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Abstract

We proposed a new efficient image denoising scheme, which mainly leads to four important

contributions whose approaches are different from existing ones. The first is to show the

equivalence between the group-based sparse representation and the Schatten-p norm mini-

mization problem, so that the sparsity of the coefficients for each group can be measured by

estimating the underlying singular values. The second is that we construct the proximal

operator for sparse optimization in ℓp space with p 2 (0, 1] by using fixed-point iteration and

obtained a new solution of Schatten-p norm minimization problem, which is more rigorous

and accurate than current available results. The third is that we analyze the suitable setting

of power p for each noise level σ = 20, 30, 50, 60, 75, 100, respectively. We find that the opti-

mal value of p is inversely proportional to the noise level except for high level of noise, where

the best values of p are 1 and 0.95, when the noise levels are respectively 75 and 100. Last

we measure the structural similarity between two image patches and extends previous

deterministic annealing-based solution to sparsity optimization problem through incorporat-

ing the idea of dictionary learning. Experimental results demonstrate that for every given

noise level, the proposed Spatially Adaptive Fixed Point Iteration (SAFPI) algorithm attains

the best denoising performance on the value of Peak Signal-to-Noise Ratio (PSNR) and

structure similarity (SSIM), being able to retain the image structure information, which out-

performs many state-of-the-art denoising methods such as Block-matching and 3D filtering

(BM3D), Weighted Nuclear Norm Minimization (WNNM) and Weighted Schatten p-Norm

Minimization (WSNM).

1 Introduction

Images are generally contaminated by noise during acquisition, transmission and compression

and real-life images are often degraded with mixed noise and it is hard to identify the type and
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model the noise [1–8]. Images with high resolutions are desirable in many applications, e.g.,

object recognition, image classification, and image segmentation in medical and biological sci-

ence. As an essential low-level image processing procedure, image denoising has been studied

extensively and belong to a special type of classical inverse problems. The general observation

with additive noise can be modeled as Y = X + N, where Y is the noisy observation, and X and

N present the original image and white Gaussian noise, respectively. Though a plethora of

noise removal techniques have appeared in recent years, for example, Convolutional Neural

Network (CNN) [9, 10] have proved very promising on denoising tasks for which large train-

ing sets are available, but when the training data are scarce, their performance suffers from

overfitting. Therefore image denoising for real-life noise still remains an important challenge

in order to recover the images with high quality [11].

Image denoising problem is in general ill-posed and it requires appropriate regularization.

Over the past few decades, numerous image denoising methods have been developed [12].

This is usually achieved by minimizing a suitable energy functional that characterizes a trade-

off between data-fidelity and regularity. Frobenius norm is often employed to measure the

data fitting loss for additive Gaussian noise.

Sparse signal representation describes a signal that can be approximated as a linear combi-

nation of as few as possible atoms from a given dictionary. Recently, Elad [13] showed that

sparse overcomplete representation approach is quite effective in denoising images, supported

by recent study that better denoising performance can be achieved by using a variant of sparse

coding methods [14, 15]. In order to promote sparsity more extensively than convex regulari-

zation, it is also standard practice to employ non-convex optimization [16].

In image denoising, following [17], each noise patch yi is extracted from the noisy image Y.

In order to better exploit group sparsity, we group a set of similar patches

Y ¼ ½y
1
; y

2
; . . . ; yn� 2 R

m�n
. Thus, denoising problem becomes the recovery problem of xi

from yi. Now let us consider the group sparsity defined by a group norm ||A||p,2:

ðD;AÞ ¼ arg min
D;A

1

2
jjY � DAjj2F þ ljjAjj

p
p;2; 0 < p � 1; ð1Þ

where A ¼ ½a1; a2; . . . ; an� 2 Rm�n is related to image patches by X = DA. We note that the

group norm (quadratic symmetric gauge function, see 2.4.2 of [18])||�||p,2 is defined by

jjAjjp;2 ≜ k ðjja1jj2; . . . ; jjanjj2Þ kp;

where αi = [αi,1, . . ., αi,m]T denotes the ith column of matrix A in Rm�n. In recent years, many

research is devoted to address the group sparse optimization problem (1), aiming at the

improvement of efficiency and accuracy (e.g., see survey paper [16] and references therein).

Once all group sparse codes A are achieved, the latent clean image X can be reconstructed

as X = DA by standard approach(see Theorem 1 and 2 in [19]).

The main contributions of this paper are illustrated as follows:

1. We unify the group-based sparse coding in [20] and the Schatten-p norm minimization

problem in [21] by proving their mathematical equivalence.

2. A fixed-point iteration scheme is developed for sparse optimization in ℓp space with p 2 (0,

1] by using proximal operator and we a new solution to Schatten-p norm minimization

problem is obtained, which appears to be more accurate and rigorous than [21].

3. Regarding to image denoising, we find that the optimal value of p is inversely proportional

to the noise level except for high level noise, where the best values of p are 1 and 0.95, when

the noise levels are 75 and 100, respectively.

Non-local image denoising using fixed-point iteration for non-convex ℓp sparse optimization
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4. The proposed Spatially Adaptive Fixed Point Iteration (SAFPI) algorithm attains the best

denoising performance on the value of PSNR and SSIM, being able to retain the image

structure information, which outperforms many state-of-the-art denoising methods such as

BM3D, WNNM and WSNM.

The rest of the paper is organized as follows. In Section 2.1, we prove the equivalence of

group-based sparse coding and the Schatten-p norm minimization problem and propose a

new solution to Schatten-p norm minimization problem. A fixed point iteration for solving

sparse optimization in ℓp space with p 2 (0, 1] is formulated and discussed. In Section 2.2, we

establish an image denoising scheme using nonlocal self-similarity and Schatten-p norm mini-

mization. In Section 3, based on the new developed Spatially Adaptive Fixed Point Iteration

(SAFPI) algorithm, we present the experimental results using a set of standard benchmark

images. And the comparison with several existing methods are also provided to demonstrate

our improvement. Finally, the paper ends with concluding remarks.

2 Materials and methods

2.1 Proximal operator for Schatten-p norm minimization

2.1.1 Background. Consider a matrix Y 2 Rm�n
, then YT Y is a positive semidefinite

matrix. The eigenvalues of YT Y are called the singular values of Y, denoted by σ1(Y), . . .,

σmin{m,n}(Y) in decreasing order (see page 246 of [22]). Let r = rank(Y), it is clear that

srþ1ðYÞ ¼ 0; . . . ; smin fm;ngðYÞ ¼ 0:

The matrix Y also has the following Singular Value Decomposition (SVD) Y = USVT, where

U 2 OðmÞ;V 2 OðnÞ (O is the set of orthogonal matrices) and σn is an m×n diagonal matrix

with diagonal entries σ1(Y), . . ., σmin{m,n}(Y). We introduce the Schatten-p norm (0 < p<1)

of Y, which is defined as

jjYjjSp ¼
Xminfm;ng

i¼1

s
p
i ðYÞ

 !1=p

:

Special cases of the Schatten-p norm include the nuclear norm (p = 1) and the Frobenius norm

(p = 2).

Next we analyze the relationship between group-based sparse coding and the Schatten-p
norm minimization problem, which improves Theorem 2 in [23]. But our approach is based

on the “symmetry” technique (similar to [17] for other purpose), which is essentially different

from [23].

Theorem 1 The group-based sparse coding problem (1) is equivalent to a Schatten-p norm
minimization problem.

Eqs (12), (13) and (14) imply that any operation designated for sparse coefficient vector α’s

can be conveniently implemented with singular values of X (only differs by a constant scalar).

The Schatten-p norm (0< p� 1) has been widely used to replace the nuclear norm for bet-

ter approximating the rank function. There are extensive study for the Schatten-p norm opti-

mization problem (14) in literature [24, 25]. Note that the main difference between group

sparse coding and the Schatten-p norm minimization problem is that group sparse coding has

a dictionary learning operator while the Schatten-p norm minimization problem does not

involve such operation.

2.1.2 Computation of proximal mapping using fixed point iterative method. Now let

us recall the definition of proximal mapping.

Non-local image denoising using fixed-point iteration for non-convex ℓp sparse optimization
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Definition 2 The proximal mapping of a mappingY : R 7! R is

ProxYðxÞ ¼ argmin
w
fðw � xÞ2 þ 2lYðwÞg:

The proximal mapping of jjYjjpSp is defined as:

Proxl k �kpðYÞ ¼ argmin
X

1

2
jjY � Xjj2F þ ljjXjj

p
Sp
: ð2Þ

And we have the following celebrated theorem:

Theorem 3 [Theorem 1 of [26]] If matrix Y 2 Rm�n has the following Singular Value Decom-
position (SVD) Y = USVT, where U 2 OðmÞ;V 2 OðnÞ and σn is an m × n diagonal matrix
with diagonal entries σ1(Y), . . ., σmin{m,n}(Y). Then we have in Eq (2)

X̂ ¼ Proxl k �kpðYÞ ¼ UdiagðsiðX̂ÞÞV
T; ð3Þ

where siðX̂Þ is defined as the scalar proximal mapping in (2):

siðX̂ Þ ¼ Proxl k �kpðsiðYÞÞ ¼ arg min
sX�0

ðsX � siðYÞÞ
2

2
þ ls

p
X: ð4Þ

In order to be transparent for our proposed approach to solve Eq (4), we recall two impor-

tant concepts in convex optimization next.

Definition 4 (see Chapter 2 p 82 of [27]) LetRn be paired by a bilinear functional (inner
product) h,i and let f : Rn

7! R be any extended real-valued function onRn
. Then the function

f� on Rn defined by

f �ðyÞ ¼ min
x

f ðxÞ � hx; yi; y 2 Rn

is called the Fenchel conjugate of f (with respect to the given pairing). Note that f� is always a
closed convex function, regardless of the structure of f.

Definition 5 Given the proper convex function f : Rn 7! ð� 1;þ1�, the subdifferential of
such a function is the (generally multivalued) mapping @f : Rn

7! Rn� defined by

@f ðxÞ ¼ fx� 2 Rn� j f ðzÞ � f ðxÞ þ hx�; z � xi; z 2 Rng:

The elements x� 2 @f(x) are called subgradients of f at x. Actually, same definition works for non-
convex f (however, subgradient need not exist).

A point x 2 Rn
is a minimizer of a function f (not necessarily convex) over Rn

if and only if

f is subdifferentiable at x and 0 2 @f(x).

Lemma 6

Proxl k �kpðxÞ ¼ arg min
w
fðw � xÞ2 þ 2ljwjp; 0 < p � 1g

is closed and convex, but it has no close form solution for general p.

If p = 1, it is well-known that the function ϕ(w) = |w| is not differentiable but still convex,

and can be described by a subgradient (see Section 2.3 of [28]) as @ϕ(w) = sign(w) and from

Lemma 6, we have

Proxl k �k1ðxÞ ¼ ðIþ l@�Þ
� 1
ðxÞ ¼ maxfjxj � l; 0g:

Furthermore, we can obtain the following theorem, which improves Theorem 1 in [29] and

Theorem 1 in [19] using fixed-point iteration (see Chapter 1 of [30] for details).

Non-local image denoising using fixed-point iteration for non-convex ℓp sparse optimization
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Definition 7 Given a function g : ½a; b� 7! R, find ξ 2 [a, b] such that ξ = g(ξ). If such ξ
exists, it will be called a fixed point of g and it could be computed by the following algorithm: ξ(n)

= g(ξ(n−1)), n� 1. And g is said to be a contraction on [a, b] if there exists a constant L such that
0< L< 1 and |g(x) − g(y)| < L|x − y| for any x, y 2 [a, b].

Theorem 8 Let us denote

@l;p ¼ max

(
2 � p

2ð1 � pÞ
ð2lð1 � pÞÞ

1
2� p;

1

2
ðlpð1 � pÞÞ

1
2� p þ lðlpð1 � pÞÞ

p� 1

2� p

)

;

then for 0< p< 1, we have

Proxl k �kpðxÞ ¼ arg min
w�0
fðw � xÞ2 þ 2ljwjpg

¼

( 0 jxj � @l;p

fixed � point of the contraction w 7! jxj � lp
w
jwj2� p

jxj � @l;p:

2.2 Spatially Adaptive Fixed Point Iteration (SAFPI) denoising algorithm

In [20, 21], the authors proposed a group sparse representation framework and a Schatten-p
norm minimization framework for image denoising. In Theorem 1, we have shown these two

approaches are equivallent. From combining Theorem 3 and Theorem 8, we obtained a fixed

point iteration solution of Eq (14) in Theorem 1, which is more rigorous than [20, 21].

After grouping a set of similar patches Y ¼ ½y
1
; y

2
; . . . ; yn� 2 R

m�n
, the denoising problem

becomes the recovery problem of xi from yi. And as was shown in Theorem 1, the Schatten-p
norm minimization problem (14) converts the denoising problem to recover the low-rank

matrix X from the non-low-rank matrix Y, and thus filtering out the noise of the structure set.

And the second identity in Eq (14) can be solved using Theorem 3 and Theorem 8.

Wavelet-based image denoising assumes that the wavelet coefficients obey the Laplace dis-

tribution, and the threshold method is used to filter the noise in the image. The prior distribu-

tion of the block matrix singular values can also approximate the Laplace distribution in space.

The parameter λ for each group that balances the fidelity term and the regularization term

should be adaptively determined for better denoising performance. Using the Spatial

Adaptive Laplacian Transcendental as appeared in [17, 31], the threshold parameter can be set

to li ¼
2
ffiffi
2
p

s2
w

si
; where σi denotes the locally estimated variance at the position i. Now the second

identity in Eq (14) becomes

Proxli k �kpðYÞ ¼ arg min
X

1

2
jjY � Xjj2F þ

2
ffiffiffi
2
p

s2
w

si
jjXjjpSp : ð5Þ

From Eq (4), if Y has singular value decomposition Y = USVT, we have X̂ ¼ UŜVT , where

Ŝ ¼ diagfε̂1; . . . ; ε̂minfm;ngg. And ε̂ i can be computed using Theorem 3 and Theorem 8.

Recently some developed iterative regularization techniques in [17] offers an alternative

approach toward spatial adaptation. The basic idea of iterative regularization is to add filtered

noise back to the denoised image i.e.,

yðkþ1Þ ¼ x̂ ðkÞ þ dðy � x̂ðkÞÞ ð6Þ

where k denotes the iteration number and δ is a relaxation parameter. Besides, we can execute

Non-local image denoising using fixed-point iteration for non-convex ℓp sparse optimization
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the above denoising procedures for better results after several iterations. In the k + 1-th itera-

tion, the iterative regularization strategy in [17] is used to update the estimation of noise vari-

ance. Then the standard deviation of noise in k + 1-th iteration is adjusted as

ŝ ðkþ1Þ

o
¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
o
� jjy � yðkÞjj2

2

q

ð7Þ

where γ is a scaling factor controlling the re-estimation of noise variance and the local esti-

mated variance at the i-th position is

ŝ
ðkþ1Þ

i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxððwðkÞi Þ
2
=n � ðŝ

q
ðkÞ
o
Þ

2
; 0Þ: ð8Þ

where χi is the i-th singular value of image y.

The higher the structural similarity of the blocks in the structure group is, the more correla-

tive the column vectors in the block matrix will be, which means that it has a low rank property

corresponding to the noise-free matrix. The information is mainly concentrated in those larg-

est singular values. During the proximal operation, selecting the appropriate threshold param-

eter for those with larger singular value makes the processed singular value closer to the noise-

free singular value, which can well preserve the useful information in the image while filtering

out the noises.

Therefore, choosing blocks with more similar structure will help to improve the image

denoising effect. There are many commonly used similarity measures such as Euclidean dis-

tance, cosine angle, and correlation coefficient. The traditional block similarity measure func-

tion have some shortcomings in measuring the similarity between blocks. Euclidean distance

simply calculate the difference between the pixel gray value of the blocks, and then add up as a

standard measure of the degree of similarity. Although this method is simple and easy to

implement, it only treats the blocks as isolated pixels and neglects the statistical relevance

between local pixels, which leads to the inaccuracy of similarity measure. This is because the

blocks are not in an Euclidean space. There is a very strong correlation between the pixels in

the block. The local pixel correlation carries important structural information of the blocks.

In order to solve this problem, Structural SIMilarity (SSIM) index [32, 33] is often used to

evaluate the image quality. SSIM is defined as

ð2mXmX̂ þ c1ÞðsX;X̂ þ c2Þ=½ðm
2
Xm

2

X̂ þ c1Þðs
2
Xs

2

X̂ þ c2Þ�, where mX; mX̂ , s2
X; s

2

X̂ , and sX;X̂ denote

the average of X, the average of X̂ , the variance of X and the variance of X̂ , respectively. c1 and

c2 are two variables to stabilize the division with weak denominator.

A detailed step-by-step description of Spatially Adaptive Fixed Point Iteration (SAFPI)

denoising algorithm is given by Algorithm 1

Algorithm 1 Image Denoising via SAFPI Algorithm
Require: Initialization: x̂ ¼ y;
Iterate on i = 1,2, . . ., iter

1. Iterative regularization: yðkþ1Þ ¼ x̂ðkÞ þ dðy � x̂ðkÞÞ and compute its vari-
ance sðkþ1Þ

o
;

2. Divide y(k+1) into several blocks, the SSIM is used to classify the
blocks with structural similarities into one structural group Yi;

3. Noise variance update: re-estimate σω from y(k+1) via

ŝðkþ1Þ
o
¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
o
� jjy � yðkþ1Þjj

2

2

q

;

4. SVD for each noisy data matrix Yi: (Ui, Σi, Vi) = SVD(Yi), where Σi =
diag{ε1, . . ., εmin{m,n}};

Non-local image denoising using fixed-point iteration for non-convex ℓp sparse optimization
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5. Thresholds update: compute λi using li ¼
2
ffiffi
2
p

s2
o

s
ð1=pÞ
i

and ŝ i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxðS2

i =n � s2
o
; 0Þ

q

;

6. Compute

@li ;p ¼ max

(
2 � p

2ð1 � pÞ
ð2lið1 � pÞÞ

1
2� p;

1

2
ðlipð1 � pÞÞ

1
2� p þ liðlipð1 � pÞÞ

p� 1

2� p

)

;

7. Application of proximal operator: Updating the εi value by using
the follow formula

εi ¼

( 0 jεij � @li ;p

jεij � lipðjεij � lipjεij
p� 1
Þ
p� 1

jεij � @li ;p;

with computed λi and εi from step 5 and 4;

8. Image update: obtain an improved denoised image x̂ðkÞ by weighted
averaging all denoised patches X̂ i ¼ UiŜ iV

T
i , where

Ŝ i ¼ diagfε1; . . . ; εminfm;ngg;
Output: x̂ðkÞ.

3 Results and discussion

In recent years, many denoising algorithms have been developed and the adaptive image

removal algorithms [34–36] is a hot trend in signal and image denoising. To demonstrate the

effectiveness of the proposed denoising algorithm, in this section, we compared the denoising

performance with recently proposed state-of-the-art denoising methods, such as BM3D [37],

WNNM [38], WSNM [21], Expected Patch Log-likelihood (EPLL) [39], Spatially Adaptive

Iterative Singular-value Thresholding (SAIST) [17], Patch-Based Near-Optimal image denois-

ing (PBNO) [40], Global Image Denoising (GID) [41], iterative denoising system based on

Wiener filtering (WIENER) [34], and Linear Complex Diffusion Process (LCDP) [35]. We

have used some well known images that are commonly used in the literature such as [17, 21,

38, 42]. We added noise to them, and test the proposed denoising algorithm with different

power p under different noise levels. The experimental images are shown in Fig 1.

There are several image quality evaluation indicators measuring success of denoising such

as kurtosis, low signal-to-noise-ratio(SNR). Low kurtosis indicate superior performance and it

is defined as kðXÞ ¼ C4ðXÞ=C2
2

[43], where Ck(.) is the k-th cumulant function. In our work,

Fig 1. The 14 test images for image denoising.

https://doi.org/10.1371/journal.pone.0208503.g001
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we evaluated the performance with three criterion: Structure Similarity Index (SSIM), kurtosis

and Peak Signal-to-Noise Ratio (PSNR) which defined as 10 log 10
M2

MSE, where M denotes the

maximum intensity of the underlying image and MSE ¼ 1

n1�n2

Pn1

i¼1

Pn2

j¼1
ðXi;j � X̂ i;jÞ

2
is the

mean squared error between the denoised image X̂ and the noiseless image X. All the experi-

ments were carried out on Matlab (R2016a) of a PC with Intel(R) Xeon(R) CPU E5 − 1630

V4@3.7GHz and 32GB RAM.

3.1 Analysis of over-shrinkage problem and optimal power p
Firstly, we noticed that not all values of power p applied well to the proposed Spatially Adaptive

Fixed Point Iteration (SAFPI) algorithm. It would conduct an approximation deviation with the

solved singular values and produce excessive contraction, when the value of p is not suitable. As

shown in Fig 2, we tested SAFPI to process low rank approximation on the red patch in Fig 2B

Fig 2. Illustration of the over-shrinkage problem with the value of power p. (A) Original image. (B) Noisy image

with σn = 50. (C) Singular values of X̂ i.

https://doi.org/10.1371/journal.pone.0208503.g002
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with the noise level be 50, which is randomly marked from “Monarch” Fig 2A. In Fig 2C, fs
ðpÞ
i g

represents the singular values of the denoised similar patches with different power p. The

ground-truth line (denoted by blue line) is the singular value connection line for the similar

blocks of the noiseless red patch in Fig 2A. Now we can see that fs
ð0:8Þ

i g (shown on green line) is

more close to the ground-truth line. This means that the other fs
ðpÞ
i g’s (denoted by black, red,

blue lines) conducted a serious over-shrinkage problem. In this case, setting p = 1 as in WNNM

in denoising will lead to bad processing results. So the advantage of SAFPI algorithm is to over-

come the over-shrinkage problem, in case we can find the optimal value of power p.

Secondly, in order to find the optimal values of p under different noise levels for SAFPI

algorithm, we randomly chose 10 test images in Fig 1 for our experiments and set the values of

power p to be from 0.05 to 1 with an interval of 0.05. The zero mean additive white Gaussian

noise levels were set to be σn = {20, 30, 50, 60, 75, 100}, and the other parameters were the same

as WSNM [21]. The results are shown in Fig 3, the horizontal coordinate denotes the different

values of p and the vertical coordinate represents the average value of PSNR under given noise

level. And the red dots are the optimal points for each given noise level.

We can see that the best values of power p are 1.0, 0.90, 0.85 and 0.6, when the noise levels

are low or medium 20, 30, 50 and 60, respectively. While handling very high noise levels 75,

100, the average PSNR values decrease firstly and then increase, the best values of p are 0.95

and 0.9 respectively. To sum up, we find that the optimal value of p is inversely proportional to

the noise level except for high level of noise, where the best values of p are 1 and 0.95. And

then we applied the best empirical values for the next experiments.

3.2 Performance comparison with different methods

We set p = {1.0, 0.9, 0.85, 0.6, 0.95, 0.9} for σ = {20, 30, 50, 60, 75, 100} in our proposed SAFPI

algorithm. And then we compared the performance with seven standard algorithms (BM3D,

Fig 3. The influence of changing p upon denoised results under different noiselevels. (A) σn = 20 (B) σn = 30 (C)

σn = 50 (D) σn = 60 (E) σn = 75 (F) σn = 100.

https://doi.org/10.1371/journal.pone.0208503.g003
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WNNM, WSNM, EPLL, SAIST, PBNO, GID, WIENER, LCDP) from 13 widely used images

from Fig 1. The results (thanks to the source codes provided by the authors) are in Tables 1, 2,

3, 4, 5 and 6. It can be seen from Table 7 that our algorithm always obtains the best average val-

ues of PSNR under different noise levels. The proposed approach achieves 0.3dB to 0.51dB

improvement on average over the BM3D, when the noise levels are between 20 and 100. It also

achieves 0.02dB, 0.06dB and 0.14dB improvement on average over the WSNM, when the noise

levels are 30, 50 and 100, respectively. And our average values of SSIM are the best when the

noise levels are 20, 30, 50 and 60. To sum up, for every given low and medium noise level, our

algorithm attains the best denoising performance on the values of SSIM and PSNR for all noise

levels. This leads to a better image denoising performance and high robustness to noise

strength in comparison to several existing denosing algorithms.

For visual quality, some comparative images are shown in Figs 4, 5, 6 and 7. As shown in

Fig 4, our algorithm resumed the structure of the ear (which is magnified in the highlighted

red window) better than other algorithms. When the noise level is very high, as shown in the

zoom-in window in Fig 7, our algorithm could reconstruct clear texture structures, while the

competing methods get more blurred textures.Other visual improvements can be seen in Figs

5 and 6. Sometimes the variation of noise is too big and too small in the same image (in differ-

ent parts of the image). To demonstrate our method, we randomly selected two small pieces

from the given image. Although their local noise level would be different, our algorithm always

gets the best visual texture. Now we could conclude that the proposed SAFPI algorithm can

display excellent denoising performance, producing good visual effect and rebuilding better

textures.

If noise is non-Gaussian, one popular method is to transform the non-Gaussian noise into

a more tractable Gaussian model such as the generalized Anscombe transformation (GAT)

[43, 44]. In this paper, we deal with non-Gaussian noise using the proposed algorithms. In the

first experiment, we assumed the noise was a mix of Gaussian noise (σn = 20, 50, 100) and

speckle noise (the density is d = 1�10−3). Then we used the SAFPI algorithm directly to remove

the noise. We randomly selecteded six images (Lena, Monarch, Barbara, Cameraman, House,

Peppers) on Fig 1 for experimental verification and compared with some excellent denoising

algorithms which has been mentioned in the previous experiments. The results are shown on

Table 8. In the second experiment, we assumed the noise was mixed Poisson-Gaussian noise.

Then we transformed the Poisson-Gaussian hybrid noise into an approximate Gaussian noise

using the GAT [43] algorithm and obtained the repaired images by using the proposed denois-

ing algorithm and the exact unbiased inverse GAT [44]. We used Lena and C.man as the test

images and set eight different peak values to be (1, 2, 5, 10, 20, 30, 60, 120). The Poisson-Gauss-

ian noise were set to be σ = peak/10. We compared with BM3D, SAIST, WNNM and recorded

the average PSNR and kurtosis parameters of these two images. The results are shown on

Table 9. All bold numbers represent the best evaluation index values. From Table 8, we can see

when the standard deviation is not big (σn = 20, 50), our proposed algorithm almost achieved

the best values of all three quality evaluation indicators, and obtained the best PSNR values on

all of hybrid noises experiments. From Table 9, it can be seen that the SAFPI algorithm almost

get the highest averaged PSNR value under all peaks experiments. In most cases, our proposed

algorithm obtained relatively good kurtosis metrics and optimal PSNR value, which is 0.2 to

0.3dB higher than the BM3D algorithm and about 0.1dB to 1.11dB higher than WNNM.

Finally, we bravely attempted to discuss the complexity of SAFPI algorithm. We assume

each patch size is A � A, where A represents the length or width of each block, and k is the

number of similar patches in each structural group yi. Now calculating SVD (step 4 in Algo-

rithm 1) needs Oðmin ðA2 � K2; A4 � KÞÞ flops in each iteration. And it also costs OðKÞ to

compute the singular values in step 6. Next since the image y(k+1) can be divided into N blocks

Non-local image denoising using fixed-point iteration for non-convex ℓp sparse optimization
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in step 2, then it needs i � N �Oðmin ðA2 � K2; A4 � KÞ þ KÞ flops, where i is the number of

iterations in Algorithm 1. Then we recorded the execution times of several excellent denoising

algorithms spent on the above experiments with the standard deviation σn of the white Gauss-

ian noise to be 20: SAFPI 4843.339s, WSNM 5453.311s, WNNM 4410.991s, SAIST 923.9837s,

BM3D 17.6242s and EPLL 1550.607s. Our algorithm did not take much longer time while

maintaining the best denoising results.

4 Conclusions

In this paper, a fixed-point iteration scheme was developed for sparse optimization in ℓp space

with p 2 (0, 1] by using proximal operator. We showed that group sparse coding was equiva-

lent to Schatten-p norm minimization problem, and thus the sparse coefficient of each group

were measured by estimating the singular values of each group. When analyzing the optimal

value of power p, we can find that the optimal value of Schatten p-norm is related to the noise

level. As the noise level increases, the optimal value of p decreases gradually. And if the noise

Table 7. Comparison of average PNSR with different methods.

σn Average PSNR

SAFPI BM3D PBNO EPLL GID SAIST WNNM WSNM WIENER LCDP

20 31.1046 30.8100 30.2153 30.4985 29.7292 30.8469 31.1015 31.0985 27.7960 29.4640

30 29.2562 28.7200 28.6331 28.585754 27.7654 28.5052 29.2315 29.23 26.3392 27.4223

50 26.9954 26.3754 26.4369 26.1945 25.4069 26.6746 26.9277 26.9254 23.6285 24.9385

60 26.1777 25.8223 25.6485 25.3569 24.5492 25.6377 26.1015 26.1215 22.4630 24.0762

75 25.1708 24.8515 24.6400 24.3731 23.4915 24.74 25.16 25.0708 20.9077 23.0754

100 23.9454 23.3838 23.3162 23.1731 22.2169 23.5038 23.9131 23.8077 18.8169 21.7823

https://doi.org/10.1371/journal.pone.0208503.t007

Fig 4. Denoising results on image Cameraman by different methods (noise level σn = 20). (A) Ground Truth (B)

Noisy Image (C) BM3D, PSNR = 30.48 (D) EPLL, PSNR = 30.34 (E) SAIST, PSNR = 30.45 (F) WNNM, PSNR = 30.64

(G) WSNM, PSNR = 30.64 (H) SAFPI, PSNR = 30.68.

https://doi.org/10.1371/journal.pone.0208503.g004
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reaches a high level, the optimal value of p will be close to 1. The developed SAFPI algorithm

can obtain higher PSNR indices and is able to retain promising texture structure information

and visual quality. The methods developed in this paper leads to a better image denoising com-

pared to other competing denoising algorithms. There are several future research directions.

Fig 5. Denoising results on image Monarch by different methods (noise level σn = 30). (A) Ground Truth (B) Noisy

Image (C) BM3D, PSNR = 28.36 (D) EPLL, PSNR = 28.35 (E) SAIST, PSNR = 28.03 (F) WNNM, PSNR = 28.94 (G)

WSNM, PSNR = 29.02 (H) SAFPI, PSNR = 29.09.

https://doi.org/10.1371/journal.pone.0208503.g005

Fig 6. Denoising results on image House by different methods (noise level σn = 50). (A) Ground Truth(B) Noisy

Image (C) BM3D, PSNR = 29.69 (D) EPLL, PSNR = 28.76 (E) SAIST, PSNR = 29.99 (F) WNNM, PSNR = 30.28 (G)

WSNM, PSNR = 30.21 (H) SAFPI, PSNR = 30.51.

https://doi.org/10.1371/journal.pone.0208503.g006
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We are further exploring other non-convex optimization strategies for more effective conver-

gence and further improvement. The convolutional neural networks(CNN) based denoising

methods become more and more popular now and we will investigate CNN architectures for

the denoising of images in the future.

5 Appendix

Proof 9 (Proof of Theorem 1) Let D = U and A = SVT in Eq (1), where S ¼
diagfε1; . . . ; εKgðK ¼ minfm; ngÞ 2 RK�K is a diagonal matrix and each column of V in
Rm�K is decomposed of vi = (αi)T/εi. Then we have

ðU;S;VÞ ¼ argmin
U;S;V

1

2
jjY � USVTjj

2

F þ ljjAjj
p
p;2: ð9Þ

Let σi denotes the standard deviation of the sparse coefficients αi in the i-th column, then the sum
of standard deviations associated with sparse coefficient vector in each column is

a2
i;1 þ � � � þ a

2
i;m ¼ ms2

i : ð10Þ

And then it is not hard to see

jjAjjp;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

i¼1

ða2

i;1 þ � � � þ a
2

i;mÞ
p=2p

s

¼
ffiffiffiffi
m
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
p
1 þ � � � þ s

p
K

p
p

: ð11Þ

Using Eq (10) and the unitary property of V, we have

s2
i ¼

1

m
jjaijj

2

2
¼

1

m
jjεiv

T
i jj

2

2
¼
ε2

i

m
: ð12Þ

Fig 7. Denoising results on image Barbara by different methods (noise level σn = 100). (A) Ground Truth (B) Noisy

Image (C) BM3D, PSNR = 23.62 (D) EPLL,PSNR = 22.14 (E) SAIST, PSNR = 23.98 (F) WNNM, PSNR = 24.39 (G)

WSNM, PSNR = 24.43 (H) SAFPI, PSNR = 24.5.

https://doi.org/10.1371/journal.pone.0208503.g007
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Then it is ready to see

jjAjjp;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εp1 þ � � � þ ε

p
K

p
p

: ð13Þ

By substituting Eq (13) into Eq (9) we could obtain

ðU;S;VÞ ¼ arg min
U;S;V

1

2
jjY � USVTjj

2

F þ l
XK

i¼1

εpi

¼ arg min
X¼USVT

1

2
jjY � Xjj2F þ ljjXjj

p
Sp
;

ð14Þ

which appears to be better approximation to the rank function by using the Schatten-p quasi-
norm.

Proof 10 (Proof of Lemma 6) Let ϕ = |w|p, by using subdifferential and Corollary 2.59 of
[27], one has

Proxl k �kpðxÞ � ðIþ l@�Þ
� 1
ðxÞ:

If ϕ is convex, this is an equality.

If we further definePðwÞ ¼ ljwjp þ w2

2
, since

arg min
w
fðw � xÞ2 þ 2ljwjpg ¼ arg min

w
fPðwÞ � wxg; ð15Þ

Table 8. Average denoising results of different algorithms for Speckle-Gaussian noise.

Speckle-Gaussian(σn = 20) Speckle-Gaussian(σn = 50) Speckle-Gaussian(σn = 100)

Kurtosis PSNR SSIM Kurtosis PSNR SSIM Kurtosis PSNR SSIM

NOISES 2.3067 21.9183 0.4126 2.7447 14.1117 0.195 2.9562 8.1233 0.0726

BM3D 2.0927 31.5617 0.8782 2.1057 27.4067 0.7716 2.1343 24.0083 0.6427

EPLL 2.1027 29.1417 0.8268 2.1278 25.8683 0.7079 2.1423 24.7567 0.6572

SAIST 2.0897 31.81 0.8845 2.105 27.53 0.7811 2.1733 24.2833 0.6545

WNNM 2.0762 32.0383 0.8843 2.0978 27.82 0.7887 2.1412 24.4817 0.668

WSNM 2.0743 32.0117 0.8842 2.1 27.8783 0.7921 2.1872 24.3933 0.6807

SAFPI 2.0739 32.0433 0.8846 2.112 27.88 0.7925 2.1778 24.5 0.6729

https://doi.org/10.1371/journal.pone.0208503.t008

Table 9. Average denoising results of different algorithms for Poisson-Gaussian noise.

Image Peak σn Noisy PSNR Kurtosis

GAT

+SAFPI

GAT

+BM3D

GAT

+SAIST

GAT

+WNNM

GAT

+SAFPI

GAT

+BM3D

GAT

+SAIST

GAT

+WNNM

C.man

and

Lena

1 0.1 3.05 20.485 21.44 18.655 19.37 2.198 2.2685 2.3745 2.2425

2 0.2 5.97 23.085 23.085 22.02 22.83 2.152 2.1695 2.1855 2.157

5 0.5 9.69 25.41 25.035 24.66 24.335 2.0965 2.13 2.131 2.0885

10 1 12.32 26.795 26.51 26.265 26.12 2.1685 2.1765 2.163 2.1675

20 2 14.64 28.075 27.83 27.57 27.845 2.1495 2.3745 2.1435 2.13

30 3 15.80 28.695 28.43 28.26 28.57 2.136 2.1855 2.1437 2.1275

60 6 17.43 29.46 29.205 29.085 29.385 2.1385 2.131 2.1365 2.125

120 12 18.54 30.015 29.73 29.67 29.995 2.152 2.163 2.145 2.1345

https://doi.org/10.1371/journal.pone.0208503.t009
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it is ready to see

Proxl k �kpðxÞ ¼ P�ðxÞ: ð16Þ

ForP�(x) is the pointwise minimum of the collection of affine functions, we know it is closed and
convex. Thus Proxλ k �kp(x) is also closed and convex.

But it is easy to seeP�(x) is a discontinues mapping, so generally there is no closed form
expression for it.

Proof 11 (Proof of Theorem 8) For 0< p< 1, let ϕ(w) = |w|p, we have @ϕ(w) = ; when w =

0.

In order to overcome the singularity of (|w|p)0 = pw/|w|2−p near w = 0, following Section 4 of
[28], we consider for 0< � << 1 the approximation

@�ðwÞ �
pw

max ð�2� p; jwj2� pÞ :

It is important to observe that Proxλ k�kp(x) = 0 if

jxj2 � ðw � xÞ2 þ 2lwp; ð17Þ

which is equivalent to

x � min
wþ 2lwp� 1

2
¼

2 � p
2ð1 � pÞ

ð2lð1 � pÞÞ
1

2� p;

equality obtained when w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lð1 � pÞp� 2

p
. Otherwise, the necessary optimality condition is

given by

w � xþ
lp

max ð�2� p; jwj2� pÞ
w ¼ 0: ð18Þ

To solve Eq (18) for nonnegative w, let

gðwÞ ¼ jxj �
lp

max ð�2� p; jwj2� pÞ
w;

we consider the iteration

wðnÞ ¼ gðwðn� 1ÞÞ ¼ jxj �
lp

max ð�2� p; jwðn� 1Þj
2� p
Þ
wðn� 1Þ:

One can easily see that

jg 0ðwÞj ¼ lpð1 � pÞwp� 2 < 1;

if and only if jwj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lpð1 � pÞ2� p

p
. Notice that the first and second order derivatives of f(w) =

(w − x)2 + 2λ|w|p are

f 0ðwÞ ¼ w � xþ lpwp� 1

f 00ðwÞ ¼ 1þ lpðp � 1Þwp� 2;

and one can easily verify that f(w) is concave in the range of ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lpð1 � pÞ2� p

p
Þ, and is convex in

the range of ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lpð1 � pÞ2� p

p
;1Þ. By using the Contraction Mapping Theorem (Theorem 1.5 on
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page 11 of [30]), we have

wð1Þ ¼ jxj � lpjxjp� 1
;wð2Þ ¼ jxj � lpðjxj � lpjxjp� 1

Þ
p� 1
; . . . :

The iteration will eventually converge to a fixed-point, which is the root w = g(w) in the interval

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lpð1 � pÞ2� p

p
;1Þ.

Moreover, by noting that the derivative of x(w) = w + λpwp−1 is

_xðwÞ ¼ 1þ lpðp � 1Þwp� 2;

by solving _xðwÞ ¼ 0, we have

�w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lpð1 � pÞ2� p

p
;

then

min xðwÞ ¼ x�w ¼ �w þ lp�wp� 1 ¼ ðlpð1 � pÞÞ
1

2� p þ lpðlpð1 � pÞÞ
p� 1

2� p;

and jwj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lpð1 � pÞ2� p

p
) jxj > ðlpð1 � pÞÞ

1
2� p þ lpðlpð1 � pÞÞ

p� 1

2� p. Combined with (17), we
denote

@l;p ¼ max

(
2 � p

2ð1 � pÞ
ð2lð1 � pÞÞ

1
2� p;

1

2
ðlpð1 � pÞÞ

1
2� p þ lðlpð1 � pÞÞ

p� 1

2� p

)

:

Thus the proof is completed.
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