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Abstract: The study of the hydrochemical characteristics and the water–rock interaction of karst
groundwater is very important for the rational exploitation of karst groundwater and its pollution
control. In this paper, the systematic clustering method was used to analyze the hydrochemical
characteristics of different types of groundwater, combined with hydrochemical graphic analysis
and correlation analysis to explore the impact of chemical acidic wastewater on the evolution of
karst aquifer in the Dawu water source area, northern China. The results show that the chemical
acid wastewater, sourcing from discharges/spillages from the local chemical industries, has different
degrees of pollution impact on karst groundwater, causing the total hardness of all karst groundwater
and the total dissolved solids, Cl− and SO4

2− in nearly half of the karst groundwater to exceed the
quality indexes of class III water in China’s standard for groundwater quality (GB/T 14848-2017).
Hydrochloric acid and sulfuric acid in the wastewater can be buffered by the dissolution of carbonate
rocks, resulting in a nearly neutral pH (pH-buffering effect) and an increase in Ca2+, Mg2+, Sr, Cl−

and SO4
2− concentrations in karst groundwater.
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1. Introduction

Karst groundwater provides an important water resource guarantee for social and
economic development. Karst groundwater provides drinking water for 10% of the world’s
population, and is an indispensable resource for ecosystems, agriculture and groundwater-
dependent activities [1,2]. However, the sustainable utilization of karst groundwater is
facing challenges in terms of both quantity and quality, since karst aquifers are extremely
vulnerable to climate and anthropic pressures [3–6]. Karst groundwater resources are
particularly vulnerable to contamination resulting from intense agriculture and other
anthropogenic activities, and the quality of karst groundwater continues to deteriorate,
resulting in water quality-based water shortages in karst regions [7–10]. For example, the
concentrations of total dissolved solids (TDS), total hardness (TH), SO4

2− and Cl− are
increasing continuously, which is one of the main manifestations of karst groundwater
quality deterioration [11–14].

The TDS, total hardness, SO4
2− and Cl− in uncontaminated karst groundwater are

primarily determined by the dissolution–precipitation of carbonates and intercalated evap-
orating salt (gypsum and halite) in karst aquifers, and their concentrations are relatively
stable or slowly changing [15–17]. Anthropogenic inputs significantly change the chemical
composition of groundwater, resulting in the significant increase in TDS, total hardness,
SO4

2− and Cl−, etc. Previous studies mainly focused on the hydrochemical response of
karst groundwater to acid mine drainage, agricultural activities and acid atmospheric depo-
sition [18–21]. However, little work has been conducted on the impacts of chemical acidic
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wastewater on groundwater hydrogeochemistry in karst aquifers. We can speculate that
chemical acid wastewater pollution not only directly inputs pollutants into karst ground-
water, but also accelerates carbonate dissolution, thus increasing Ca2+, Mg2+ and HCO3

−

in karst groundwater, and leading to the continuous increase in total hardness. Therefore,
it is of great significance to carry out an impact study of chemical acid wastewater on
karst groundwater.

The Dawu water source area is a super-large fracture-karst water source in Northern
China [22,23]. Since exploitation of the Dawu water source began in 1960, it has provided
a reliable and secure domestic water supply for the city of Zibo and large state-owned
industrial enterprises in the Linzi area, e.g., Sinopec Qilu Petrochemical Company [24].
For historical reasons, many petrochemical and chemical enterprises such as oil refineries,
ethylene plants, fertilizer plants and chlor-alkali plants have been built in the limestone
area around the water source area, which has resulted in serious groundwater contam-
ination [24–28]. Hougao, in particular, is the most seriously polluted area of the Dawu
water source, with the highest concentration of chloride exceeding 1000 mg/L according to
previous water quality monitoring data [24,29]. A large number of chemical enterprises
are distributed in the Hougao area; these use inorganic acids such hydrochloric acid as raw
materials and produce chemical acid wastewater. There are risks that inorganic acids and
acidic wastewater could be lost to the environment through leakage during production,
storage and transportation, thereby posing a great threat to the groundwater safety of the
Dawu water source. However, to date, the impacts of chemical acidic wastewater on karst
aquifers in the Dawu water source area are unclear.

Thus, Hougao, as part of the Dawu water source area, was selected as the study area
for this paper, and the water quality and the hydrochemical characteristics of karst ground-
water were analyzed. The origin and control process of the main inorganic components
(SO4

2− and Cl−, etc.) in the karst groundwater were clarified, and the impacts of chemical
acidic wastewater on karst aquifer were revealed.

2. Materials and Methods
2.1. Study Area

The study area is located in the southwest of Linzi City, belonging to the water-rich
area of Dawu, which includes Liuhang, Hougao, Xixia-Dawu, etc. The area is in a warm
temperature region with a continental monsoon climate. The annual average temperature
is 12.5 ◦C and the annual average rainfall is 640.5 mm, mainly falling as rain in the summer.

In the south, the low mountains, hills and valleys and the exposed rocks are Ordovician
limestones. The northern area is a piedmont inclined plain, with the plain is covered by
Quaternary sediments. The water-bearing rocks are mainly the pore water-bearing rocks of
the upper Quaternary loose rocks and the fissure karst water-bearing rocks of the lower
Ordovician carbonate rocks [24,30]. The groundwater exploitation is mainly concentrated in
the carbonate fractured karst aquifer. The karst aquifer is mainly recharged by precipitation
in the southern mountainous and the leakage from the eastern Zihe River [24]. Karst
groundwater generally flows northward and northeastward until it is blocked by the
Carboniferous-Permian coal-bearing strata in the north, forming a huge underground
reservoir with an exploitation volume accounting for about 350,000 m3/day [30].

2.2. Sampling and Analytical Methods

A total of 27 groundwater samples were collected in July 2018, and the sampling
locations are shown in Figure 1. Sampled wells were selected to represent different degrees
of pollution as well as groundwater flow direction. In situ field measurements were made
on water samples for water temperature (T), electrical conductivity (EC) and pH. Prior
to sample collection, groundwater was pumped from the well until the temperature, EC
and pH became constant. All sampling bottles were rinsed with sample water three times
before collection of the sample for analysis. HCO3

− concentrations in all groundwater
samples were determined using the alkalinity titration method within 1 day. Samples
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for cation and anion analysis were filtered on site using PTFE-membrane filters (0.45
µm). Filtrate for cation analysis was transferred into 50-milliliter PET sample bottles and
immediately acidified to pH < 2 by the addition of HNO3 (GR grade). Samples for anions
analyses were filtered into 50-milliliter PET sample bottles without preservation. All the
cation and anion samples were stored in an ice chest at a temperature of 4 ◦C and later
transferred to the laboratory and stored in a refrigerator at a temperature of 4 ◦C until
analyses. Anions (Cl−, SO4

2− and NO3
−) were measured using ion chromatography (IC),

and cations (Ca2+, Mg2+, K+, Na+ and Sr) were measured using Inductively Coupled
Plasma Atomic Emission Spectrometry (ICP-OES). The accuracy of the chemical analysis
was verified by calculating ion-balance errors, where the errors were generally around
10% [31,32], which is an acceptable error for the purpose of this study.
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3. Results and Discussion
3.1. Cluster Analysis

Cluster analysis can classify samples according to their affinity and similarity and
can effectively separate different types of samples, which is helpful to study the chemical
characteristics and evolution rules of groundwater. In this paper, groundwater samples
in the study area were grouped using Q-mode hierarchical cluster analysis using Ward’s
minimum variance algorithm and Euclidian distance [33,34]. To make the data closer to nor-
mality and remove the impacts of data units on the statistical analysis, log-transformation
and a standardization (z-score) of the hydrogeochemical data was performed and used
as the cluster variables [33,34]. Figure 2 shows the dendrogram of underground water
samples in the study area. Groundwater samples were divided into four clusters of the
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groundwater samples (namely C1, C2, C3 and C4), according to the phenon line, with a
linkage distance of 7.5 (Figure 2).

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 4 of 10 
 

 

used as the cluster variables [33,34]. Figure 2 shows the dendrogram of underground wa-
ter samples in the study area. Groundwater samples were divided into four clusters of the 
groundwater samples (namely C1, C2, C3 and C4), according to the phenon line, with a 
linkage distance of 7.5 (Figure 2). 

 
Figure 2. Dendrogram of the Q-mode hierarchical cluster analysis (a) and Stiff diagram showing the 
average ion compositions of each cluster (b). The spatial distribution of groundwater samples of 
different cluster types is centered within the area defined by C3 samples, as shown in Figure 1. C3 
samples were mainly collected at Hougao and its environs where groundwater in the study area 
was collectively discharged due to artificial exploitation. In order to ensure the safe supply of 
groundwater taken from Dongfeng-Xixia section by the Zibo urban water supply company, ground-
water in the Hougao section was strongly exploited all year round, resulting in a lower water level 
than that in the Dongfeng-Xixia section, thereby preventing the spread of pollution from the 
Hougao section to the East. C1 samples were mainly distributed in the southwest, south and east 
regions, while C2 samples were mainly distributed in the northern region, both of which were in 
the groundwater recharge-runoff area. It can be seen from the stiff diagram (Figure 2b) that the main 
hydrochemical ion contents (Ca2+, Na+, Cl− and SO42−) of C1 samples are significantly lower than 
those of C2 samples, and both hydrochemical ion contents in C1 and C2 are lower than those of C3 
samples at the same time, which indicates that hydrochemical ion content depends on the recharge-
runoff conditions of groundwater and the impact of anthropogenic activities in the study area. There 
are only two samples in the C4 category, and they are remote from one another on the scale of the 
sample area being located to the east (GW-5) and west (GW-23) of Hougao. 

3.2. Hydrochemical Characteristics of Different Types of Groundwater 
The hydrochemical types of groundwater in the study area are shown in the Piper 

three-line diagram (Figure 3), and there are significant differences among different cluster 
categories, which, in turn, indicates that the above clustering analysis is effective in sepa-
rating different types of samples. The main cation in the C1 and C2 samples is Ca2+, and 
the differences between the hydrochemical types are mainly reflected in the anions. In 
particular, the hydrochemical types of C1 samples are mainly HCO3·Cl·SO4-Ca, HCO3·Cl-
Ca and HCO3·SO4-Ca, while the hydrochemical types of C2 samples are mainly 
Cl·HCO3·SO4-Ca and SO4·Cl·HCO3-Ca. The hydrochemical types of C3 samples are com-
plex, including HCO3·Cl-Ca·Na, Cl·HCO3-Ca·Na, Cl·SO4·HCO3-Ca·Na, SO4·Cl·HCO3-
Ca·Na, Cl-Ca·Na, etc. The hydrochemical types of C4 samples are SO4·Cl-Ca·Na and Cl-
Na·Ca. In general, along the direction of groundwater runoff (from C1 and C2 to C3), the 
milligram equivalence percentages of Ca2+ and HCO3− decrease, while those of Na+, Cl− 
and SO42− increase. 

Figure 2. Dendrogram of the Q-mode hierarchical cluster analysis (a) and Stiff diagram showing the
average ion compositions of each cluster (b).

The spatial distribution of groundwater samples of different cluster types is centered
within the area defined by C3 samples, as shown in Figure 1. C3 samples were mainly
collected at Hougao and its environs where groundwater in the study area was collectively
discharged due to artificial exploitation. In order to ensure the safe supply of groundwater
taken from Dongfeng-Xixia section by the Zibo urban water supply company, groundwater
in the Hougao section was strongly exploited all year round, resulting in a lower water
level than that in the Dongfeng-Xixia section, thereby preventing the spread of pollution
from the Hougao section to the East. C1 samples were mainly distributed in the southwest,
south and east regions, while C2 samples were mainly distributed in the northern region,
both of which were in the groundwater recharge-runoff area. It can be seen from the stiff
diagram (Figure 2b) that the main hydrochemical ion contents (Ca2+, Na+, Cl− and SO4

2−)
of C1 samples are significantly lower than those of C2 samples, and both hydrochemical
ion contents in C1 and C2 are lower than those of C3 samples at the same time, which
indicates that hydrochemical ion content depends on the recharge-runoff conditions of
groundwater and the impact of anthropogenic activities in the study area. There are only
two samples in the C4 category, and they are remote from one another on the scale of the
sample area being located to the east (GW-5) and west (GW-23) of Hougao.

3.2. Hydrochemical Characteristics of Different Types of Groundwater

The hydrochemical types of groundwater in the study area are shown in the Piper
three-line diagram (Figure 3), and there are significant differences among different clus-
ter categories, which, in turn, indicates that the above clustering analysis is effective
in separating different types of samples. The main cation in the C1 and C2 samples is
Ca2+, and the differences between the hydrochemical types are mainly reflected in the
anions. In particular, the hydrochemical types of C1 samples are mainly HCO3·Cl·SO4-Ca,
HCO3·Cl-Ca and HCO3·SO4-Ca, while the hydrochemical types of C2 samples are mainly
Cl·HCO3·SO4-Ca and SO4·Cl·HCO3-Ca. The hydrochemical types of C3 samples are com-
plex, including HCO3·Cl-Ca·Na, Cl·HCO3-Ca·Na, Cl·SO4·HCO3-Ca·Na, SO4·Cl·HCO3-
Ca·Na, Cl-Ca·Na, etc. The hydrochemical types of C4 samples are SO4·Cl-Ca·Na and
Cl-Na·Ca. In general, along the direction of groundwater runoff (from C1 and C2 to C3),
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the milligram equivalence percentages of Ca2+ and HCO3
− decrease, while those of Na+,

Cl− and SO4
2− increase.
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According to the class III water quality criteria in China’s standard for groundwater
quality (GB/T 14848-2017) [35], the TDS, total hardness (TH), Na+, Cl− and SO4

2− of the
groundwater in the study area exceed the upper threshold by 66.67, 100, 14.81, 48.15 and
51.85%, respectively. The pH varies between 7.0 and 7.7. The pH values of C1, C2, C3 and
C4 samples are 7.5 ± 0.2, 7.3 ± 0.1, 7.2 ± 0.1 and 7.1, respectively (Figure 4). The TDS of
groundwater in the study area ranges from 548 to 3738 mg/L. The TDS of C1, C2, C3 and C4
samples are 790 ± 207, 1234 ± 186, 1552 ± 240 and 3446 ± 415 m/L, respectively (Figure 4).
Similarly, the Ca2+, Na+, Cl− and SO4

2− concentrations in the groundwater in the study
area range from 130.9 to 541.2 mg/L, 24.04 to 756.2 mg/L, 55.02 to 1986 mg/L and 113.2 to
1178 mg/L, respectively (Figure 4). The pH values of the different types of groundwater
sub-groups show inverse relationships with the contents of the main chemical components
(Ca2+, Na+, Cl− and SO4

2−) (Figure 4). As the dissolution processes of evaporites (such as
rock salt and gypsum) are independent of the groundwater pH, the Cl− and SO4

2− in this
karst aquifer should not come mainly from the dissolution of evaporites. This suggests
that the groundwater in the study area may be polluted by acid wastewater containing
hydrochloric acid related to the existence of a large number of oil refining and chemical
enterprises in the study area. As the study area mainly contains carbonate aquifer, the
chemical acidic wastewater (containing hydrochloric acid and sulfuric acid) sourcing from
discharges/spillages from the local chemical industries can be buffered by the dissolution
of carbonate rocks, resulting in a nearly neutral pH (pH-buffering effect) and an increase in
the Ca2+, Mg2+, Cl− and SO4

2− concentrations in karst groundwater.
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3.3. Hydrogeochemical Analysis of Karst Groundwater Polluted by Acidic Chemical Wastewater

The Ca2+ in karst water mainly comes from the dissolution of carbonate (such as
calcite and dolomite) or gypsum, while the Mg2+ mainly comes from the dissolution of
dolomite. There is a significant linear positive correlation between the Mg2+ and Ca2+

concentrations in the groundwater in the study area (R2 = 0.913), and the data points
of content are distributed near the straight line with a slope of 0.234 (Figure 5a), which
may indicate that the Ca2+ and Mg2+ mainly come from the dissolution of carbonate in
this study.
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Figure 5. The relationship between the concentrations of Ca2+, Mg2+, Sr and Na+ in groundwater in
the study area.

The significant linear positive correlation between Ca2+ and Sr concentrations indicates
that Sr2+ may come from the dissolution of calcium bearing minerals in karst aquifer
(Figure 5b). Furthermore, there is a significant positive correlation between Na+ and
Ca2+, Sr (Figure 5c,d), which shows that the changes of Na+ as well as Ca2+ and Mg2+
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concentrations in groundwater are not caused by cation exchange. Therefore, the Ca2+ and
Mg2+ in the karst groundwater of the study area come from the dissolution of calcium
and magnesium bearing minerals such as calcite and dolomite, rather than the direct
anthropogenic input and cation exchange. The significant positive correlation between Na+

and Ca2+ indicates that such a high concentration of Na+ in the groundwater may mainly
come from NaCl in acidic wastewater.

Generally, Mg2+ in karst groundwater is derived from the corrosion of dolomite
minerals by the carbonic acid (H2CO3) formed mainly by soil CO2 dissolution. The
milligram equivalence ratio of Mg2+ to HCO3

− is 1:2.

CO2 + H2O = H2CO3 (1)

CaMg(CO3)2 + 2H2CO3 = Ca2+ + Mg2+ + 4HCO3
− (2)

However, most groundwater samples in the study area have an Mg2+/HCO3
− mil-

ligram equivalence ratio above the equilibrium line that has a slope of 1/2; especially, C4
samples that have high Cl− concentrations (Figure 6a). This indicates that Mg2+ in karst
groundwater is derived not only from the carbonate weathered by H2CO3, but also the
carbonate corroded by hydrochloric acid.
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In addition, almost all the ion data points for groundwater samples in the study area
sit above the milligram equivalence line: (Mg2+ + Ca2+)/(HCO3

− + SO4
2−) = 1 (Figure 6b).

In other words, even if Ca2+ is contributed by the dissolution of gypsum, the HCO3
−

from the carbonate weathered by H2CO3 is still insufficient to balance Mg2+ and Ca2+.
The above analysis has shown that Mg2+ and Ca2+ are not derived from anthropogenic
input and cation exchange; thus, it further indicates the existence of carbonate dissolu-
tion by hydrochloric acid wastewater sourcing from discharges/spillages from the local
chemical industries.

The Cl− and Na+ in groundwater usually come from halite (NaCl) dissolution, at-
mospheric precipitation and anthropogenic inputs [36]. Furthermore, the excess of Na+ is
attributed from silicate (e.g., albite) weathering as well as cation exchange [37]. There is a
significant positive correlation between Na+ and Cl− in the groundwater in the study area
(Figure 7a), indicating that they may have similar sources or chemical behaviors. Since
the Cl− concentrations in the groundwater are significantly higher than in the rainwater,
atmospheric deposition is not considered to be a major source of Cl− for the karst aquifer
in the study area. The Na+/Cl− molar ratio of groundwater in the study area is close
to 0.594 (Figure 7a), which means higher Cl− concentrations with respect to Na+ than
expected from the theoretical 1:1 halite dissolution line. This suggests that Cl− can be
attributed from anthropogenic inputs rather than merely NaCl dissolution. Meanwhile,
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there is a strong positive correlation between Cl− and Mg2+ (Figure 7b), confirming that
the karst groundwater in the study area is polluted by acidic wastewater containing NaCl
and hydrochloric acid (HCl), which promotes the weathering and dissolution of carbonate.
The reactions are as follows:

CaMg(CO3)2 (dolomite) + 2HCl = Ca2+ + Mg2+ + 2Cl− + 2HCO3
− (3)

CaCO3 (calcite) + HCl = Ca2+ + Cl− + HCO3
− (4)
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In addition, there is a strong positive correlation between Cl− and SO4
2− in the

groundwater of the study area (Figure 7c), which suggests that the acidic wastewater
contains sulfuric acid. At the same time, Mg2+ and SO4

2− also show a strong positive
correlation (Figure 7d), suggesting the dissolution of carbonate by sulfuric acid (H2SO4).
The reactions are as follows:

CaMg(CO3)2 (dolomite) + H2SO4 = Ca2+ + Mg2+ + SO4
2− + 2HCO3

− (5)

2CaCO3 (calcite) + H2SO4 = 2Ca2+ + SO4
2− + 2HCO3

− (6)

4. Conclusions

The total hardness, TDS, Cl− and SO4
2− concentrations of karst groundwater in the

study area are generally high, and the total hardness of all groundwater and TDS, Cl−

and SO4
2− of nearly half of the groundwater samples exceed the quality indexes of class

III water in the Chinese standard for groundwater quality (GB/T 14848-2017) [35]. The
hydrochemical types of karst groundwater are mainly transforming from bicarbonates
to chlorides and sulfates, and the key reason is the pollution of karst groundwater to
different degrees by hydrochloric acid and sulfuric acid wastewater leaked from chemical
enterprises in the study area. Thus, chemical acidic wastewater is the primary source of Cl−

and SO4
2− in the karst groundwater. Hydrochloric acid and sulfuric acid in wastewater can

promote the dissolution of carbonates, resulting in significant positive correlations between
Ca2+, Mg2+, Sr, Cl− and SO4

2−. Those indicators also show significant negative correlations
with pH, which is hydrogeochemical evidence of karst groundwater pollution by acidic
wastewater. Due to the dissolution of carbonate rocks, the pH of karst groundwater is
buffered and nearly neutral. More in-depth studies (such as environmental isotope tracing
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technology) are important to verify and quantify the pollution sources. Furthermore,
reasonable treatment methods should be developed to reduce the negative impacts of
discharges/spillages from the local chemical industries on karst aquifer.
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