raspberry Pi 3 chipset. Figure 13b shows the
temperature inside the ROV capsule. The figure shows that, when the motors are turned on at their
maximum speed, the temperature of the Raspberry Pi3 chipset increases, reaching 54 ◦C in less than 1 h,
while the temperature of the ROV capsule rises up to 37 ◦C. On the other hand, when the motors are
turned off, the chipset and capsule temperature decrease over time.

Figure 13. Temperature measurement of every second over a period of one hour: (a) temperature of the
chipset Raspberry Pi 3; and (b) temperature in the ROV capsule.

4.1.3. Battery Banks Performance

The performance of the battery banks under ROV operation is shown in Figure 14. The behavior
of the 5 V battery bank supplying power to the digital components is shown in Figure 14a, where it is
observed that it has a work time of 500 min (8.33 h) continuous, executing the algorithms that control the
ROV. Meanwhile, the battery bank of 11.1 V, which energizes the ESC30A for the control of the brushless
motors has a time duration of 120 min (2 h) at medium speed, as shown in Figure 14b. However, this time
may increase or decrease according to the navigation of the ROV.
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Figure 14. Behavior of the 5 V and 11.1 V battery banks during the operation of the ROV: (a) 5 V
with 10,000 mAh battery bank for digital devices; and (b) 11.1 V with 19,800 mAh battery bank for
brushless motors.

4.1.4. Stability Performance

The MPU6050 sensor is responsible for colorredkeeping track of the orientation of the ROV and
is very useful to stabilize it. The complementary filter gives us a smoothed signal from both signals
(accelerometer and gyroscope). In the short term, we used the data from the gyroscope, because they
were very precise and not susceptible to external forces. In the long term, we used the data from the
accelerometer, as they did not drift. In this experiment, the used sensitivity for the accelerometer was
16, 384 LSB/g and for the gyroscope was 131◦/s. Figure 15 depicts the stability tests on the output of the
complementary filter. Figure 15a shows movements on x-axis, while Figure 15b shows movements on
y-axis. It can be observed that no noisy accelerometer and gyroscope data were detected, i.e., they did not
drift away. In addition, the complementary filter helped improve the stability of the ROV and the quality
of the captured images was improved. Finally, the complementary filter is easy and light to implement on
embedded systems such as Raspberry Pi.

Figure 16 depicts the smart PID controller’s response. Figure 16a,b shows the angle in x-direction and
y-direction, respectively. It can be observed that the real trajectory followed the desired trajectory. In the
control of both trajectories, it is appreciated that the error was close to zero, and the signals were smoothed
as a result of the implementation of the complementary filter. Therefore, this helps to improve the stability
of the ROV and consequently the quality of the images captured underwater.

4.2. Hardware Resources

Figure 17 shows the used resources by all the algorithms and other processes running on Raspberry Pi
3 SoC as the onboard computer of the ROV. It can be observed that the process labeled PID 3286, in the left
column, which corresponds to the main algorithm labeled as ROV_Parallel_Computing in Figure 10, used
74.8% of the CPU resources, and 13.9% of RAM memory. The PID 3239 that corresponds to Video_Capture
algorithm used 38.7% of the CPU resources and 11.0% of RAM memory. The PID 2645 corresponding to the
VNC protocol used 31.1 % of the CPU resources and 9.9 % of RAM memory. The PID 3263 corresponding to
the Acquired_3D_Position algorithm that receives the data from the position sensor MPU 6050 and graphs
the 3D position of the ROV used 15.6% of the CPU resources and 2.2% of RAM memory. The PID 1203,
which manages the motor control algorithm, labeled as Motors_Control in Figure 10, used 10.3% of the CPU
resources and 3.7% of RAM memory. Finally, the PID 3223 corresponding to the Measure_Temperature
algorithm, associated to the sensor DS18B20, used 8.3% of the CPU resources and 3.7% of RAM memory.
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Figure 15. Stability tests of the ROV on the output of the complementary filter: (a) movements on x-axis;
and (b) movements on y-axis.

Figure 18 shows the experimental results of the images captured by the camera given in frames per
second (FPS), which are processed by the Raspberry Pi 3. It can be appreciated that the maximum speed of
video capture is 42 FPS.
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Figure 16. Smart PID controller’s response: (a) x-direction; and (b) y-direction

4.3. Tests in Controlled Aquatic Environment

Figure 19 depicts the captured images by the ROV camera in a controlled aquatic environment. These
tests also verified that the water does not leak inside the ROV capsule, and proved its buoyancy in the
water. The top of Figure 19 shows the submerged ROV in the aquatic environment. The bottom of Figure 19
depicts an underwater image captured by the ROV. The remote control interface of the ROV can also be
observed, which could work using a touch screen. In addition, a 3D graphic indicates the ROV position.
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Figure 17. Hardware resources in the Raspberry Pi 3.

Figure 18. Experimental results of the number of captured frames per second (FPS), and temperature
measurement provided by the Raspberry Pi 3.

4.4. Tests in Real-World Scenario

This section presents different images obtained by the ROV in a submarine environment. To carry out
these tests, the camera was placed at the lower part of the ROV; this so that the images of the PVC pipe
installed on the seabed could be captured. The images were taken at the seawater suction stage, located
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on the coast at 2.4 m depth. This seawater was then processed by several filters, used to feed various
fish and mollusk culture ponds, at a biotechnology area for aquaculture. As an example, several image
sequences are shown in groups of three, which allows the visualization of the potential of the proposed
ROV for various applications and environments. As shown in Figure 15, the ROV captured video of up to
42 FPS, and from these sequences images can be extracted, as shown in Figures 20–25. In all these cases,
one can observe three frames that were obtained in a real-world scenario, such as the subsea, where water
turbidity is noticeable.

Figure 19. Images captured in a controlled aquatic environment.

Figure 20 depicts a sequence of a valve for suction in a subsea water intake. Different approaches
can be observed and the external condition of the valve, a sediment film in its exterior, is particularly
distinguished. This type of inspection is of great value, because, if the valve inlets were clogged, it could
cause a greater deterioration to the suction pumps. Furthermore, due to excess of sediment, the water’s
flow through the suction valve might become blocked, which could cause greater damage to the suction
pump and water shortage for the aquaculture ponds.

Figures 21 and 22 depict two sequences of images from different sections of a PVC pipe used for
seawater suction. Different approaches and the external conditions of the pipe are observed. In addition,
different types of connections and the conditions in which they are found are highlighted here. This type
of visual inspection, obtained remotely with the ROV, serves to detect any physical damage to the pipe or
connections, which is important in preventive maintenance routines for this type of installation.

Figures 23 and 24 depict two sequences of images of a PVC pipe. Different approaches are shown;
they specifically highlight the incrustations that have formed around them over time. This inspection is of
great value as it make the conditions in which the pipe is found evident and the latent risk that this can
generate throughout the system, such as a leak of some sort of substance.
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Figure 20. Inspection test images of a suction valve in subsea water intake.

Figure 21. Underwater images of PVC pipe fasteners.

Figure 22. Underwater images of current status of connections between PVC pipes.

Figure 23. Images of connections between PVC pipes placed underwater.

Figure 25 shows a sequence of three images of a seabed region. Different approaches of its topography
are observed. This type of inspection is of great value, for example for the study of fauna, flora, and for the
search of microorganisms underwater.

4.5. Comparison with Other ROVs

Table 3 shows a features comparison of proposed ROV versus commercial ROVs. It can be observed
that some features are the same. However, the proposed ROV has parallel computing capacity, which
allows simultaneously executing several tasks or processes and capturing images of up to 42 FPS with
a resolution of 800 × 640 pixels. The implementation of the complementary filter (see Figure 4) to the
IMU signals (see Figure 15) helps to improve the performance of the smart PID controller (see Figure 6)
used for the trajectory control (see Figure 16), allowing to capture better quality of underwater images



Sensors 2019, 19, 5387 21 of 25

(see Figures 20–25). The remote control of the ROV is executed under a graphical user interface coded on
Python, which is suitable for different operating systems, such as GNU/Linux, Windows, Android, and
OS X. The payload is the carrying capacity of a ROV, e.g., to add more sensors, measuring instruments,
samples collected from the ocean, etc. The payload of the proposed ROV is 20% of its total weight,
i.e., 3.128 kg. On the other hand, given the characteristics of the proposed mechanical and hardware
design, the maintenance and replacement of mechanical and hardware components allows technological
independence of ROV manufacturers.

Figure 24. Images of incrustations on underwater PVC pipes.

Figure 25. Images under seabed conditions.

Table 3. Comparison of characteristics of the proposed ROV vs. commercial ROV.

Features Blue ROV OpenROV Proposed ROV
(Standard)

Architecture Open Open Open
Camera 1080 p Yes Yes Yes
Autonomy time [h] 2–3 2–3 2–3
Communication Ethernet Ethernet Ethernet
Internet connectivity Yes Yes Yes
Maximum depth [m] 100 100 100
Processing type Unknown Unknown Parallel
Frames per second [FPS] 30 30 42
Controller algorithm PID PID Smart PID
Remote control Joystick Joystick for Graphic user

Android 5 interface *
Payload [kg] 2.200 1.000 3.128
Dimensions (length×width×height) [cm] 45.7 × 33.8 × 25.4 8 × 20 × 40 18.4 × 29.5 × 33.5
Total weight [kg] 11.00 2.90 15.64
Total cost [USD] 2784.0 1695.0 600.0

* Multi-platform (Windows, Linux, Unix, Android).

5. Conclusions

The ROV development and implementation contained in a box of size 18.41 cm × 29.50 cm × 33.50 cm,
with a weight of 15.64 kg, is introduced. The proposed ROV performs the translational, ascent, descent,
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and rotational movements on three axes to capture images of 800 × 640 pixels on video graphic array
standard. The ROV design was done to reach up to 100 m underwater, which can solve the problem of
divers who can only reach 30 m. The motion control, 3D position, temperature sensing, and video capture
are performed in parallel by using the threading library, and they are processed by a main algorithm that
was programmed to use the four cores of a SoC Raspberry Pi 3. The communication between the ROV
and the remote control is handled by a graphical user interface coded on python, which is suitable for
different operating systems, such as GNU/Linux, Windows, Android, and OS X. Furthermore, the ROV
moves under the six brushless motors governed through a smart PID controller. From experimental results,
the brushless motors were calibrated to work with a short pulse width of 1 µs to improve the ROV stability
and underwater position. A complementary filter used to smooth noise vibrations from the MPU 6050
sensor improves ROV stability. Therefore, it helps to improve the captured video quality by processing
up to 42 FPS on a Raspberry Pi 3. The autonomy of the proposed ROV is up to 2 or 3 h. The algorithms
were programmed using open software tools, which allows adding more sensors and functionalities,
according to the needs of operation, maintenance, supervision, and sensing of physical-chemical variables
underwater. In addition, the flexibility of mechanical design and low-cost hardware increases potential
applications, such as surveillance, fishing operations, growth control of fish, and study of marine flora
and fauna, without demeriting the quality in the acquisition of the information, within a context of
technological independence.
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