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Pulmonary tuberculosis (TB) is a chronic infectious disease that is caused by respiratory infections, principally Mycobacterium
tuberculosis. Increasingly, studies have shown that circular (circ)RNAs play regulatory roles in different diseases through
different mechanisms. However, their roles and potential regulatory mechanisms in pulmonary TB remain unclear. In this
study, we analyzed circRNA sequencing data from adjacent normal and diseased tissues from pulmonary TB patients and
analyzed the differentially expressed genes. We then constructed machine learning models and used single-factor analysis to
identify hub circRNAs. We downloaded the pulmonary TB micro (mi)RNA (GSE29190) and mRNA (GSE83456) gene
expression datasets from the Gene Expression Omnibus database and performed differential expression analysis to determine
the differentially expressed miRNAs and mRNAs. We also constructed a circRNA–miRNA–mRNA interaction network using
Cytoscape. Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were used to
predict the biological functions of the identified RNAs and determine hub genes. Then, the STRING database and cytoHubba
were used to construct protein-protein interaction networks. The results showed 125 differentially expressed circRNAs in the
adjacent normal and diseased tissues of pulmonary TB patients. Among them, we identified three hub genes associated with
the development of pulmonary TB: hsa_circ_0007919 (upregulated), hsa_circ_0002419 (downregulated), and hsa_circ_0005521
(downregulated). Through further screening, we determined 16 mRNAs of potential downstream genes for hsa-miR-409-5p
and hsa_circ_0005521 and established an interaction network. This network may have important roles in the occurrence and
development of pulmonary TB. We constructed a model with 100% prediction accuracy by machine learning and single-factor
analysis. We constructed a protein-protein interaction network among the top 50 hub mRNAs, with FBXW7 scoring the
highest and SOCS3 the second highest. These results may provide a new reference for the identification of candidate markers
for the early diagnosis and treatment of pulmonary TB.

1. Introduction

Pulmonary tuberculosis (TB) is a contagious disease that is
caused by the slow-growing Mycobacterium tuberculosis
(MTB), which is spread by aerosols [1]. The primary patho-
logical feature of pulmonary TB is necrotizing granuloma

infiltration [2]. TB infections mainly occur in the lungs but
may also cause problems in other parts of the body [3]. Pul-
monary TB has a long incubation period. When MTB enters
the lungs, it usually forms capsules (granulomas), which are
harmless in the lungs and cause latent pulmonary TB infec-
tion [4–6]. However, these capsules may be activated in the
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future and develop into active pulmonary TB [7]. Although
pulmonary TB can be cured, it remains one of the ten lead-
ing causes of death worldwide, particularly in developing
countries [8, 9]. Latent pulmonary TB infections are asymp-
tomatic, making this difficult to detect and treat on time
[10]. Therefore, there is great interest in finding effective
biomarkers for the early diagnosis and/or treatment of latent
pulmonary TB [11].

Circular (circ)RNAs are a type of noncoding RNA mole-
cule that lack a 5′ cap and 3′ tail and form a single-stranded
circular structure by covalent bonds [12]. CircRNAs are
formed by reverse splicing and are mainly divided into all-
exon circRNAs, circRNAs composed of introns and exons,
and lasso-shaped circRNAs composed of introns [13, 14]. Cir-
cRNAs are abundant and present in bodily fluids such as
blood, saliva, cerebrospinal fluid, and urine [15]. Compared
with linear RNAs, circRNAs are more stable and more resis-
tant to degradation by RNase R. Therefore, circRNAs can be
selectively enriched during sample processing [16, 17]. Com-
pared with other types of RNAs, circRNAs are more suitable
as candidate molecules for molecular diagnostic biomarkers
and could be effective therapeutic targets [18].

Additionally, circRNAs can be used as micro (mi)RNA
sponges to bind miRNAs through miRNA response ele-
ments, releasing the degradation or translational inhibition
of downstream target mRNAs by disrupting the competitive
endogenous (ce)RNA mechanism [19]. CircRNAs bind to
and regulate the functions of RNA-binding protein (RBP),
changing the stability of mRNAs. CircRNAs can also directly
encode proteins [20–22]. According to a report by Li et al.,
who analyzed the expression profile of circRNAs in non-
small cell lung cancer, a circRNA named CircNDUFB2
could inhibit nonsmall cell lung cancer progression by
decreasing the stability of insulin-like growth factor 2
mRNA-binding proteins (IGF2BPs) and activating antitu-
mor immunity [23]. Wang et al. studied the expression pro-
file of circRNAs in the lung tissue of mice infected with
influenza A virus (IAV) using high-throughput sequencing
and RNA sequencing. They identified many differentially
expressed circRNAs between the IAV group and the control
group. Bioinformatic analysis revealed a potential role of cir-
cRNAs in the IAV-induced lung injury model [24]. Zhou
et al. conducted RNA sequencing and correlation analysis
on liver biopsies of untreated patients with chronic hepatitis
B and healthy controls. They found that there was a strong
positive correlation between hsa_circ_0000650 and TGFB2
expression and a negative correlation between hsa_circ_
0000650 and miR-6873-3p expression. They confirmed that
there were different circRNAs and circRNA/miRNA interac-
tions in patients with chronic hepatitis B [25].

To summarize, many studies have shown that circRNAs
are associated with the occurrence and development of a
variety of respiratory and infectious diseases [3, 26–28].
Currently, there are few studies on circular RNAs and pul-
monary TB. Pulmonary TB-related circRNA research could
be important for the early diagnosis and treatment of
pulmonary TB [29]. In this study, we sought to identify
differentially expressed circRNAs and their downstream

mRNAs using tissues from pulmonary TB patients to
identify hub genes involved in pulmonary TB infection and
provide references for the early diagnosis and treatment of
pulmonary TB.

2. Materials and Methods

2.1. Data Collection. The Shanghai (Fudan University) Pub-
lic Health Clinical Center provided all patient data used in
this study. They performed positron emission tomography
(PET) scans on the lungs of nine pulmonary TB patients
and whole transcriptome sequencing of lung tissues with
high PET (high metabolic activity) and normal PET (low
metabolic activity) uptake. For raw sequencing data, please
refer to PRJNA795290 (4∗2 samples) from the Sequence
Read Archive (SRA) database and GSE158767 (5∗2 samples)
from the Gene Expression Omnibus (GEO) database. All
patients signed an informed consent form before obtaining
tissue samples. RNA extraction, library construction, and
sequencing were performed in the same way as previously
described [30]. In this paper, we analyzed 8286 differentially
expressed genes (DEGs) by bioinformatics.

2.2. Differential Expression Analysis of CircRNAs. First, the
raw data were corrected, filtered, and normalized using the
R package. Analyses of differentially expressed RNAs
included fold change (FC), P value, and false discovery rate
(FDR). The criteria for selecting differentially expressed cir-
cRNAs were ∣log 2FC ∣ >1 and P value < 0.05. Scatter plots,
volcano plots, and heat maps were used to show the differ-
ently expressed circRNAs.

2.3. Feature Selection. In machine learning applications, the
number of features is often large, and there may be irrel-
evant features. With more features, the resulting model
will be more complex. Feature selection can eliminate
irrelevant or redundant features, reduce the number of
features, improve model accuracy, reduce the running
time, and simplify the model. We identified hub circRNAs
using eight feature screeningmethods: CfsSubsetEval-BestFirst,
PrincipalComponents-Ranker-T, CorrelationAttributeEval-
Ranker-T, GainRatioAttributeEval-Ranker-T, InfoGainAttri-
buteEval-Ranker-T, OneRAttributeEval-Ranker-T, ReliefFAt-
tributeEval-Ranker-T, and SymmetricalUncertAttributeEval-
Ranker-T.

2.4. Building the Machine Learning Models. We used 13
algorithms to build the models: ZeroR, Logistic, SMO, IBK,
AttributeSelectedClassifier, OneR, DecisionStump, Hoeffding-
Tree, J48, LMT, RandomForest, RandomTree, and REPTree.
Comparisons of the average accuracy of the machine learning
models established by different feature selection methods were
then conducted. We also performed statistical and univariate
analyses of the number of occurrences of circRNAs in various
models to identify hub circRNAs.

2.5. Screening the Downstream miRNAs and mRNAs of
CircRNAs and Constructing the CircRNA–miRNA–mRNA
Regulatory Network. Predictions of potential miRNAs tar-
gets of the circRNAs were made through the ENCORI

2 BioMed Research International



10 100 1000 10000
srpbm_L

Change
Down
Up

10

100

1000

10000

sr
pb

m
_H

L_vs_H.scatter

(a)

−10 0 10
Log2FC (H/L)

Up
Down
Not

0.001

0.100

10.000

−L
og

10
pv

al

L_vs_H.volcano

(b)

Figure 1: Continued.
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Figure 1: Sequencing data and differential expression analysis. (a) Scatter plot analysis of circRNA expression; (b) volcano plot of
differential circRNA expression; (c) heat map of cluster analysis of the differentially expressed circRNAs.
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website (http://starbase.sysu.edu.cn/). We screened the
pulmonary TB miRNA gene chip (GSE29190) dataset
from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo) for differentially expressed
miRNAs. The criteria for selecting differentially expressed
miRNAs were ∣log 2FC ∣ >1 and P value < 0.05. Predictions
of potential mRNAs downstream of miRNAs were made by
the miRTarBase database (http://mirtarbase.mbc.nctu.edu.tw/
php/index.php). Then, the GEO database of pulmonary TB
mRNA gene chip (GSE83456) was used to screen for differen-
tially expressedmRNAs. The criteria for selecting differentially
expressed mRNAs were |log 2FC ∣ >1 and P value < 0.05.
Finally, Cytoscape (http://www.cytoscape.org/) was used to
construct the circRNA–miRNA–mRNA interaction network.

2.6. Biological Function Analysis. Gene ontology (GO)
enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were performed using
the DAVID database (https://david.ncifcrf.gov) for the
differentially expressed mRNAs satisfying ∣log 2FC ∣ >1 and
P value < 0.05. GO analysis is divided into three categories,
cellular component (CC), molecular function (MF), and
biological process (BP), and summarizes the biological
functions, pathways, or cellular localization of gene
enrichment. We used the KEGG database for pathway
enrichment analysis.

2.7. Construction of Protein-Protein Interaction (PPI)
Networks. For the 372 mRNAs, we identified from the
previous screen; we analyzed them using the STRING
database (https://string-db.org/) and uncovered information

on the interactions of these proteins. Each node in the PPI net-
work represents a protein. To identify the key nodes in the PPI
network, we calculated the top 50 hub genes using the cyto-
Hubba function in Cytoscape (http://www.cytoscape.org/).
We then constructed a PPI network on the basis of these 50
hub genes.

3. Results

3.1. Preliminary Screening of Differentially Expressed Genes
in Pulmonary TB. We initially conducted a differential
expression analysis of pulmonary TB patient sequencing
data. The larger the difference in DEGs between normal

Table 1: The top 10 differentially expressed genes between normal and diseased tissues.

circBase_ID ID log2FC (H/L) P value Regulate

_ chr6:32489682|32549615 18.39 0.016744549 Up

_ chr6:31239376|31324219 15.76 5.20E-16 Up

_ chr6:29913011|29976954 15.27 6.44E-15 Up

_ chr12:103657104|103664086 11.4 0.007540201 Up

hsa_circ_0007919 chr17:953290|1003975 11.37 0.001677147 Up

hsa_circ_0049335 chr19:10906048|10909248 11.25 0.010820527 Up

_ chr5:94224584|94267696 3.67 0.021390567 Up

hsa_circ_0006272 chr10:70497602|70502326 3.45 0.026522304 Up

hsa_circ_0071410 chr4:169812073|169837178 3.41 0.012791713 Up

hsa_circ_0006006 chr2:173435454|173460751 3.36 0.022707405 Up

_ chr2:152109269|152112257 -11.18 0.045132825 Down

hsa_circ_0005281 chr17:80721841|80730383 -11.21 0.047352003 Down

_ chr11:36415396|36440853 -11.36 0.017056129 Down

_ chr8:108296910|108315595 -11.59 0.043394725 Down

hsa_circ_0002419 chr12:78443773|78452895 -11.69 0.001451403 Down

hsa_circ_0001961 chr10:52907842|52916908 -11.71 0.046807666 Down

hsa_circ_0037054 chr15:100185766|100215663 -11.9 0.030332661 Down

hsa_circ_0013225 chr1:94667276|94697199 -12.02 0.038719442 Down

hsa_circ_0057608 chr2:197777606|197786910 -12.05 0.024486018 Down

hsa_circ_0005521 chr1:215759838|215768813 -12.11 0.001277288 Down

Table 2: Feature screening information.

Feature-screening method
Number

of
circRNAs

Number of 100%
correct

algorithms

125 circRNA 125 3/13

CfsSubsetEval-BestFirst 14 3/13

PrincipalComponents-Ranker-T 5 0/13

CorrelationAttributeEval-
Ranker-T

10 4/13

GainRatioAttributeEval-Ranker-T 12 0/13

InfoGainAttributeEval-Ranker-T 12 0/13

OneRAttributeEval-Ranker-T 16 2/13

ReliefFAttributeEval-Ranker-T 12 2/13

SymmetricalUncertAttributeEval-
Ranker-T

12 0/13
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and diseased tissues, the stronger the association between
the disease state and the DEG. A scatter plot was used to
show gene expression. The genes clustered towards the mid-
dle show less differential expression, while those dispersed
towards the sides show larger differential expression. Points
on both sides are more likely to be disease hub genes
(Figure 1(a)). The basic conditions for screening DEGs were
a statistical significance measure P < 0:05 and the absolute
change in differential gene expression (fold change, FC)> 2.
There were 125 circRNAs expressed in the adjacent normal
and diseased tissues of pulmonary TB patients that satisfied
P value < 0.05 and ∣log 2FC ∣ >1, among which 50 were upreg-
ulated and 75 were downregulated. There were more down-
regulated genes in normal tissues compared with diseased
tissues (Figure 1(b)). Among the differentially expressed cir-
cRNAs, the top 10 up- and downregulated circRNAs are listed
in Table 1. Next, we drew a heat map for cluster analysis on
basis of circRNA expression in the different samples
(Figure 1(c)). The results showed that there were more upreg-
ulated genes in diseased tissues. These conclusions were con-
sistent with the volcano plots.

3.2. Building the Machine Learning Models

3.2.1. Construction of the Whole Gene Prediction Models.
These machine learning models were built from the 125
differently expressed circRNAs. The prediction accuracy of
the Logistic, SMO, and IBK algorithms were the highest,

reaching 100%; the accuracy of the J48 algorithm also
reached 89% (Table 2).

3.2.2. Feature Selection. The pathogenesis of pulmonary TB
is complex. Predictive modeling of pulmonary TB hub genes
by machine learning was then performed with the 125
differentially expressed circRNAs. First, we performed fea-
ture selection to screen the major influencing factors among
the 125 circRNAs; the hub circRNAs were determined by
eight feature selection methods. We constructed a machine
learning model on the basis of the 125 circRNAs and
feature-screened circRNAs. We built models separately using
13 different algorithms: ZeroR, Logistic, SMO, IBK, Attribu-
teSelectedClassifier, OneR, DecisionStump, HoeffdingTree,
J48, LMT, RandomForest, RandomTree, and REPTree
(Tables S1–S9).

CorrelationAttributeEval-Ranker-T feature screening had
four algorithms with a 100% accuracy rate (Logistic, SMO,
IBK, and HoeffdingTree). The CfsSubsetEval-BestFirst feature
screening method was the next best, and its three algorithms
(SMO, IBK, and HoeffdingTree) had a 100% accuracy rate.
OneRAttributeEval-Ranker-T feature screening had two
algorithms (SMO and IBK) that showed a 100% accuracy rate.
CfsSubsetEval-BestFirst feature screening also had two
algorithms with a 100% correct rate (Logistic and SMO). Only
CorrelationAttributeEval-Ranker-T had a better accuracy rate
than the model constructed with 125 circRNAs. Therefore, the
CorrelationAttributeEval-Ranker-T feature screening method
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was more suitable for the 125 circRNAs (Table 2 and
Figure 2). Among the eight feature screening methods, four
reached 100% model correctness. These four methods
contained 29 circRNAs, counting their occurrences. There
were 14 circRNAs that appeared more than once in
these four methods. Among them, hsa_circ_0007919,
chr10:15590454|15628663, and hsa_circ_0002419 appeared
in all four methods. This suggested that these genes may be
closely related to the occurrence and development of pulmo-
nary TB (Table 3).

3.3. Univariate Analysis and Confirmation of the
Key CircRNAs

3.3.1. Univariate Analysis. To further clarify the effect of
circRNAs on pulmonary TB, we built machine learning
models for 14 circRNAs and performed univariate analysis.
We calculated the average of the models with correct rates
of over 80%, with random seeds taken from 1 to 10
(Table 4). The results showed that each circRNA had at least
one algorithm with an accuracy greater than 80%. Among
them, hsa_circ_0002419 had a strong correlation with pul-
monary TB, and the accuracy of the four algorithms was
94%. Hsa_circ_0005521 had a strong correlation, and the
correct rate was 89%.

3.3.2. Confirmation of the Key CircRNAs. To identify hub
genes in the development of pulmonary TB, we made Venn
diagrams that included 20 DEGs and 14 univariate analysis
genes using Jvenn. We uncovered three hub circRNAs: hsa_
circ_0007919 (upregulated), hsa_circ_0002419 (downregu-
lated), and hsa_circ_0005521 (downregulated). We identified
these three circRNAs as hub genes in the development of pul-
monary TB (Figure 3 and Table 1).

3.4. Downstream Gene Prediction and Biological
Function Analysis

3.4.1. The Downstream Genes of the Identified CircRNAs.
The most interesting function of circRNAs is to serve as
molecular sponges for miRNAs by binding and influencing
miRNA expression. The potential miRNAs that interact with
the hub circRNAs were predicted using the ENCORI data-
base. The downstream mRNAs of the miRNAs were pre-
dicted by the miRTarBase database (Table 5). We used the
miRNA Gene Chip GSE29190 of pulmonary TB from the
GEO database and screened out 47 differentially expressed
miRNAs (P < 0:05). We screened out potential miRNAs
and differentially expressed miRNAs by Jvenn, which identi-
fied hsa-miR-409-5p (Figure 4(a)). The upstream molecule
of hsa-miR-409-5p is hsa_circ_0005521, and the total num-
ber of potential downstream mRNAs is 31.

We used the mRNA Gene Chip GSE83456 of pulmonary
TB from the GEO database to screen out 9272 differentially
expressed mRNAs (P < 0:05). We screened out 16 potential
downstream mRNAs for hsa-miR-409-5p, and their differ-
ential expression was analyzed using Jvenn. These mRNAs
included RPS4X, NBEA, GSK3B, RGL2, ZNF512B, SOD2,
ZNF12, KPNA3, AKAP1, RPRD2, ACAP2, RSU1, FDXR,
EIF4EBP2, SRRD, and ZBTB34 (Figure 4(b)). Finally, the

circRNA–miRNA–mRNA interaction network was con-
structed using Cytoscape (Figure 4(c)).

3.4.2. Biological Function Analysis of the Identified Genes. To
study the effects of the identified mRNAs on pulmonary TB,
we performed GO and KEGG analysis of the downstream
mRNAs of the three hub circRNAs using the DAVID data-
base. In BP analysis, DNA template, transcription, and pos-
itive regulation of transcription from RNA polymerase II
promoter were the three terms with the highest enrichment
(Figure 5(a)). Regarding CC, genes were enriched in the
nucleus, cytoplasm, cytosol, nuclear plasma, and other com-
ponents (Figure 5(b)). In MF analysis, protein binding,
metal ion binding, and poly(A) RNA binding were the three
terms with the highest enrichment (Figure 5(c)). Addition-
ally, KEGG pathway analysis showed that the genes were
enriched in the cancer pathway, PI3K-Akt signaling
pathway, proteoglycan in cancer, Ras signaling pathway,
HTLV-I infection, and other pathways (Figure 5(d)).

Table 3: Frequency of occurrence of 29 circRNAs in four classes of
feature-screened circRNAs.

Number CircRNA
Number of
occurrences

1 hsa_circ_0007919 4/4

2 chr10:15590454|15628663 4/4

3 hsa_circ_0002419 4/4

4 chr10:76729418|76748870 3/4

5 hsa_circ_0005521 3/4

6 chr12:97886239|97954825 3/4

7 chr10:97141442|97170534 2/4

8 hsa_circ_0034293 2/4

9 hsa_circ_0013048 2/4

10 hsa_circ_0007769 2/4

11 chr6:62362160|62442669 2/4

12 chrX:51070573|51099879 2/4

13 chr8:68934271|68973014 2/4

14 hsa_circ_0002286 2/4

15 hsa_circ_0006272 1/4

16 chr12:103657104|103664086 1/4

17 chr11:36415396|36440853 1/4

18 chr16:65005482|65026937 1/4

19 chr1:21231376|21268823 1/4

20 hsa_circ_0008336 1/4

21 hsa_circ_0008223 1/4

22 hsa_circ_0057105 1/4

23 chr7:115750762|115752092 1/4

24 hsa_circ_0066452 1/4

25 hsa_circ_0084708 1/4

26 hsa_circ_0080947 1/4

27 hsa_circ_0003961 1/4

28 hsa_circ_0042103 1/4

29 hsa_circ_0076948 1/4

7BioMed Research International



Collectively, these results show that the downstream mRNAs
of the three key circRNAs play a major immunomodulatory
role in the development of pulmonary TB.

3.5. PPI Network Construction. In this study, we have uncov-
ered potential mRNAs downstream of three hub circRNAs.
Among them, there were 1429 downstream mRNAs of
hsa_circ_0007919, 2201 downstream mRNAs of hsa_circ_
0002419, and 5401 downstream mRNAs of hsa_circ_
0005521. We hypothesized that mRNAs simultaneously
regulated by the three circRNAs may play important roles
in the development of pulmonary TB. Therefore, we
screened out 372 overlapping mRNAs using Jvenn and con-
ducted further analysis (Figure 6(a)). To further find the hub
genes among the 372 mRNAs in the network, we used the
STRING database and Cytoscape. We found the top 50
hub genes according to the cytoHubba plugin in Cytoscape.
We then constructed the PPI network on the basis of these
top 50 genes (Table 6 and Figure 6(b)).

4. Discussion

Current laboratory tests for pulmonary TB include immuno-
logical- and molecular-based assays. Traditional smear
staining has the disadvantages of a low positive rate and a
long culture period [31]. With the further development of
biomedical technologies, exosomal microRNA, real-time
fluorescence quantitative PCR, and other techniques have
been applied, but there is still a lack of rapid and reliable
detection techniques for pulmonary TB [32, 33]. CircRNAs
have several advantages as a biomarker, and their roles in
the pathological regulation of pulmonary TB have received
increasing attention in recent years [34]. Many studies have
shown that circRNA expression is altered in the tissues and
peripheral blood of pulmonary TB patients [35]. In this
study, we uncovered three hub circRNAs by using differen-
tial gene expression, machine learning, and univariate
analysis, including hsa_circ_0007919 (upregulated in dis-
eased tissues) and hsa_circ_0002419 and hsa_circ_0005521
(downregulated in diseased tissues). To date, there have been
no reports about hsa-circ-0002419 or hsa_circ_0005521.
However, it has been found that potential downstream genes
of hsa-miR-409-5p and hsa_circ_0005521 may also interact
with hsa_circ_0028883, which has potential diagnostic value
for pulmonary TB [36]. Wang et al. showed that hsa_circ_
0007919 plays a role in ulcerative colitis by binding to hsa-
miR-138 and hsa-let-7a to regulate the expression of VIPR1

Table 5: Statistical analysis of downstream genes of the identified
circRNAs.

circRNA miRNA mRNA

hsa_circ_0007919 13 1429

hsa_circ_0002419 15 2201

hsa_circ_0005521 46 5401

Table 4: Univariate analysis of 14 circRNAs.

circRNA SMO(%) IBK(%) HoeffdingTree(%) Logistic(%)

hsa_circ_0007919 — 83 83 83

chr10:15590454|15628663 83 94 83 83

hsa_circ_0002419 94 94 94 94

chr10:76729418|76748870 83 — 83 83

hsa_circ_0005521 89 89 89 89

chr12:97886239|97954825 89 83 89 89

chr10:97141442|97170534 — 94 83 —

hsa_circ_0034293 — 83 89 —

hsa_circ_0013048 — 89 — —

hsa_circ_0007769 83 89 83 —

chr6:62362160|62442669 — 83 83 83

chrX:51070573|51099879 83 — — —

chr8:68934271|68973014 83 83 — —

hsa_circ_0002286 83 — 83 83

17 3 11

Differentially expressed top gene Univariate analysis genes

Figure 3: Cross-analysis of the top differentially expressed genes
and genes identified by univariate analysis.
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and EPC1, respectively [37]. Pulmonary TB also includes
chronic inflammation, and the two diseases may share com-
mon pathways in terms of inflammation.

We further studied the effects of potential genes down-
stream of the hub circRNAs on pulmonary TB. According
to GO and KEGG analysis, the genes were enriched in the
PI3K-Akt signaling pathway, the proteoglycan pathway in
cancer, and Ras signaling. Yang et al. showed that the
inflammatory response of macrophage-like cells to MTB
can be attenuated by modulating the PI3K/Akt/mTOR sig-
naling pathway [38]. Other studies have shown that PI3K/
AKT/mTOR signaling pathways are suppressed in patients
with active pulmonary TB [39]. Gill et al. explained that
the mechanism by which proteoglycans modulate inflamma-
tory responses in the lung and showed that they may be part
of a new treatment for inflammatory lung diseases and lung
infections [40]. It has also been shown that hsa_circRNA_
103571, which is differently expressed in the plasma of
patients with active pulmonary TB, is also involved in the
Ras pathway [41].

We uncovered 50 hub genes and then constructed a PPI
network using the STRING database and cytoHubba.
FBXW7 scored the highest, and SOCS3 was the next highest.
We concluded that these genes may be associated with the
development of pulmonary TB. Additionally, some of these
genes have been reported to be involved in the development
of pulmonary TB and other diseases. FBXW7 is an impor-
tant tumor suppressor. Ni et al. found that miR-92a plays
an oncogene role in nonsmall cell lung cancer by regulating
FBXW7 [42]. It has been reported that FBXW7 plays a key
role in regulating colitis by inducing CCL2 and CCL7
expression in macrophages and promoting the accumulation
of pro-inflammatory mononuclear macrophages [43]. Cui
et al. found that inactivation of FBXW7 in cancer cells, espe-
cially those with wild-type p53, may improve the efficacy of
radiotherapy or chemotherapy, and thus improve patient
survival [44]. Pulmonary TB is a risk factor for lung cancer,
and the probability of developing lung cancer is much higher
in pulmonary TB patients than in the general population.
Therefore, FBXW7 may play a role in pulmonary TB

70 1 47

Potential
miRNA

Differentially
expressed miRNA

(a)

15 16 9256

Potential
miRNA

Differentially
expressed miRNA

(b)

ZNF512B SOD2

ZNF12 KPNA3

AKAP1 RPRD2

ACAP2 RSU1

FDXR EIF4EBP2

SRRD ZBTB34

hsa_circ_0005521

hsa-miR-409-5p

RPS4X NBEA

GSK3B RGL2

(c)

Figure 4: Analytical screening of downstream miRNAs and mRNAs. (a) Screening of downstream miRNAs using Jvenn cross-analysis of
potential miRNAs and the differentially expressed miRNAs. (b) Screening of downstream mRNAs using Jvenn cross-analysis of potential
mRNAs and the differentially expressed mRNAs. (c) The circRNA–miRNA–mRNA interaction network.
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Figure 5: Continued.
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patients progressing to lung cancer through the above genes
or pathways. SOCS3 is a suppressor of cytokine signaling;
Feng et al. showed that stimulating G-protein-coupled
receptor 120 (GPR120) induced SOCS3 expression and that
GPR120-specific small molecule agonists improved autoim-
mune inflammation via dendritic cells [45]. Harling et al.
showed that T cells are essential to prevent MTB infection
and that T cell damage promotes the development of pulmo-
nary TB. They concluded that high SOCS3 expression is a

factor in the impaired T cell function of pulmonary TB
patients [46].

However, this study had some limitations. First, expres-
sion levels of the DEGs need to be further verified by quanti-
tative PCR. Second, the model with 100% prediction
accuracy established in this study needs further parameter
changes, optimization, and assessments before it can be widely
used. Finally, the mechanisms of these DEGs in pulmonary TB
need to be further explored by molecular experimentation.
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Figure 5: Biological function enrichment analysis. (a) Biological process (BP) enrichment analysis. (b) Cellular component (CC)
enrichment analysis. (c) Molecular function (MF) enrichment analysis. (d) KEGG pathway enrichment analysis.
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Figure 6: Screening the hub mRNAs. (a) Intersection analysis of potential downstream mRNAs of hsa_circ_0007919, hsa_circ_0002419,
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5. Conclusions

In conclusion, we screened three hub circRNAs using the
adjacent normal and diseased tissues of pulmonary TB
patients. GO and KEGG enrichment were used to identify
pathways associated with pulmonary TB. We identified
hub genes through a PPI network. This study may provide
a reference for finding candidate markers for the early diag-
nosis of pulmonary TB and provide new directions for pos-
sible pulmonary TB therapeutic targets.
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