
Journal of

Cardiovascular 

Development and Disease

Review

Cognitive Impairment in Acute Heart Failure: Narrative Review

Ioannis Ventoulis 1,* , Angelos Arfaras-Melainis 2,3,*, John Parissis 2 and Eftihia Polyzogopoulou 2

����������
�������

Citation: Ventoulis, I.;

Arfaras-Melainis, A.; Parissis, J.;

Polyzogopoulou, E. Cognitive

Impairment in Acute Heart Failure:

Narrative Review. J. Cardiovasc. Dev.

Dis. 2021, 8, 184. https://doi.org/

10.3390/jcdd8120184

Academic Editor: Andy Wessels

Received: 20 November 2021

Accepted: 12 December 2021

Published: 14 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Occupational Therapy, University of Western Macedonia, 50200 Ptolemaida, Greece
2 Heart Failure Unit and University Clinic of Emergency Medicine, Attikon University Hospital, National and

Kapodistrian University of Athens Medical School, 12462 Athens, Greece; iparisis@med.uoa.gr (J.P.);
effiepol@med.uoa.gr (E.P.)

3 Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
* Correspondence: ventoulis@hotmail.com or iventoulis@uowm.gr (I.V.); aarfaras@nychhc.org (A.A.-M.);

Tel.: +30-6973018788 (I.V.); +1-347-920-8875 (A.A.-M.)

Abstract: Cognitive impairment (CI) represents a common but often veiled comorbidity in patients
with acute heart failure (AHF) that deserves more clinical attention. In the AHF setting, it manifests
as varying degrees of deficits in one or more cognitive domains across a wide spectrum ranging
from mild CI to severe global neurocognitive disorder. On the basis of the significant negative
implications of CI on quality of life and its overwhelming association with poor outcomes, there is a
compelling need for establishment of detailed consensus guidelines on cognitive screening methods
to be systematically implemented in the population of patients with heart failure (HF). Since limited
attention has been drawn exclusively on the field of CI in AHF thus far, the present narrative review
aims to shed further light on the topic. The underlying pathophysiological mechanisms of CI in AHF
remain poorly understood and seem to be multifactorial. Different pathophysiological pathways may
come into play, depending on the clinical phenotype of AHF. There is some evidence that cognitive
decline closely follows the perturbations incurred across the long-term disease trajectory of HF, both
along the time course of stable chronic HF as well as during episodes of HF exacerbation. CI in AHF
remains a rather under recognized scientific field that poses many challenges, since there are still
many unresolved issues regarding cognitive changes in patients hospitalized with AHF that need to
be thoroughly addressed.

Keywords: acute heart failure; cognitive impairment; cardiocerebral syndrome; neurocognitive
disorder; pathophysiological mechanisms; epidemiology; screening tools

1. Introduction

Acute heart failure (AHF) is a heterogeneous clinical syndrome characterized by
abrupt onset or gradual deterioration of symptoms and signs of heart failure (HF), in
contradiction to chronic HF which represents a state of a much more gradual onset of
symptoms or an already established diagnosis of HF [1]. In most cases, AHF manifests as
acute decompensated chronic HF and less frequently as de novo HF. On clinical grounds,
four distinct phenotypes of AHF can be recognized based on the presence or absence of
congestion and peripheral hypoperfusion, namely, warm and wet, cold and wet, warm
and dry, and cold and dry [2,3]. AHF remains one of the most common causes of hospital
admission in western societies accompanied by high readmission rates and accounting for
considerable in-hospital and post-discharge mortality [3–6]. It constitutes a tremendous
and growing public health issue which imposes a substantial economic burden on the
healthcare systems worldwide [7–9].

AHF can lead to dysfunction, injury, and eventually failure of many vital organs,
which in turn contributes to further increase in the observed mortality. The brain represents
one of the target organs involved in this process [10]. The heart and the brain are closely
linked and interact bidirectionally through numerous feedback pathways [11]. Owing to
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the complex pathophysiological interplay between the heart and the brain, the notion of
the cardiocerebral syndrome in HF has emanated, along the lines of the cardiorenal and
the cardiohepatic syndrome [12].

In fact, the close interaction between the heart and the brain has long been recognized,
dating back to 1977 where the term ‘’cardiogenic dementia” was introduced to describe the
cognitive deterioration observed in patients with heart disease [13]. Nowadays, cognitive
impairment (CI) is a well-established entity among patients with HF, encountered across a
wide range of clinical presentations, that is both acute and stable chronic HF with either
reduced or preserved ejection fraction [14]. CI is an inclusive term used to describe any
kind of deficit in one or more cognitive domains, the extent of which cannot be attributed
to the expected normal decline due to aging. In the AHF setting, a wide spectrum of CI can
be encountered, spanning from mild CI to severe global neurocognitive disorder [14–17].

The negative consequences of CI cannot be overstated, bearing in mind that CI has
been linked to poor medical adherence [18], low abidance to recommended lifestyle behav-
iors [19], and deficits in self-care [20]. Even mild CI may have a significant negative impact
on quality of life by affecting important aspects of everyday living and by interfering with
self-care management, which is considered a crucial component for the successful treatment
of HF [21–23]. Moreover, poor self-care has been shown to be an independent risk factor
for cardiac events, HF hospitalizations, and increased length of hospital stay [24]. More
importantly, in HF patients, CI has been associated with an increased risk of cardiovas-
cular events [25]. In hospitalized patients with AHF, CI has proven to be an independent
prognostic marker of in-hospital mortality, prompting approximately a 5-fold increase
in mortality [26].

The majority of the research studies examining the scope of CI in HF have included
stable HF patients, while the reviews on the topic have made no discrimination between
chronic stable and acute HF. Studies dealing with CI in AHF are rather limited. Here, we
focus on the association between AHF and CI, review the screening approach towards
HF-induced brain injury, outline aspects of epidemiology, explore potential pathogenic
mechanisms in AHF that may underlie and predispose to the development of CI, describe
the dynamic changes of CI during an episode of AHF, highlight the role of brain imaging
modalities in the assessment of CI, and propose a therapeutic approach.

2. Cognitive Screening Tools

During the application of a cognitive screening test, the patient is requested to carry
out a series of tasks that assess one or more cognitive domains [27]. Commonly evaluated
cognitive domains include memory (immediate and delayed, episodic and semantic), at-
tention/concentration, working memory, visuospatial/constructional ability, executive
function, perceptual motor function/psychomotor speed, learning, speech/language, orien-
tation, and social cognition [27–31]. A vast array of brief screening tests for CI is available
for use in different clinical settings. These include the Mini Mental State Examination
(MMSE), the Montreal Cognitive Assessment (MoCA), the Mini-Cog Test, the Clock Draw-
ing Test (CDT), the Abbreviated Mental Test (AMT), the Short Portable Mental Status
Questionnaire (SPMSQ), the St. Louis University Mental Status Examination (SLUMS),
the Memory Impairment Screen (MIS)/ MIS by Telephone (MIS-T), the Free and Cued
Selective Reminding Test, the 7-Minute Screen (7MS), the Telephone Instrument for Cog-
nitive Status (TICS), the Informant Questionnaire on Cognitive Decline in the Elderly
(IQCODE), the 8-Item Informant Interview (AD8), the Functional Activities Questionnaire
(FAQ), and others [27]. It has to be emphasized that the aforementioned cognitive tests
serve as screening tools and are not intended for diagnostic purposes. Once a screening
test turns out positive, further clinical assessment and comprehensive neuropsychological
evaluation is warranted to formally confirm the diagnosis of CI [27,32]. Nevertheless, one
should always keep in mind that when assessing cognitive status, a number of possible
confounding factors should be taken into account, such as age, mood disorders, educa-
tion, employment status, ethnicity, linguistic diversity, and cultural and socioeconomical
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background [33–36]. Subsequently, neurocognitive test batteries, even more so cognitive
screening tests, need to compensate for possible confounders in order to be reliable and
applicable in an evergrowing cross-cultural diverse population.

In HF studies, a variety of screening tools for CI have been utilized, none of which
have been specifically devised for HF patients. The same screening tools have been used
interchangeably in all HF clinical settings, that is, both inpatients and outpatients and both
stable and acute HF. The most widely used screening instruments in HF literature are the
MMSE and the MoCA [30,31,37,38]. Yet, the need for even briefer cognitive screening tests
to be applied in a hectic clinical setting led to the development of the Mini-Cog [39,40]
and the MoCA 5 min protocol (Mini-MoCA) [41,42]. Some of the most common and brief
screening tools for the assessment of CI in HF are illustrated in Table 1.

Table 1. Features of the most common and brief screening tools for the assessment of cognitive impairment in heart failure.

Screening Tool Scoring System Usual Cut-Off
Point

Administration
Time (min) Comments

Mini Mental State
Examination (MMSE)

[35,43–49]
0–30 <24 5–10

� Higher scores indicate better cognitive
performance

� Varying cut-offs have been used in different
settings

� Insufficient sensitivity for mild cognitive
impairment

� Fails to cover the domain of executive
function

� Affected by age, education, and cultural
background

Montreal Cognitive
Assessment (MoCA)

[50–53]
0–30 <26 10

� Higher scores indicate better cognitive
performance

� Lower cut-offs have been utilized when
screening for mild CI in HF

� Poor specificity
� Covers executive function
� Adjustment according to educational level

Mini-Cog Test [39,40]

Composite score: 5

• 3-item recall task: 0–3
• CDT: normal (2) or

abnormal (0)
≤2 3

� Higher scores indicate better cognitive
performance

� Combination of Clock Drawing Test (CDT)
with a simple three-item recall task: Patient is
asked to repeat 3 unrelated words, then
complete the clock drawing test and finally
recall the initial 3 words

� Not influenced by education or language
� Does not require specialized training or

equipment
� CDT element is vulnerable to subjective

interpretation by the examiner
� Tests executive function and memory

MoCA 5-min protocol
(Mini-MoCA) [41,42] 12 ≤9 5

� Higher scores indicate better cognitive
performance

� Different mini versions exist with varying
scoring systems (the scores and cut-offs
provided here have been proposed for HF
patients)

� Still awaits to be standardized and validated
� Derived by extracting 3 or 4 subtests from

MoCA (depending on the version)
� Tests memory, executive function/language,

orientation (±attention depending on the
version)

� Can be administered over the telephone

The MMSE is an instrument measuring global cognition, as it covers several cognitive
domains, such as orientation, memory (registration and recall), attention and calculation,



J. Cardiovasc. Dev. Dis. 2021, 8, 184 4 of 17

language, and visuospatial/constructional skills. It consists of eleven questions or tasks
and is based on a scoring system ranging from 0 to 30, with higher scores indicating better
cognitive performance. It can be easily applied by lay personnel with very little training
and requires about 5–10 min to administer [43]. Its performance is however confounded by
age, educational level, literacy status, verbal IQ level, and cultural context [35,44–47]. It has
been also criticized due to its reduced sensitivity to detect mild CI [35,47,48] as well as its
limited ability to identify alterations in cognition relating to frontal subcortical executive
functions and right hemispheric lesions [35,47,49].

The MoCA is a cognitive screening instrument originally designed to detect mild CI.
It assesses eight cognitive domains, namely, attention, concentration, working memory,
short-term memory (delayed recall), executive function, language, visuospatial ability, and
orientation. It utilizes a scoring system spanning from 0 to 30 and requires approximately
10 min to complete. The higher scores are suggestive of better global cognition. To allow
for discrepancies in the educational level, the total final score is adjusted by adding 1 point
for those with 12 years of formal education or less [50]. A basic feature of the MoCA is
that it incorporates an explicit component of executive function assessment (modified
Trail making B task, phonemic fluency task, similarities task through two-item verbal
abstraction), which the MMSE lacks [50,51]. However, it has a relatively poor specificity,
which renders it of limited use in clinical settings characterized by low base rates of
mild CI [52,53].

In head-to-head comparison studies examining the performance of MMSE and MoCA
in both HF outpatients [36] and inpatients [54], MoCA outperformed MMSE in terms of
identifying early cognitive changes indicative of subtle CI. Subsequently, Hawkins et al.
examined the performance of MoCA and MMSE against a comprehensive neuropsycholog-
ical battery of tests, which assess attention, executive function, memory, and visuospatial
ability, in a population of 106 HF outpatients aged 50–85 years. They observed that a
MoCA cut-off of <25 yielded 64% sensitivity and 66% specificity, while a cut-off of <28 for
the MMSE attained 70% sensitivity and 66% specificity. They concluded that application
of both tests led to correct identification of the majority of patients with and without
multi-domain CI, albeit both of them failed to properly classify approximately one third of
the HF patients [55].

The magnitude and clinical consequences of CI in HF have long been appreciated,
considering the fact that the Heart Failure Society of America (HFSA) incorporated in their
2010 practice guidelines the general recommendation to assess patients’ cognitive status
and provide additional support in case of CI as part of disease management [56]. The
2016 ESC (European Society of Cardiology) guidelines for the diagnosis and treatment of
acute and chronic HF moved a step forward by stating that ‘’Cognitive function can be
assessed using the Mini-Mental State Examination or the Montreal cognitive assessment”,
while encouraging patient’s support by a multidisciplinary HF team including a specialist
in neurocognitive disorders, along with family and caregivers, in order to optimize HF
management and facilitate self-care [2].

To date, there is no disease-specific cognitive measure tool for identifying CI in HF
patients. Virtues of an ideal screening measure for CI would be high sensitivity and
specificity combined with brevity, reliability, simplicity, ease of administration in routine
clinical practice, and ability to capture even mild CI affecting either a single or multiple
cognitive domains. Although the most suitable screening tool for CI with optimal sensitivity
and specificity, validated in HF populations and tailored for use in clinical practice is yet to
be identified, it is imperative for clinicians to be aware of the high prevalence of CI in AHF
and its implications and systematically screen for cognitive deficits.

3. Epidemiology

The reported prevalence of CI in AHF varies considerably. Figures ranging from
16% to 80% have been reported in the literature. This observed wide fluctuation in
prevalence is attributed to many factors, such as varying definitions of CI, different
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screening tests deployed, disparate thresholds applied, non-homogeneity of the HF
population studied (in terms of age, severity, and type of HF), sample sizes and diverse
study design characteristics.

Early reports indicated that the prevalence of CI (determined by MMSE scores <24) in
50 patients ≥60 years old with decompensated HF was 54%, while almost three thirds of
the patients seemed to experience signs of CI when a cut-off of CAMCOG score <80 was
applied [57]. At the same time, data from an Italian multicenter survey, having enrolled
more than 1100 patients admitted to the hospital with HF, revealed that CI, assessed by the
Hodkinson Abbreviated Mental Test, was evident in 35% of the patients [26,58]. Later on,
Debette et al. reported that some degree of CI was observed in two thirds of the overall
population (83) of patients with decompensated HF included in their study. They showed
that 61% of them had mild CI (defined as MMSE score ≤28 or ≤26 depending on their
educational level), while 31% exhibited overt CI (defined as MMSE score ≤24) [59].

Meanwhile, in a prospective cohort study of 282 patients (mean age 80 years) hospital-
ized for AHF, CI was present in 46.8% of the overall sample with 25.2% meeting criteria for
mild CI (MMSE score 21–24) and 21.6% for moderate–severe CI (MMSE score ≤20) [60].
Similar rates (45%) of at least mild CI (MoCA ≤ 22) were recorded by an Australian study
following 565 patients with decompensated HF and a median age of 74 years [61], while
the Vanderbilt Inpatient Cohort Study (VICS) reported a comparable degree (53%) of any
level of CI (defined as an SPMSQ score ≥1) in 883 patients with AHF and a median age of
60 years [62]. Furthermore, in a study examining the effect of CI on 30-day readmission
rates in a population of 241 elderly hospitalized patients (>70 years old), 121 of whom were
admitted for HF as the primary diagnosis, it was found that 67.7% of the HF patients had
CI defined as Mini-Cog scores of less than 4 [63]. In contrast, the first study to have used
the Mini-Cog in 720 patients hospitalized for HF reported a 23% prevalence of CI by using
a different cut-off score of ≤2 [39].

A much higher prevalence of CI (79%) in at least one cognitive domain was reported
by Hajduk et al. in a cohort of 577 older (average age 71 years) patients with decompen-
sated HF, who were evaluated in three cognitive domains with the use of standardized
measures. Specifically, deficits in memory, mental processing speed, and executive function
were noted in 33.3%, 40%, and 56% of the HF patients, respectively [64]. An equally high
prevalence (80%) of CI was noted in at least one of the three cognitive domains (memory,
executive function, processing speed) assessed in a study of 744 patients with acute decom-
pensated HF and a mean age of 72 years. In particular, 32% of the patients demonstrated
CI in only one domain, 31% in two domains, and 17% in three domains. Patients exhibited
primarily deficits in executive function (59%) and in processing speed (51%) and to a lesser
extent in memory (35%) [65].

Recent studies still continue to show discrepancy in the reported rates of CI prevalence.
As a matter of fact, a Swedish prospective cohort study including 281 patients hospitalized
for HF with an average age of 74 years reported that 29% of them displayed signs of CI
based on MoCA scores <23 [66]. Even more so, data from the RICA registry indicated
that, amongst 3845 patients (mean age 79 years) hospitalized for decompensated HF, 16%
had significant CI (14% moderate and 2% severe CI). In this study, cognitive status was
assessed by means of the Short Portable Mental Status Questionnaire (SPMSQ) and the
patients were categorized into three groups based on their performance on the particular
test: 0–3 errors were considered as no CI or mild CI, 4–7 as moderate CI, and 8–10 as severe
CI. By using these cut-offs, there was no discrimination between intact cognition and mild
CI and only the prevalence of moderate and severe CI was determined, hence the low
prevalence reported by the investigators [67]. On the other hand, the REHAB-HF trial
recorded a CI prevalence of 78% among 198 older (≥60 years old) hospitalized patients
with acute decompensated HF when a MoCA score <26 was used. Of note, only 2% of
these patients were clinically recognized as cognitively impaired [68].
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Regardless of the conflicting estimates of its prevalence, CI represents a veiled comor-
bidity in patients with AHF that deserves more clinical attention, as it is intertwined with
significant clinical ramifications and poor health outcomes.

4. Pathophysiology

The pathophysiology behind the induced brain injury in AHF still awaits to be eluci-
dated as the underlying mechanisms are not well understood and seem to be multifactorial.
Different pathophysiological mechanisms responsible for the observed brain changes in
AHF could be proposed. Depending on the clinical phenotype of AHF, diverse patho-
physiological pathways may come into play and exert synergistic effects, since no single
mechanism can fully explain the cognitive changes that occur in AHF.

Under normal conditions, cerebral blood flow remains rather stable during wide
fluctuations of the mean arterial blood pressure owing to inherent properties that the
central nervous system possesses to activate and maintain elaborate vascular and neu-
rohumoral mechanisms of autoregulation [69,70]. However, in HF states, these cerebral
neuroprotective autoregulatory mechanisms are blunted, thus compromising cerebral
blood flow and jeopardizing the brain’s integrity [71]. Cerebrovascular reactivity is also
impaired in HF, as evidenced by the diminished response of the cerebral vasculature to
hypercapneic conditions [72].

In the hypoperfused AHF states, the most plausible mechanism seems to be the
decreased cerebral blood flow as a result of the reduced cardiac output, leading to inad-
equate blood supply to the brain and subsequent brain ischaemia [73–75]. The effect of
the ischaemic assault to the brain is further magnified by the combination of transient
mechanisms of hypoperfusion, whereby impaired cardiac performance manifested as low
cardiac output acts synergistically with concurrent hypotension to yield a state of cardio-
genic shock, which may be particularly detrimental to the brain. Furthermore, it is already
known, based on the work of Gheorghiade et al., that systolic blood pressure at admission
is an independent prognostic marker of morbidity and mortality in patients hospitalized
with AHF and moreover low systolic blood pressure is associated with worse survival [76].
Zuccalà et al. reported that lower levels of systolic blood pressure were independently
correlated with CI among older patients hospitalized with HF [77], while Hoth et al. found
that systemic hypoperfusion indicated by low EF and low cardiac index was associated
with deficits in several cognitive domains among HF patients [78]. Furthermore, other
investigators reported a non-linear association between EF and cognitive performance,
which became more pronounced at lower levels of EF and was further strengthened in
the presence of concomitant hypotension [79]. Studies demonstrating significant cogni-
tive improvement in post-heart transplant patients seem to confirm the hypothesis that
systemic hypoperfusion due to impaired cardiac function is a principal causative factor
of CI in HF [80,81]. Similarly, other studies noted that amelioration of cardiac function
after cardiac resynchronization therapy was accompanied with improvements in cerebral
blood flow and cognition [82,83]. Additionally, a study conducted in geriatric cardiac
patients revealed that depressed cardiac output was associated with poorer cognitive
performance in the domain of executive function [84]. Further support for the role of
hypoperfusion in the pathophysiology of CI in HF is provided by imaging methods. Early
reports exist even from the previous century stating that cerebral blood flow (estimated by
the intravenous 133xenon injection method) is reduced in patients with severe HF [85]. Like-
wise, in patients with severe HF who were candidates for cardiac transplantation, cerebral
blood flow estimated by single-photon emission computed tomography was decreased by
approximately 30% at baseline, but interestingly it was restored within one month after
heart transplantation [86]. A more recent study in HF patients, using transcranial Doppler
ultrasound and brain magnetic resonance imaging, showed that reduced cerebral blood
flow was associated with a greater degree of white matter hyperintensities and poorer
cognitive performance [87].
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Atrial fibrillation, which often complicates AHF, can further exacerbate CI. Indeed,
atrial fibrillation can compromise cerebral perfusion by reducing systemic cardiac output
via increased heart rate and reduced left ventricular systolic performance. It can also
induce CI through alternative mechanisms, such as cerebral thromboembolism or cerebral
microbleeds [88]. The phenomenon of the ischaemic insult to the brain may be further
aggravated by the presence of multiple risk factors often found in HF patients and adding
to the total cardiovascular risk burden. These risk factors include advanced age [89],
arterial hypertension [90,91], diabetes mellitus [91,92], smoking [93], and obstructive sleep
apnea [94], among others. Hyperhomocysteinaemia has also been associated with an
increased risk for major neurocognitive disorders [95].

From a cellular point of view, cerebral hypoperfusion reduces the delivery of glucose
and oxygen to the central nervous system. The deprivation of the brain’s main energy
substrate and the resultant hypoxia lead to structural cellular changes of the neurons,
alterations in the neuronal metabolism and disruption of the continuity of the blood–brain
barrier. The energy shortage along with the established hypoxic conditions render the
neurons susceptible to oxidative stress, inducing increased production of free radicals,
ineffective protein handling, neuronal dysfunction, increased permeability of the blood–
brain barrier, and oedema [96–98].

In the setting of hypertensive AHF, the elevated blood pressure results in an abrupt
increase in cerebral blood flow, which cannot be effectively counterbalanced by appro-
priate constriction of the central nervous system’s vasculature due to the compromised
autoregulatory mechanisms of the brain and the dysfunctional cerebrovascular reactiv-
ity [99–101]. Once the upper limit of cerebral autoregulation is exceeded, cerebral blood
flow can no longer be maintained at a constant level and becomes directly proportional to
the mean arterial pressure or, in other words, becomes pressure-passive [101]. When this
breakthrough point is reached, segments of vasodilated vessels with alternating areas of
vasoconstricted arterioles will be observed, since the loss of cerebrovascular autoregula-
tion will lead to forced dilatation of certain arteriolar segments, while other portions of
arterioles will remain physiologically constricted owing to the fact that the autoregulatory
mechanism in these specific areas is still intact [101–103]. Accordingly, the unopposed
abrupt rise in cerebral blood flow and pressure can disrupt the integrity of the endothelium
of the brain vessels as well as the function of the blood–brain barrier, potentially leading to
cerebral oedema [101,104].

In instances where congestion is the predominant clinical profile of AHF, it could
be postulated that venous congestion in the brain may contribute to the development
of CI through several different mechanisms. In detail, systemic congestion leads to in-
creased central venous pressure which may then be transmitted backwards to the brain
circulation, causing elevated cerebral venous pressure [105]. The phenomenon may be
further aggravated by concomitant jugular venous reflux, which was found to be associated
with CI when combined with high right atrial pressure [106]. The resultant retrograde
increase in the cerebral venous pressure exerts adverse effects on cerebral haemodynamics
by impeding cerebral venous return, promoting blood stasis in the brain, and elevating
intracranial pressure, thus causing dysregulation of the cerebral perfusion pressure and
cerebral blood flow. Moreover, increased cerebral venous pressure may account for the
development of cerebral microhemorrhages of venous origin, the genesis of cerebral mi-
croinfarcts, the impaired function of the glymphatic system, alterations in the homeostasis
of the cerebrospinal fluid, and the development of white matter hyperintensities [105]. In
an experimental model of increased cerebral venous pressure, cerebral venous congestion
was shown to disrupt the blood–brain barrier, impair blood flow, and promote neuroinflam-
mation via activation of microglia and upregulation of proinflammatory mediators [107].
In other words, increased cerebral venous pressure induces a cascade of processes which
have been implicated in the genesis of neuronal dysfunction and the development of CI.

Thromboembolism represents another mechanism through which HF can induce
impaired cerebral perfusion. It can manifest either as ischaemic stroke or occult cerebral
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infarction. HF constitutes a hypercoagulable state, characterized by blood stasis, increased
plasma viscosity, enhanced platelet aggregation, increased production of thrombogenic
factors, reduced fibrinolysis, and impaired endothelial function. The compromised cardiac
performance, in concert with the deranged haemorheological conditions that prevail in
HF, promote thrombus formation through activation of the coagulation cascade, ultimately
leading to cerebral infarction [108,109].

Apart from the aforementioned haemodynamic mechanisms, several other factors
could also contribute to the development of CI in AHF. It is widely accepted that AHF
is characterized by a state of excessive activation of the sympathetic nervous system and
imbalance of the neurohormonal axis with overproduction of catecholamines and cortisol.
Concordantly, there is an exaggerated expression of inflammatory mediators [10]. The
undue activation of the neurohormonal system together with the overflow of proinflamma-
tory cytokines exert deleterious effects on the neuronal cells, leading to an energy crisis and
metabolic derangement of the neurons [98,110,111]. At the same time, a neurotoxic cascade
is triggered, effectuating alterations in the cerebral beta-amyloid metabolism, which in turn
generate additive effects by causing further brain insult [98,112].

The role of nutritional deficiencies has also been put forward as a potential mechanism
for CI in HF, taking into account the fact that HF commonly induces a state characterized
by insufficiency of nutrients via malabsorption, dietary restrictions, and use of certain
medications (e.g., diuretics) [113]. As a matter of fact, thiamine deficiency induces oxidative
stress and selective neuronal loss, while it has been linked to brain atrophy and white
matter changes [114,115]. Along the same lines, iron deficiency, a very common HF
comorbidity, has a negative impact on cognitive performance and should thus be treated
accordingly [116]. Furthermore, low levels of serum albumin, which is a common finding
in HF patients, especially in those with cachexia, have been associated with CI [58].

Moreover, depression seems to be tightly entangled with CI in HF patients and this
correlation appears to be bidirectional and cumulative, as the presence of the former ap-
pears to deteriorate the latter and vice versa [33]. It has been reported that HF patients with
depression have higher levels of proinflammatory cytokines, which have been implicated
in the development of CI [117].

Lastly, iatrogenic factors should also not be overlooked. For instance, during treatment
of hypertensive AHF, an inadvertent rapid decline in blood pressure could potentially
provoke detrimental injury to the brain [118]. Moreover, in patients presenting with AHF,
a plethora of factors can predispose the patient to an altered cognitive status, inducing
even acute delirium. Such predisposing factors include deteriorating hypoxia [97,98],
hypercapnia [119], electrolyte imbalances (e.g., hyponatraemia) [58,120], hypo- or hyper-
glycaemia [121], anemia [122], renal [122] or hepatic failure [123], and drugs with anti-
cholinergic properties [124].

5. Trajectory of CI over the Time Course of HF

Recently, a group of investigators attempted to estimate the prevalence of CI among
436 patients with incident HF (mean age 70 years) who were recruited in a prospective
longitudinal cohort study (Regards study) evaluating participants at six-month intervals.
Cognition was assessed with the Six-Item Screener (SIS) and scores ≤4 indicated CI. In-
terestingly, cognitive assessment was conducted prior to the incident HF diagnosis, thus
reflecting cognition upon initial diagnosis of HF and minimizing any bias of clinical deteri-
oration on cognition induced by the course of HF itself. The prevalence of CI in patients
with incident HF (defined as the first hospitalization for HF without a previous history
of HF) was 14.9%, being similar to that of a non-HF matched cohort (13.4%). Given the
similar rates of CI prevalence between the two studied groups and taking into account
the reported prevalence of CI in patients with already existing chronic HF (25–80%), the
authors concluded that the highest burden of CI in HF develops after the HF diagnosis
during the progression of the disease itself [125].
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Once HF develops, further cognitive decline ensues, which parallels the duration and
severity of HF. In line with this, Hammond et al. conducted a longitudinal analysis in
the Cardiovascular Health Study concerning the time course of CI after newly diagnosed
HF. The study included 4864 participants aged ≥65 years with a long follow-up. During
a mean follow-up of 6.4 years, 496 patients with incident HF were identified. Cognitive
performance was assessed annually using the 100-point Modified Mini-Mental State Exam-
ination (3MSE) and model-predicted trajectories of mean 3MSE scores were formulated for
both study groups (no history of HF and after incident HF) and for different age groups.
The investigators noted that the rate of cognitive decline was markedly faster after incident
HF, compared to subjects with no HF, and the deterioration in cognition was much more
pronounced at older ages. Remarkably, the rate of cognitive decline after incident HF was
not significantly affected neither by atrial fibrillation status nor by EF category [126].

Likewise, secondary data analysis from the ACTIVE study indicated that patients with
HF exhibit more rapid decline in cognitive function longitudinally (over a five-year period),
albeit limited only to the cognitive domain of reasoning [127]. Along the same lines, a
prospective longitudinal study on cognitive changes over a 10-year period of follow-up
among 702 octogenarians with and without HF detected greater rates of cognitive decline
in the field of episodic memory over time in those with HF [128].

On the other hand, in another longitudinal study, despite observing relative decline in
global cognitive function of stable HF patients over a time period of two years compared
to healthy controls, the investigators considered these cognitive changes to be subtle and
not specific to HF when comparing them to patients with coronary artery disease [129].
Similarly, the TIME-CHF trial following 611 HF patients aged ≥60 years failed to detect
significant changes in cognitive function in relation to changes in HF severity over a period
of 18 months, since the prevalence of severe CI (defined as Hodkinson Abbreviated Mental
Test score ≤7) remained rather stable over time. Yet, it is noteworthy that there was a
significant rate of patient drop out with approximately two-thirds of those with severe
CI at baseline being unavailable for follow-up assessment, which should be considered
a major confounder [130]. On top of this, other researchers actually reported modest
improvement in certain cognitive fields of patients with HF followed for a period of
12 months, highlighting that cognitive dysfunction in HF is not necessarily universal and
could be potentially modifiable. However, there may have been a selection bias in this
survey by not covering the full spectrum of HF patients (mild forms of HF patients who
most probably abide by their medical regimens may have predominated) and by excluding
patients with MMSE < 24. Moreover, the sample of HF patients was relatively small with
an intermediate-term follow-up [131].

In acute decompensated HF it would be intriguing to assess the changes in cognitive
function during the time window immediately after admission to the hospital (acute phase)
up to the time point where full compensation has been achieved (compensated phase). This
issue was addressed by Kindermann et al. in the CogImpair-HF study which examined
the cognitive performance of 20 patients with decompensated HF before (within 48 h
after admission) and after (14 ± 7 days) compensation in comparison to 20 patients with
stable HF and 20 healthy controls. As expected, initially, patients with decompensated HF
performed substantially worse than the other two groups, especially in the domains of
memory, executive control, and processing speed, but once the compensated phase was
reached, improvements were noted in their cognitive performance approaching the level
of patients with stable HF [132].

Despite the paucity of longitudinal studies with an extensive follow-up, some evidence
exists that cognitive decline closely pursues the perturbations incurred across the long-term
disease trajectory of HF. The presumed longitudinal relationship between CI and HF is
graphically depicted in Figure 1.
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6. Role of Brain Imaging Modalities

Neuroimaging studies conducted in HF patients have documented structural abnor-
malities in several brain regions involved in cognition. Morphologic cerebral abnormali-
ties, including cortical atrophy, ventricular enlargement, and cerebral infarcts, have been
recognized long ago through brain magnetic resonance imaging (MRI) in HF patients
with idiopathic dilated cardiomyopathy and have been related to worse cognitive per-
formance [133]. More recent studies in HF patients have demonstrated regional volume
reductions across certain brain cognitive areas, such as the hippocampus [134], the mam-
millary bodies [135], and the putamen [136]. Furthermore, another study showed reduced
regional cortical thickness across multiple brain sites that control various high-level and
autonomic functions. The observed findings reflect loss of neurons and supporting glial
cells and exhibit lateralization, with the cortical thinning being more pronounced on the
left side [137]. Almeida et al. found that HF patients demonstrated a higher burden of
grey matter lesions, which were more extensive but with a similar pattern of topographic
distribution, compared to patients with ischaemic heart disease [138].

With the use of 99 mTc-single-photon emission computed tomography (SPECT),
regional cerebral blood flow was evaluated in HF patients and, when compared to controls,
blood flow was found reduced in certain posterior cortical areas and was directly correlated
to the degree of CI [139]. Subsequently, the same investigators supported that the regional
cerebral blood flow abnormalities detected in HF patients resemble the regional patterns of
functional brain deficits depicted in positron emission tomography (PET) imaging studies of
glucose metabolism or amyloid deposition at the early stages of Alzheimer’s disease [140].

The aforementioned finding of regional cerebral hypoperfusion is in accordance
with another study of HF patients reporting a significant reduction in cerebral blood
flow, as estimated by 133Xe-SPECT, pre-transplant, which was consequently reversed
following transplantation [86]. Accordingly, Alosco et al. recruited 69 HF patients who
underwent brain MRI, transcranial Doppler ultrasonography of the middle cerebral artery,
and cognitive assessment via the MMSE. They found that reduced cerebral blood flow was
associated with greater white matter hyperintensities in older adults with HF [87]. In an
attempt to further differentiate white matter injury into axonal versus myelin lesions, other
investigators applied an MRI technique called diffusion tensor imaging to HF patients
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and reported both axonal and myelin injury, as evidenced by increased axial and radial
diffusivity, respectively. The injury, comprising of either loss of axonal integrity or myelin
breakdown or a combination of both, was evident along several fiber pathways in the brain,
including cognitive circuits, such as fibers projecting to the limbic system, the thalamus,
and the basal ganglia [141].

In order to relate neuroanatomical alterations in the grey and white matter with
cerebral metabolic changes that occur in certain cognitive areas of the brain, additional
studies are warranted in HF patients, ideally with the application of more sophisticated
imaging modalities, such as 18F-FDG PET, amyloid PET imaging, functional MRI, and
magnetic resonance spectroscopy [142–145].

7. Therapeutic Strategy

Once CI has been recognized, every effort should be made to limit its consequences by
applying therapies that minimize or reverse brain injury. The main pillar of our therapeutic
strategy should aim at preventing any subsequent CI, while effectively managing AHF. Of
paramount importance is the prompt restoration of central haemodynamics, which will
allow the stabilization of the patient with AHF. Any underlying comorbidities should also
be addressed accordingly. In the AHF setting, any reversible cause of altered mental status
should be systematically sought and immediately corrected [146].

It needs to be emphasized that there is no particular therapeutic intervention available
for prevention and management of CI in AHF. In order to provide and ensure brain protec-
tion, the currently suggested approach is to abide by the recommendations provided by the
clinical practice HF guidelines [1]. For the time being, applying optimal evidence-based
medical treatment specifically tailored to each clinical profile of AHF, as per guidelines,
should suffice. The proposed therapeutic approach, targeted at preventing CI and pro-
tecting the brain, depends on the AHF clinical phenotype and is presented in Figure 2.
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8. Conclusions

While the exact pathophysiological mechanisms remain poorly understood and still
need to be clarified, the evidence regarding the presence and burden of CI in AHF has been
well established. Caution must be exercised given the fact that CI in AHF patients often
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goes unrecognized in the clinical setting. Most of the time, cognitive changes are subtle
and may easily be overlooked by the clinician unless routinely scrutinized. Considering
the overwhelming association of CI with poor outcomes, screening for CI has been recom-
mended by HF guidelines, but unfortunately the scientific committees still omit to specify
when and how to screen. Consequently, it is more than obvious that there is a compelling
need for establishment of detailed consensus guidelines on cognitive screening methods to
be systematically implemented in the population of patients with HF in the context of a
more integrated approach.

Undoubtedly, more well-designed trials are needed to precisely delineate the longi-
tudinal effects that HF exerts on cognitive function both over the time course of stable
chronic HF as well as during episodes of HF exacerbation. There are still many unresolved
issues regarding cognitive changes in patients hospitalized with AHF that need to be
thoroughly addressed in the future. CI in AHF remains a rather undiscovered and under
recognized scientific field that poses many challenges and awaits to be unraveled by future
investigators.
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