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Recent studies on brain-computer interfaces (BCIs) based on the steady-state visual evoked potential (SSVEP) have demonstrated
their use to control objects or generate commands in virtual reality (VR) environments. However, most SSVEP-based BCI studies
performed in VR environments have adopted visual stimuli that are typically used in conventional LCD environments without
considering the differences in the rendering devices (head-mounted displays (HMDs) used in the VR environments). -e
proximity between the visual stimuli and the eyes in HMDs can readily cause eyestrain, degrading the overall performance of
SSVEP-based BCIs. -erefore, in the present study, we have tested two different types of visual stimuli—pattern-reversal
checkerboard stimulus (PRCS) and grow/shrink stimulus (GSS)—on young healthy participants wearing HMDs. Preliminary
experiments were conducted to investigate the visual comfort of each participant during the presentation of the visual stimuli. In
subsequent online avatar control experiments, we observed considerable differences in the classification accuracy of individual
participants based on the type of visual stimuli used to elicit SSVEP. Interestingly, there was a close relationship between the
subjective visual comfort score and the online performance of the SSVEP-based BCI: most participants showed better classi-
fication accuracy under visual stimulus they were more comfortable with. Our experimental results suggest the importance of an
appropriate visual stimulus to enhance the overall performance of the SSVEP-based BCIs in VR environments. In addition, it is
expected that the appropriate visual stimulus for a certain user might be readily selected by surveying the user’s visual comfort for
different visual stimuli, without the need for the actual BCI experiments.

1. Introduction

Electroencephalography (EEG) has been the most widely
used neural signal for brain-computer interfaces (BCIs),
whose main aim is to provide the paralyzed or disabled with
new means of communication with the external environ-
ment [1]. Typical paradigms for EEG-based BCIs include
motor imagery (MI), P300, and steady-state visual evoked
potential (SSVEP) [2]. Among these, an SSVEP-based BCI
paradigm has been widely employed because of its ro-
bustness to external noises and very little training re-
quirement [3]. Owing to its advantages over the other
paradigms and recent development of advanced analysis

methods [4, 5], the SSVEP-based BCIs have been imple-
mented for a variety of applications including assistive and
rehabilitation tools for the disabled [6] and practical ap-
plications for the healthy, such as car navigation [7] and
entertainment [8]. Furthermore, with the rapid advance-
ments in the virtual reality (VR) technology, the SSVEP-
based BCIs have been successfully applied to VR applica-
tions with hand-free control of the VR objects or speechless
communications [9–11].

Although most VR devices currently employ head-
mounted displays (HMDs), no previous SSVEP-based BCI
study has considered the environmental differences between
the VR-HMDs and conventional LCD monitors. Since the
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traditional SSVEP-based BCIs have used an LCD monitor as
the rendering device to present visual stimuli for the past
decades, a number of studies have already been conducted on
the influence of the various parameters of this visual stimulus
on the performance of the BCIs; these parameters include
spatial frequency [12], temporal frequencies [13], colors [14],
data recording channels [15], and time window sizes [16, 17].
On the contrary, the SSVEP-based BCIs implemented in VR
environments have employed visual stimuli identical to those
used in conventional LCD monitor environments, without
any major modification. In other words, all SSVEP-based BCI
studies performed in VR environments assumed that the
presentation of visual stimuli on HMD is not significantly
different from that on an LCD monitor. For example,
MindBalance game [9], a 3D video game using SSVEP-based
BCIs in VR environments, employed pattern-reversal
checkerboard stimulus (PRCS) to elicit SSVEP response. A
recently developed neuro-optical diagnostic tool using the VR
headset [18] also employed the conventional PRCS. However,
it is well known that an experiment in the VR environment is
highly vulnerable to visual fatigue than that in the LCD
environment; this is mainly due to the image distortion, or
crosstalk, in the stereoscopic viewing [19] as well as the
proximity between the source of illumination and the eyes
[20].

In the present study, we have used two different types of
visual stimuli—PRCS and grow/shrink stimulus (GSS)—
both of which are known to effectively elicit SSVEP re-
sponses in the LCD monitor environment, on 14 partici-
pants wearing HMDs. -e performance of the two
representative visual stimuli was then investigated in terms
of individual classification accuracy and subjective visual
comfort scores. After the survey of the visual comfort of the
participants in the preliminary offline experiments, the
performance of SSVEP-based BCIs was investigated through
online avatar control experiments in a VR environment.

2. Materials and Methods

2.1. Participants. Sixteen young, healthy people (10 males
and 6 females, aged 20.5± 1.6 years) with normal or
corrected-to-normal vision participated in our experiment.
All participants were informed of the details of the exper-
iments and had given their written consent. -e data of two
participants were excluded in further analyses: the first was
excluded owing to the frequent blinking of the eyes during
the presentation of the visual stimuli (eye blinks contami-
nated 14 out of the total 40 trials) and the second owing to
the nonexistence of spectral peaks in the recorded EEG. -e
eye blinks were identified by visually inspecting vertical
electrooculogram (EOG) recorded during the offline ex-
periment. -is so-called “BCI-illiteracy” is a well-known
issue in EEG-based BCIs [21].-is experiment was approved
by the institutional review board of Hanyang University,
Republic of Korea (IRB HYI-14-167-11).

2.2.Visual Stimuli. Two different types of visual stimuli were
employed to elicit SSVEP responses: a PRCS and a GSS. -e

PRCS is a traditional visual stimulus, which is used most
frequently to elicit SSVEP responses in LCD monitor en-
vironments; this stimulus alternately presents two check-
erboard patterns with 180° phase difference [7] (Figure 1(a)).
-e GSS is a new visual stimulus that changes both lumi-
nance and size to elicit SSVEP responses. -is stimulus was
based on previous studies, which reported that motional
changes can also elicit periodic VEP responses (often re-
ferred to as steady-state motion visual evoked potential or
SSMVEP) [22, 23] (Figure 1(a)). -ese stimuli were pre-
sented in a VR environment using an HMD of the HTC
VIVE™ VR system (HTC Co., Ltd., Xindian District, New
Taipei City, Taiwan). Both visual stimuli were modulated to
elicit SSVEP responses corresponding to four frequencies,
namely, 6, 7.5, 9, and 10Hz. -ese frequencies were de-
termined by considering the refresh rate of the rendering
device (90Hz), which is an integer multiple of each of the
four target frequencies. In the offline experiments, the visual
angle of the PRCS was fixed at 14°, while that of the GSS was
varied between 8° and 16°. In the online experiments, the
visual angle of the PRCS was reduced to 6° and that of GSS
was varied between 4° and 8° in order to validate the fea-
sibility and usability of the visual stimuli in a realistic VR
environment in which large-sized stimuli cannot be gen-
erally employed. Note that according to previous reports,
visual stimuli with visual angles greater than 3.8° would
produce similar levels of SSVEP responses [24].

2.3. Experimental Paradigm. In the preliminary offline ex-
periments, each stimulus type was presented in a randomly
shuffled order to each participant. In each trial, four visual
stimuli with different frequencies were presented for 4 s, as
shown in Figure 1(a).-e interstimulus interval (ISI) was set
to 2 s, during which one of the numbers presented on the
screen was colored green and flickered at 1Hz to indicate the
stimulus that the participant should focus on during the next
stimulus interval. Each visual stimulus in each stimulus type
appeared 20 times (five times for each frequency), and thus,
the total number of trials was 40. -e EEG signals were
recorded; however, no immediate feedback was delivered to
the participants during the experiment. At the end of the
preliminary offline experiment, the participants were asked
to subjectively rate their visual comfort with the two
stimulus types on a scale ranging from 0 (very un-
comfortable) to 10 (very comfortable).

In the online experiments, the participants who also
participated in the preliminary offline experiments were
asked to control a human full body avatar standing on a
virtual road in a VR environment. -e avatar could move in
four directions: top, bottom, left, and right. Four visual
stimuli with the frequencies used in the offline experiment
were presented at the top, bottom, left, and right of the avatar
to indicate the possible movement directions of the avatar
(Figure 1(b)). Each participant was asked to sequentially
move the avatar in a correct direction following the given
path. A total of three different paths, each consisting of 20
movement steps, were created. For all 60 movement steps,
the numbers of each directional step were counterbalanced.
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For each path, the same paradigm was repeated twice with
either PRCS or GSS, when the presentation order of the
visual stimuli was randomly determined for each partici-
pant. -e avatar could move a step forward only when the
classification result (direction) coincided with the correct
direction of the path. Consequently, the minimum number
of trials required to complete each session was 20, when the
classification accuracy was 100%. Each trial lasted for 5 s,
including 2 s for the presentation of the visual stimuli, 1 s for
avatar’s movement, and 2 s for ISI to give participants the
time to shift their gaze for the next movement. A video clip
showing the online experiment of a participant is attached to
this manuscript as a Supplementary Movie, and its high
resolution version can be found at YouTube™ (https://youtu.
be/TC4QMPhW6y8).

2.4. Biosignal Acquisition and Preprocessing. -e EEG data
were recorded from seven electrodes (Cz, PO3, POz, PO4, O1,
Oz, and O2) using a commercial biosignal recording system
(ActiveTwo, BioSemi, Amsterdam, and the Netherlands). In
addition, a pair of electrodes was attached above and below
the right eye to acquire the vertical EOG data. -e sampling
rate was set at 2,048Hz. -e recorded EEG data were re-
referenced to Cz [4, 25] and then band-pass filtered at 6 and
50Hz using a zero-phase Chebyshev type I infinite impulse
response filter implemented in MATLAB (MathWorks, Inc.,
Natick, MA, USA). -e program to analyze data in real time
was developed using the FieldTrip toolbox [26].

2.5. Data Analysis and Statistical Analysis. For the classifi-
cation of the SSVEP responses, we adopted a recently in-
troduced algorithm called the extension of the multivariate
synchronization index (EMSI) [5], which has exhibited
outstanding performance compared to the conventional
classification methods [27].

-e Wilcoxon signed-rank test was employed for the
statistical analysis because the classification accuracies with
respect to the two visual stimulus types did not follow
normal distribution as assessed by the Kolmogorov–
Smirnov test.

3. Results

In the offline experiment, the GSS outperformed the PRCS
in both classification accuracy and information transfer rate
(ITR) for all window sizes (Figures 2 and 3); ITR was cal-
culated as follows:

ITR �
log2 N + P log2 P +(1−P)log2(1−P)/(N− 1)( 􏼁

C
,

(1)

where N denotes the number of stimuli, P denotes the
classification accuracy ranging from 0 to 1, and C denotes
the time needed to classify a single trial [28]. Statistical
analysis using the Wilcoxon signed-rank test also showed
statistically significant difference in the performance of the
GSS and PRCS (Bonferroni-corrected p< 0.005 for both
classification accuracy and ITR for all window sizes).
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Figure 1: (a) Overall timeline for a single trial in offline experiments. In each trial, after a 2 s instruction period to inform participants of the
location of a target visual stimulus, four visual stimuli, each of which was either PRCS or GSS, were presented for 4 s. (b) Screenshots of
online experiments.-e left picture was taken when the PRCS was employed, while the right picture was taken when the GSS was employed.
-e human avatar needed to move along a designated path (e.g., in the left direction in both figures).
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Although a window size of 1.5 s showed the highest ITR
(Figure 3), 2 s epochs were used for the classification in the
online experiments. -is was because the difference
between the ITRs for the 1.5 s and 2 s epochs was not
big, but the improvement in the classification accuracy
was relatively distinct for the 2 s epoch compared with the
1.5 s epoch.

Table 1 shows the classification accuracy of each
participant in the online experiment. Unlike the pre-
liminary offline experiment, no statistical significance was
observed between the classification accuracies for the
PRCS and GSS (p � 0.424; Wilcoxon signed-rank test) in
the online experiment although the average classification
accuracy for the GSS was higher than that for the PRCS.

-e possible reasons for the difference between the two
cases, i.e., the offline and online experiments, will be
discussed in Discussion.

For further analyses, all participants were divided into
three groups based on the subjective visual comfort ratings
for the two visual stimulus types that were obtained right
after the preliminary offline experiment. -e participants
who were more comfortable with the PRCS were catego-
rized as Group 1, and those who were more comfortable
with the GSS were categorized as Group 2. -e participants
who rated both stimuli equally were categorized as Group 3
and excluded from further analyses. Interestingly, all three
participants (i.e., P6, P8, and P10) in Group 1 exhibited
higher classification accuracies for the PRCS than for the
GSS, while most participants in Group 2, with the ex-
ception of only one participant (i.e., P5), exhibited higher
or equivalent classification accuracies for the GSS than for
the PRCS. -ese results suggest that the performance of the
SSVEP-based BCIs in VR environments might be poten-
tially improved by selecting the best stimulus type for each
individual, which would be readily chosen by inspecting the
individual’s subjective visual comfort for different visual
stimuli types.

4. Discussion

-e performances of the reactive BCI systems are highly
dependent on the types of stimuli used to elicit specific EEG
responses. Although a series of studies has been performed
to find an optimal visual stimulus for the conventional
SSVEP-based BCIs in the LCD monitor environment, no
study has yet been reported on the influence of visual
stimuli on the performance of the SSVEP-based BCIs in
VR-HMD environments. We hypothesized that the PRCS,
which are widely used in the SSVEP-based BCIs, might not
be the optimal visual stimulus in a VR-HMD environment
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Figure 3: Comparison of offline experimental results between the
PRCS and GSS in terms of the average ITR across participants. -e
error bars indicate the standard errors. ∗∗∗p< 0.005.

Table 1: Comparison of online classification accuracies between
the PRCS and GSS.

Group Participant PRCS accuracy
(%)

GSS accuracy
(%)

Group 1
P6 84.5 58.8
P8 92.3 85.7
P10 98.4 92.3

Group 2

P2 100 100
P3 66.7 98.4
P5 96.8 76.9
P7 100 98.4
P11 89.6 98.4
P12 80.0 80.0
P13 84.5 95.2

Group 3

P1 70.6 89.6
P4 84.5 90.9
P9 75.9 92.3
P14 83.3 96.8

Average± std. 86.2± 10.7 89.6± 11.3
Group 1 includes participants who rated PRCS as more comfortable to their
eyes than GSS. Group 2 includes participants who rated GSS as more
comfortable than PRCS. -e remaining participants who gave the same
score to both stimuli are categorized as Group 3.
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Figure 2: Comparison of offline experimental results between the
PRCS and GSS in terms of the average classification accuracy across
participants. -e error bars indicate the standard errors.
∗∗∗p< 0.005.
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because the images displayed on the HMDs are closer to the
eyes than those on the LCD monitors, and thus, the PRCS
might be too intense for the eyes. -erefore, in this study,
we tested another type of visual stimulus called the GSS that
changes both size and luminance in VR environments and
compared the BCI performances with the PRCS.

In the offline experimental results, the GSS out-
performed the PRCS in terms of classification accuracy;
however, the difference in the performance was considerably
reduced in the online experiments. -is phenomenon is
thought to originate from several factors: first, the spatial
frequency of the PRCS in the offline experiment was dif-
ferent from that in the online experiment. -e spatial fre-
quency changed from 0.25 cycle/deg in the offline
experiment to 0.5 cycle/deg in the online experiment.
According to a previous report [12], spatial frequency of
PRCS has close relationship with the performance of SSVEP-
based BCIs.-e second reason might be the difference in the
background; for instance, in the offline experiment, a mo-
notonous dark grey background was used, while in the
online experiment, a relatively complicated background with
many distractors was employed (Figure 1(b)). -is com-
plicated background might have distracted the elicitation of
the SSMVEP because the border of the GSS sometimes
becomes obscure owing to the background images. On the
contrary, the PRCS would be less affected by the background
because this stimulus maintains its size during the
presentation.

Our online experiments demonstrated that the SSVEP-
based BCI with a visual stimulus that was more comfortable
for the user generally outperformed that with the other
stimulus in VR environment.-is finding is not in line with
previous reports showing that a visual stimulus evoking
stronger SSVEP responses induced the severer visual fa-
tigue [29–31] when an LCD monitor was used for pre-
senting visual stimuli. However, there are also some
evidences showing that the relationship between visual
comfort and BCI performance is dependent upon the
stimulation rendering device (e.g., light emitting diodes:
LEDs) or stimulus types (e.g., SSMVEP) [32, 33]. Our
results also suggest that a user’s optimal visual stimulus in
VR environments might be readily determined by rating
the subjective visual comfort of the user even before the
main BCI experiment. -is strategy might considerably
alleviate the necessity of a series of offline BCI experiments
to determine an optimal visual stimulus for the user in the
VR environment.

In the offline experiment, four participants rated the
same visual comfort score for both PRCS and GSS. In-
terestingly, they commonly achieved better classification
accuracies in the GSS than in the PRCS. Although the limited
sample size makes it hard to generalize, selecting GSS rather
than PRCS might yield better classification accuracies in
cases when there is no difference in the subjective visual
comfort ratings. However, further investigations are re-
quired to formulate a more generalized rule for selecting the
optimal visual stimulus for the SSVEP-based BCIs in VR
environments. In addition, in the present study, we tested
only two types of visual stimuli; however, more types of

visual stimuli need to be developed and tested in VR en-
vironments in future studies.

5. Conclusions

To the best of our knowledge, this is the first study that has
compared different types of visual stimuli for the SSVEP-
based BCIs in VR environments. Our study demonstrated
that selection of an optimal visual stimulus for an individual
could improve the overall performance of the SSVEP-based
BCIs and reduce visual fatigue in VR environment. A close
association between the performance of the SSVEP-based
BCIs and subjective visual comfort was observed, suggesting
that the selection of an appropriate visual stimulus via a
simple pre-experimental inspection of the individual’s
preference toward the visual stimuli might help to enhance
the performance of the SSVEP-based BCIs in VR
environments.
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