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Abstract: Retroid agents are genomes that encode a reverse transcriptase (RT) and replicate or transpose by way of an RNA 
intermediate. The Genome Parsing Suite (GPS) is software created to identify and characterize Retroid agents in any genome 
database (McClure et al. 2005). The detailed analysis of all Retroid agents found by the GPS in Danio rerio (zebrafi sh), Oryzias 
latipes (medaka), Gasterosteus aculeatus (stickleback) and Tetraodon nigroviridis (spotted green pufferfi sh) reveals extensive 
Retroid agent diversity in the compact genomes of all four fi sh. Novel Retroid agents were identifi ed by the GPS software: the 
telomerase reverse transcriptase (TERT) in O. latipes, G. aculeatus and T. nigroviridis and a potential TERT in D. rerio, a ret-
rotransposon in D. rerio, and multiple lineages of endogenous retroviruses (ERVs) in D. rerio, O. latipes and G. aculeatus. 
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Introduction
Retroid agents are genomes that use the RT to transcribe their RNA into dsDNA, which is then integrated 
into the DNA of a host organism. Once falsely labeled “junk” DNA, some Retroid agents are implicated 
in disease, while others are benefi cial to the organism in which they reside. In humans the HERV W 
envelope protein is essential for placental reproduction (Blond et al. 2000, Mi et al. 2000, Mallet et al. 
2004), while other Retroid agents provide regulatory sequences for the host genes (Samuelson et al. 
1988; Yang et al. 1998; Medstrand et al. 2001), maintain telomeres (Pardue et al. 1996), repair damaged 
chromosomes (Moore et al. 1996), carry genetic information within an organism, and also transport 
genetic information to other organisms (Kordis et al. 1998).

The Retroid agent classifi cation includes both endogenous and exogenous retroviruses, pararetroviruses 
(large DNA viruses), retrotransposons with long terminal repeats (LTRs), retroposons that lack LTRs, retro-
plasmids, retrointrons, and retrons (Temin, 1985; Temin, 1989; Hull, 1999; Hull, 2001). Although the effects 
of Retroid agents have been studied in far more detail in the mammalian and insect genomes, it is apparent 
that at least one of these genes, the telomerase reverse transcriptase (TERT), performs a similar function, 
repairing the telomeric ends in the four teleost fi sh. In mammals the TERT plays important roles in cell 
proliferation, differentiation, tumorigenesis and aging. The Takifugu rubripes (Japanese pufferfi sh) TERT 
(FTERT) is essential for maintaining the ends of linear chromosomes (Yap et al. 2005). The TERT is the 
only RT function encoded by a host gene; all other cellular RT activity is encoded by Retroid genomes 
(McClure, 1999). 

The four teleost fi sh, D. rerio (zebrafi sh), O. latipes (medaka), G. aculeatus (stickleback) and T. nigroviridis 
(green spotted pufferfi sh) are of particular interest both experimentally and evolutionarily. D. rerio is an 
important model organism for vertebrate development (Kimmel, 1989; Driever et al. 1996) and organogenesis 
(Zhong et al. 2000). This freshwater fi sh is also used to determine the roles of hundreds of essential vertebrate 
genes. Another freshwater fi sh, O. latipes, is an important model for the evolution of sex determination and 
developmental genetics (Shima et al. 2003). G. aculeatus is a small marine fi sh which has undergone one of 
the most rapid and recent adaptive radiations on earth. Sticklebacks normally live in the ocean and migrate 
into freshwater streams and lakes to breed. During the last Ice Age, however, many ocean sticklebacks colo-
nized newly created lakes and streams, and in many cases became isolated from the ocean (Bell et al. 1994), 
therefore, the stickleback is a very important asset in the study of evolution. The freshwater pufferfi sh is a 
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model for genomic studies because it has the smallest 
genome size of all vertebrates sequenced to date 
(Shima et al. 2003). The zebrafi sh genome, about 
1700 Mbp, is the largest, followed by the medaka, 
with a genome of approximately 1000 Mbp, then the 
stickleback with 675 Mbp, while the pufferfish 
genome, with 385 Mbp, is the smallest (Volff, 2005). 
The compact size of T. nigroviridis can be attributed 
to the small number of repetitive agents, in addition 
to its reduced intron size (Jallion et al. 2004). The 
divergence times of the four fi sh follow the same trend 
as the genome sizes: D. rerio is the oldest, followed 
by O. latipes, then G. aculeatus while T. nigroviridis 
is the most recently diverged (Yamanoue et al. 
2006).

The results reported here are from the GPS soft-
ware used for identification, classification and 
comparison of the Retroid agent content of the 
D. rerio, O. latipes, G. aculeatus and T. nigroviridis 
genomes. The approach of the GPS is radically 
different from Repeat Masker, which is used to mask 
out and count repetitive agents using consensus DNA 
sequences (Smit et al. 1996–2004). Other approaches 
employ LTR sequences to fi nd a subset of Retroid 
agents (Buzdin et al. 2006). These methods are limited 
to fi nding Retroid sequences that can be detected by 
a library of DNA sequences. These methods suffer 
from the loss of signal due to mutational saturation 
because DNA is used to query a genome rather than 
amino acid sequences. While the structural genes of 
Retroid agents can be highly divergent, the RT gene 
is considerably more conserved (McClure et al. 1988). 
The RT is also essential for autonomous transposition, 
and the continuance of an exogenous viral life cycle. 
This being said, in the studies presented here, we have 
limited the GPS analysis to identify those Retroid 
agents capable of autonomous replication. Although 
any protein sequence can be used in the GPS, in this 
study it is populated with a representative diversity of 
RT protein sequences which afford a deep query into 
the Retroid content of the D. rerio, O. latipes, 
G. aculeatus and T. nigroviridis genomes.

Methods

The genome parsing suite 

Stage I GPS
Washington University Basic Local Alignment 
Search Tool translated nucleotides (WU-tBLASTn) 
version 2.0 (Gish 1996–2004) was used to query 

the four fi sh genomes with the following param-
eters: E = 1, –matrix pam70, Q = 9, R = 1, V= 1e7, 
B = 1e7, gapL = 0.307, gapK = 0.13, gapH = 0.7, 
X = 15, gapX = 33, gapW =44, gapS2 = 63, S = 41, 
hspmax = 0, and –span. 

Figure 1 outlines the two stages of the GPS 
software. Stage I sorts and fi lters raw WU-tBLASTn 
hits retrieved by the RT queries. These hits are 
redundant and contain false positives, due to: 
1) alternative alignments for a given query to a 
specifi c region, 2) cross coverage of the queries, 
and 3) counting as unique, a number of small hits 
that are actually from the same gene. After sorting 
by query, chromosome, polarity and reading frame 
the GPS removes redundancy by deleting hits that 
are completely covered by a longer hit to the same 
position, thereby preventing overestimation of 
the amount of potential RT genes. The GPS then 
compounds small hits, and removes false positives 
due to cross coverage on these compounded hits. 
These fi ltered data are the “unique” RT hits. Unique 
hits are counted as single contiguous sequences, 
single compound hits composed of subse-
quences, and sets of ambiguous hits to the same 
position and reading direction. These ambiguous 
cases are often resolved in Stage II of the GPS. 
Unique hits are then assessed for quality: 1) by 
degree of Ordered Series of Motifs (OSM) conser-
vation (McClure, 1991), which is made up of six 
highly conserved motifs that fold to form the active 
site of the enzyme (Kohlstaedt et al. 1992), and 
2) presence of frame shifts and stop codons 
(Figure 1). Full length RT hits with neither frame 
shifts nor stop codons are labeled “perfect”. 

Stage II GPS
Stage II GPS uses an RT-outward approach to 
construct potential Retroid agent genomes. The 
sequence of each unique RT hit is extended 
approximately 7,000 bp upstream and downstream of 
its position in the chromosome (Figure 1, Stage II). 
Given that the largest size of a Retroid genome is about 
9,000 bp, this 14kb+ sequence is suffi cient to encom-
pass any newly identified Retroid agent. WU-
tBLASTn is used a second time to compare each 
query-specifi c component library (Figure 2) to the 
corresponding 14 kb+ sequence containing the RT hit. 
Full length Retroid genomes are defi ned by the pres-
ence of all the gene components in the query’s 
genomic order. Unlike other methods, the GPS does 
not limit the defi nition of full length to only sequences 
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bounded by LTRs or untranslated regions (UTRs). It 
is known that many LTR or UTR bounded Retroid 
genomes have deletions within these boundaries and, 
therefore, are not full length. LTRs are analyzed at the 
amino acid level in the GPS, even though they do not 
physically encode amino acids, allowing more diver-
gent LTRs to be identifi ed. Note, however, in our study 
that full length genomes may have only one gene, the 
RT, while others have many more genes (Figure 2). 
All genomes with one frame shift or stop codon, as 
well as those that are error free, are considered to be 
potentially active. Retroid agents are known to over-
come mutational errors of one stop codon or frame 
shift by translational recoding (for Review, see 
Baranov et al. 2002) thereby producing functional 
proteins. Note that some queries themselves may 
contain frame shifts and stop codons. For a more in 
depth discussion of the GPS, see McClure et al. 
2005.

Retroid agent queries
The phylogenetic tree representing the host 
organisms of the 92 Retroid agent queries used to 
populate the GPS in this study, along with the 
sequence names and accession numbers are 
presented in Figure 3. The query sequences 
are: D. rerio, O. latipes and T. nigroviridis specifi c; 
any documented Retroid agents found in any of 
the three fi sh genomes; human specifi c; and a set 
of 30 that represent the major families of all Retroid 
agents. There are currently no Retroid agent 
sequences available from G. aculeatus.

Host genomes
The D. rerio version Zv6, the G. aculeatus version 
gasAcu1 and the T. nigroviridis tetNig1 chromosomal 
genomes are from the University of Santa Cruz 
Genome Bioinformatics Website (DiBiase 
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Figure 1. A Representation of the GPS Software. The output of Stage I GPS includes Raw, Unique and Perfect RT hits as defi ned in the 
text. Unique hits are assessed for presence of the Ordered Series of Motifs (OSM) as illustrated in the Motif Distribution box. The columns 
indicate the number of motifs the Unique RT hits have (zero through six), and the rows indicate queries. For example, there are 17 copies 
of an RT sequence with all six motifs that is more closely related to the retrotransposon SUZU than any other query. All Unique hits are 
passed to Stage II GPS and a 14kb+ length of host DNA inclusive of each RT hit is excised and assessed. The results of this stage are full 
length Retroid genomes, classifi ed as those with one stop codon (1SC) or frame shift, (1FS) and those with complete, error-free open read-
ing frames (perfect). Given the observation of translational recoding in Retroid agents, these three classes are considered potentially active. 
Gene abbreviations are as follows: LTR = long terminal repeat, GAG = group specifi c antigen, PRO=protease, RT = reverse transcriptase, 
RH = ribonuclease H, IN = integrase, and ENV = envelope.



182

Basta et al

Evolutionary Bioinformatics 2007: 3 

et al. 2006) and the D. rerio version Zv4 genome 
is from the National Center for Biotechnology 
Information website (NCBI) (http://www.ncbi.nlm.
nih.gov/). The GPS analyzes genomes in chromo-
somal format, and even though all four fi sh genomes 
have unplaced regions of their chromosomes, these 
regions have been formatted into an “Un” or “NC” 
chromosome, which separates unplaced contigs 
using strings of “N”s. Both iterations of the D. rerio 
genome were analyzed by the GPS. The number of 

unique RT sequences retrieved by the queries has 
increased from 64,199 in version Zv4 to 102,763 
in version Zv6. The full length sequences increased 
from 556 in Zv4 to 1,116 in Zv6. All data presented 
here are from the most recent version of the D. rerio 
genome and, to our knowledge, this is the fi rst report 
of the full Retroid agent content for the Zv6 itera-
tion. The O. latipes MEDAKA1 genome is from 
the Ensembl website (Hubbard et al. 2007) in chro-
mosomal format. 

Figure 2. Example Query Library Gene Component Maps. The GPS accesses a database populated by Retroid genomes. This query library 
contains all the genes and non-coding components, which the GPS uses to identify and reconstruct potential Retroid agents found in 
organismal genome databases. Those gene abbreviations not found in Figure 1 are as follows: APE = apurinic endonuclease, UN/UNK= 
unknown region, EN= putative PDD endonuclease (Xiong et al 1988), TE=tether, 5UTR= 5′ untranslated region, 3UTR= 3′ untranslated 
region, 5LTR= 5′ long terminal repeat, 3LTR= 3′ long terminal repeat. The FTERT is divided into a Carboxyl portion (CARB) and the RT. The 
red box highlights the RT genes. If a potential Retroid agent encodes all the genes in a specifi c query component library, it is considered full 
length. Retroid agents accession numbers and the hosts in which they were discovered are presented in Figure 3.
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About 73% of the zebrafi sh genome is sequenced 
and 95% of this is placed on chromosomes. Of the 
medaka genome about 40% is sequenced and 75% of 
this is placed on chromosomes. Of the approximately 
68% of the stickleback genome that has been 
sequenced, about 87% is anchored to chromosomes. 
Approximately 54% of the 90% completed pufferfi sh 
genome has been placed and positioned onto chromo-
somes. About 3.3% of the genome has been assigned 
a chromosome, but not its position on that chromo-
some. The remaining 42.7% has neither chromosomal 
nor position assignment, and is called an Un_random 
chromosome.

Results
Although there are numerous unique RT hits for each 
fi sh, only about one hit in 50 is part of a full length 
sequence (Table 1). There are many sequences that 
have more components than a unique RT, but are 
smaller than a full length agent. These sequences can 

be output by the GPS for in-depth analysis of each 
agent; however, this level of analysis for all 92 agents 
is beyond the scope of the genome-wide studies 
presented here.

Low frequency data
There are Stage I GPS results that were generated 
by queries that are not fi sh specifi c. This portion 
of the unique RT copies is referred to as low 
frequency in previous analyses by the GPS 
(McClure et al. 2005), and each query finds 
unique RT copies that are closer to it than they 
are to any of the other queries. These hits are 
referred to as low frequency because they make 
up a small fraction of the human data analyzed in 
fi rst published report of the GPS (McClure et al. 
2005). These unique RT hits do not, however, 
make up a small portion of the four fi sh, and will 
therefore be referred to as non-fi sh specifi c hits 
(Figure 4). 
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Figure 3. Phylogenetic Tree of the Query Host Organisms. The query names and NCBI accession numbers are listed next to respective 
host organisms. The tree was created using TaxBrowser on the NCBI website (Benson et al. 2000; Wheeler et al. 2000). Those sequences 
that are considered fi sh-specifi c (see Results) are enclosed in the box. 
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The average size of the RT queries used in this 
study is about 1050 bp, however, a signifi cant frac-
tion of the total unique RT hits are below 100 bp 
in all four fi sh (Figure 4). The majority of these 
hits under 100 bp belong to non-fish specific 
sequences. On average, the non-fi sh specifi c hits 
tend to be smaller than those that are fi sh specifi c 
(Table 2). A new function of the GPS will be devel-
oped to analyze these fragments of RT sequences, 
which have been found to some degree in every 
genome thus far analyzed by the GPS.

Placement of data onto chromosomes
Almost all of the unique RT sequences found by Stage 
I GPS have been placed on chromosomes in the 
D. rerio genome, however, the O. latipes genome has 
a large number of non-placed unique RT hits (approx-
imately 25% of the total), as does the G. aculeatus 
genome (approximately 20% of the total) and the 
T. nigroviridis genome (greater than 50% of the total), 
which is not surprising considering repetitive 
elements tend to be the most diffi cult to place on 
specific chromosomes in the genome assembly 
process. Given that only 40% of the medaka and 54% 
of the pufferfish sequenced genomes have been 
placed and have known positions on chromosomes, 
little can be concluded about the distribution of 
Retroid agents in these two fi sh. 

Types of retroid agents found
All four fi sh have more unique retroposons than 
any other type of Retroid agent, followed by 
retrotransposons and then retroviruses (Figure 5). 
Predictably, D. rerio, with the largest genome of 
the four fi sh, has the most unique potential RT 
genes for all three types of Retroid agents, followed 
by O. latipes, G. aculeatus and then T. nigroviridis 
(data not shown). The full length copies, however, 
fall into an unexpected pattern according to the 
sizes of their resident fi sh; O. latipes has more 
retroposon copies than D. rerio, and G. aculeatus 
and T. nigroviridis have more retrovirus copies 
than O. latipes (Figure 5). Even though it does not 
have the most copies of retroposons, D. rerio does, 
however, have more families of each Retroid agent 
type than any of the other fi sh (Figure 5).

Retroid agents present in all four fi sh
There are four types of retroposons and two types 
of retrotransposons present in all four fi sh. The 
copy number trends vary greatly from agent to 
agent; for example, the REX3 retroposon is most 

Table 1. Stage I and Stage II GPS totals for D. rerio, 
O. latipes, G. aculeatus and T. nigroviridis. Unique RT 
hits produced by Stage I GPS are indicated for each 
of the four fi sh in the fi rst column, and the full length 
Retroid agents produced by Stage II GPS are shown 
for each fi sh in the second column.

Organism Unique Full Length
 RT Hits Retroid
  Agents
D. rerio 102,763 1,116
O. latipes 61,767 1,458
G. aculeatus 31,865 777
T. nigroviridis 18,322 633

Fish Specific
Non-fish specific
Less than100 bp in length
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Figure 4. Stage I GPS: low frequency RT hits. Unique RT hits re-
trieved by fi sh specifi c queries are shown in blue. Purple indicates 
those hits retrieved by non-fi sh specifi c queries, while those RT 
hits that are less than 100 bp in length are shown in off-white. The 
y axis indicates Unique RT hits, while the x axis indicates organism. 
See Figure 3 for fi sh and non-fi sh specifi c query names, host organ-
isms and accession numbers.

Table 2. Average Sizes of Fish Specifi c and Non-fi sh
Specifi c Unique RT Hits from Stage I GPS. All values
are indicated in base pairs (bp).

Organism Fish Specifi c Non-fi sh  
 Hits Specifi c Hits
D. rerio 243 bp 163 bp
O. latipes 221 bp 166 bp
G. aculeatus 222 bp 144 bp
T. nigroviridis 161 bp 120 bp
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abundant in O. latipes, second most in G. aculeatus, 
third most in D. rerio, and least in T. nigroviridis, 
while the BARTHEZ2 retrotransposon is most 
abundant in D. rerio, followed by G. aculeatus, 
T. nigroviridis and then O. latipes (Figure 6).

Retroid agents present in three out
of the four fi sh
There are six families of full length Retroid agents 
found in three out of the four fi sh (four retroposons, 
one retrotransposon and one retrovirus). The 
ERV4_Tet sequences have not been previously 
identifi ed in either O. latipes or G. aculeatus, and 
are currently the focus of a more in-depth study 
(Figure 7). 

Retroid agents found in two of the 
four fi sh and identifi cation of a novel 
retrotransposon
There are eight Retroid agent families found in two 
of the four fi sh (three retroposons, three retrotrans-
posons and two retroviruses) (Figure 8). 

In D. rerio there is a genome segment identifi ed as 
“PREDICTED: Danio rerio similar to protease, 
reverse transcriptase, ribonuclease H, integrase” 
(NCBI accession number XM_693773). We have 
further classifi ed this “predicted” agent as a retrotrans-
poson due to its gene content and order, and have 
identifi ed, in addition to the protease (PRO), RT, 
ribonuclease H (RH) and integrase (IN), a potential 
group specifi c antigen (GAG) region upstream of the 
PRO. BLAST (Altschul S F, et al. 1990) searches 
revealed no similarity of the 3′ region to any known 
envelope (ENV) genes. Neither the 5′ nor the 3′ 
terminal regions showed any identity to known LTRs 
upon BLAST analysis through the NCBI (http://www.
ncbi.nlm.nih.gov/) viral and non-redundant databases 
independent of the GPS. We classify this Retroid agent 
as D. rerio retrotransposon 1 (DRR1). These DRR1 
copies were initially pulled out by the GPS with the 
DEA1 query, which is composed of a RT, RH and IN. 
These sequences warranted closer analysis because 
the DEA1 query was isolated from Ananas comosus 
(pineapple), and were therefore not expected in fi sh 
genomes. These DRR1 sequences were found to be 
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more closely related to each other (about 68% 
nucleotide identity for the RT), but more distant from 
the DEA1 query (the DEA1 and DRR1 queries have 
about 45% amino acid RT identity). These sequences 
which were initially retrieved by DEA1 are designated 
as novel retrotransposons. A representative DRR1 
query was created using these sequences. Additional 
components were identifi ed by motifs and BLAST 
searches. When the 1000 bp upstream and down-
stream are added to the DRR1 query, an average of 
about 500 bp both 5′ and 3′ shared high percentage 
identity: the regions 5′ share an 80.17% nucleo-tide 
identity and the regions 3′ share a 75.52% nucleotide 
identity. When these regions are compared to each 
other, they have a 69.34% nucleotide identity. Upon 
integration into a genome, the LTRs are 100% iden-
tical, but because only small regions are necessary for 
regulation they tend to degrade more quickly relative 
to Retroid genes that encode proteins. The high 
percentage of conservation found at the 5′ and 3′ 
termini of the DRR1s suggests that these regions are 
LTRs. Of the 37 DRR1 sequences that share all 

components with the query (which did not include the 
LTRs), 14 of these have potential 5′ and 3′ LTRs. O. 
latipes has eight copies of DRR1 that do not show any 
identity to either the 5′ or 3′ LTRs of the query, nor do 
its own 5′ and 3′ regions appear to be related. Both D. 
rerio and O. latipes have copies that contain all 
components of the query, although this query does not 
contain LTRs, with zero or one frame shift or stop 
codon (Figure 8).

There are copies of the ERV3_Tet retrovirus in 
both O. latipes and T. nigroviridis. The presence 
of these O. latipes retroviruses has been, to our 
knowledge, previously undocumented, and there 
are more copies of ERV3_Tet in O. latipes than in 
T. nigroviridis. There are no potentially active 
copies in either fi sh (Figure 8).

Retroid agents found in only one
of the four fi sh
Some queries are specifi c to only one of the four 
fi sh (Table 3). Those specifi c to D. rerio include 
the retroposons: DEWADR1, KIBIDR1, KIBIDR2, 
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Figure 6. Stage II GPS results for those queries identifi ed as full length in D. rerio (DR), O. latipes (OL), G. aculeatus (GA) and T. nigroviri-
dis (TN). Full length sequences are shown in grey for D. rerio, red for O. latipes, light purple for G. aculeatus and green for T. nigroviridis. 
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agents that have no frame shifts and no stop codons (Perfect). Potentially active sequences are shown in black for D. rerio, dark red for O. 
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Retroid agents are grouped into retroposon and retrotransposon families. A two-dimensional square indicates zero copies. Their hosts of 
origin and accession numbers are listed in Figure 3.
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and R2DR; the retrotransposon: DREGG1; and the 
endogenous retrovirus ZFERV. All of these Retroid 
genomes except KIBIDR1 and ZFERV have poten-
tially active copies. There is only one O. latipes 
specifi c Retroid agent, the retrotransposon REX8, 
which is not present in any potentially active 
copies. The endogenous retrovirus ERV2_Tet is 
the only T. nigroviridis specifi c Retroid agent, and 
there are no potentially active copies (Table 3). 
There are no Retroid agents that are found solely 
in G. aculeatus.

Identifi cation of novel fi sh TERTs
The previously identifi ed FTERT from T. rubripes 
was used as a query to search for the TERT gene 
in the fi sh genomes. We have identifi ed full length 
TERTs with multiple exons and introns in each of 
the four fish (Figure 9). Although the TERT 
functions in fi sh (Fischer et al. 2000; Kishi et al. 
2003; Yu et al. 2006), this is the fi rst published 
identifi cation of the TERT sequences for these fi sh. 
We term these sequences DRTERT (D. rerio 
telomerase reverse transcriptase), OLTERT 
(O. latipes telomerase reverse transcriptase), 

GATERT (G. aculeatus telomerase reverse 
transcriptase) and TNTERT (T. nigroviridis telom-
erase reverse transcriptase). These TERTs are 
divided into CARB and RT portions because the 
four TERTs identifi ed range from 937 to 1087 
amino acids, which is far longer than most RT 
sequences. The TERT sequences are also divided 
into two regions to help increase the chance of 
identifying novel TERTs through multiple exons. 
There are various strings of “N” amino acids where 
sequencing is incomplete in the regions over which 
the DRTERT spans, and one of these unsequenced 
portions falls where the three most conserved RT 
motifs are expected. These unsequenced portions 
cause the DRTERT to be about 87% as long as the 
FTERT query, and make a defi nitive classifi cation 
of this sequence diffi cult before sequencing is 
complete. Due to the fact that TERTs splice out 
introns to make mRNAs, these large unsequenced 
portions only minimally effect the identifi cation 
of the DRTERT. The fi rst large gap in the RT corre-
sponds to 105 amino acids and a single exon, while 
the long string of “N” amino acids corresponds to 
a 234 amino acid region, encompassing two exons. 
The locations of spliced out introns are indicated 
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Figure 7. Stage II GPS results for those queries identifi ed as full length in three out of the four fi sh genomes. Color scheme is as in Figure 6. 
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by stars in Figure 9. This sequence was also 
recently submitted to GenBank by Xie,M., 
Mosig,A., Qi,X., Li,Y., Stadler,P.F. and Chen,J.L. 
under the accession number EF202140, despite the 
fact that it is not completely sequenced. This 
submission was not accompanied by a publication, 
so the method by which the DRTERT was found 
is unclear, but alignments confi rm that it is indeed 
the same sequence that the GPS pulls out from the 
D. rerio genome. The four novel fi sh TERTs are 
not found on the same chromosome in their respec-
tive fi sh, but all their percent identities are above 
40% on the amino acid level (Table 4).

Identifi cation of novel fi sh
endogenous retroviruses
When the D. rerio genome was originally analyzed 
for Retroid content by the GPS, the T. nigroviridis 
ERV2_Tet query identifi ed eleven copies and the 
ERV3_Tet query identified twelve copies of 
D. rerio ERVs. Upon literature and database 
searches, these agents appear to be previously 
unidentifi ed, and we have named them DRERVs 
(D. rerio endogenous retroviruses). The RT protein 

sequence of the DRERV copies pulled out of the 
D. rerio genome using ERV_Tet sequences as 
queries were used to construct a phylogenetic tree 
(data not shown). This tree indicated that there are 
fi ve distinct clades of D. rerio ERVs. A representa-
tive sequence was chosen from each clade to create 
fi ve DRERV queries. When these queries were 
used in the GPS, they pulled out 61 DRERVs; 38 
more than the ERV_Tet queries retrieved. Some 
DRERVs possess more viral gene components than 
do the ERV_Tet genomes that originally identifi ed 
these new viruses, and fall into clades distinct from 
the ERV_Tet clades (Figure 10). The additional 
components were identifi ed by their motifs in 
combination with BLAST searches. Five DRERV 
queries identify 61 full length copies and nine 
potentially active DRERVs in D. rerio (Table 3a). 
The full length DRERV1 copies have an average 
RT amino acid identity of 88%, DRERV3 copies 
have 84%, DRERV4 copies have 93% and DRERV5 
copies have 98%. The RT sequences from 1) these 
full length query DRERVs, 2) known fi sh retrovi-
ruses (endogenous and exogenous), and 3) repre-
sentative retroviruses that the GPS pulls out of 
O. latipes and G. aculeatus were used to construct 
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Table 3. Stage II GPS results: full length and poten-
tially active Retroid agents specific to each fish. 
A) Retroid agents found in full length only in the D. rerio 
genome. B) Retroid agents found in full length only in 
the O. latipes genome. C) Retroid agents found in full 
length only in the T. nigroviridis genome. There are no 
Retroid agents found solely in the G. aculeatus genome. 
Retroid agents are grouped into retroposon, retrotrans-
poson and retrovirus families, and their hosts of origin 
and accession numbers are shown in Figure 3.

 Full Potentially
  Active
A) D. rerio
   Retroposons 
  DEWADR1 24 5
  KIBIDR1 5 0
  KIBIDR2 14 1
  R2DR 2 2
   Retrotransposons
  DREGG1 141 53
   Retroviruses
  DRERV1 11 4
  DRERV2 1 0
  DRERV3 6 3
  DRERV5 7 1
  ZFERV 4 0
B) O. latipes
   Retrotransposons
  REX8 1 0
C) T. nigroviridis
   Retrovirus
  ERV2_Tet 2 0

a phylogenetic tree (Figure 10). The DRERV clades 
have variable gene components. Using the meth-
odology described above for the retrotransposon 
DRR1 LTRs, all but one of the DRERV families 
have LTRs, all with very high percent nucleotide 
identities. There are also 39 copies of DRERV4 in 
G. aculeatus, 12 of which are potentially active. 
The results of an in-depth study to further charac-
terize these novel retroviruses in fish will be 
published shortly.

Discussion
The purpose of this study is to create a global over-
view of Retroid agents in fish. Retroid agents 
comprise the largest class of transposable elements 
in Eukaryotes. Transposable elements can cause a 
range of effects on their host genomes including 
various types of mutations, which can modify the 
size and arrangement of an entire genome, and 
cause chromosomal rearrangements, including 
deletions, duplications, inversions, and reciprocal 

translocations. These rearrangements can cause 
genome reorganization, amplifi cation, and reduc-
tion. Some transposable elements are suspected to 
preferentially insert into regions that do not contain 
host gene sequences in order to reduce their destruc-
tive infl uence on the host genome (Kidwell, 2002). 
There are numerous full length Retroid agents 
found by the GPS in the four fi sh genomes of this 
study, accompanied by an even larger number of 
RT gene fragments.

Unique, non-fi sh specifi c RT sequences not 
expected in fi sh, are nonetheless present in each of 
the four fi sh genomes. For example, there are small 
segments of RT sequences in the four fi sh that are 
more closely related to human RTs than they are to 
fi sh RT sequences. Non-fi sh specifi c RT queries 
(Figure 3) pull out large numbers of unique RT 
hits, which are generally smaller than the fi sh 
specifi c RT hits (Table 2), suggesting that these 
fragments are remnants of more ancient invasions. 
The fi sh genomes have a higher percentage of 
unique RT hits that are non-fi sh specifi c than the 
human genome has that are non-human specifi c 
(low frequency) (McClure et al. 2005). These non-
fi sh specifi c/low frequency hits highlight the GPS’s 
ability to pull out very small and divergent 
remnants, and show that, although these small 
fragments are far from being active, their footprints 
are still present in the genome. New functionality 
will be added to the GPS to study what these 
remnants are, where they came from, and why they 
persist in all Eukaryotic genomes examined by the 
GPS to date.

All the fi sh specifi c queries (Figure 3) produced 
unique RT hits in all four fi sh genomes (data not 
shown). Not all fi sh genomes appear, however, to 
have full length or potentially active copies of the 
fi sh Retroid agents. In cases where Retroid agents 
are found in a subset of the four fi sh genomes 
(Figures 7 and 8, Table 3) little can be concluded 
as to the timing and mechanism (vertical or hori-
zontal transfer) of insertion into a specifi c host 
until sequencing of the fi sh genomes is complete. 
The results presented here set the stage for the 
complete classifi cation of all Retroid agents in fi sh 
genomes.

Six Retroid agents, however, BABAR, REX1, 
and REX3 (retroposons) and BARTHEZ2, RODIN 
and SUSHI-ICHI (retrotransposons) are found in 
all four fi sh analyzed (Figure 6). The presence of 
these Retroid agents in all four fi sh suggests that 
they inserted into a genome ancestral to the 
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Figure 9. Alignment of the two sections (CARB and RT) of FTERT with the potential TERT proteins found in T. nigroviridis (TNTERT), 
O. latipes (OLTERT), G. aculeatus (GATERT) and D. rerio (DRTERT). The TERT sequences are actually a single long RT, but the sequence 
is divided into two to increase the chances of fi nding the entire TERT through multiple introns, as well as to keep it uniform with the rest of 
the query RT sizes. Note the string of N’s in the D. rerio sequence, which is caused by large regions that contain unsequenced regions, 
annotated by “N” amino acids in the chromosome sequence.  Large regions of unsequenced data correspond to only a small portion of the 
DRTERT because they primarily make up introns that are spliced out when the mRNA is made. This unsequenced portion falls over the 
second, third, and forth RT motifs. The OSM (see Methods) is indicated by boxes, and the splice points are indicated by stars. The alignment 
was created using Clustalx in the MEGA 3.0 software package (Kumar et al. 2004). 
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divergence of D. rerio, O. latipes, G. aculeatus and 
T. nigroviridis.

Although the count, type and distribution of 
Retroid agents will not be fi nal until the genome 
sequencing and assembly is complete for all four 
fi sh genomes, some trends are clearly visible among 
and between these fi sh given the data generated by 
the GPS. Larger genomes are expected to have more 
transposable elements than smaller genomes. 
D. rerio with the largest genome of the four fi sh, has 
more total unique RT hits than O. latipes, 
G. aculeatus or T. nigroviridis. Looking at various 
classes of Retroid agents, however, suggests that 
not all agents follow the “more in larger genomes” 
idea. REX1 and ZEBULON each have more unique 
RTs and full length copies in O. latipes, a genome 
smaller than D. rerio (Figures 6 and 7). Perhaps 
these agents could not fi nd an appropriate niche in 
D. rerio due to the large numbers of Retroid agents 
already residing there.

Interestingly, there is a disparity between the 
number of unique RTs versus full length and poten-
tially active genomes for various Retroid agents. 
D. rerio, having the largest genome does indeed 
have more unique RT hits for almost all queries, 
but there are full length Retroid genomes that do 
not follow the expectation of more copies in the 
largest genome. The retroposons BABAR, REX3, 
KOSHITN1, MAUI, and TNDIRS1; the retrotrans-
posons RODIN and SUSHI-ICHI and retroviruses 
ERV4_Tet and DRERV4 each have a higher full 
length copy number in a fi sh genome that is smaller 
than the largest one in which the agent is found 
(Figures 6, 7 and 8). For example, there are more 
RT signals for BABAR and REX3 in D. rerio, but 
there are more full length and potentially active 
copies in O. latipes (Figure 6). In most cases more 
full length Retroid genomes are correlated with 
more potentially active ones (Figures 6, 7 and 8). 

The fact that there is more unique RT signals in 
larger genomes, but fewer full length and potentially 
active copies suggests that there are many degraded 
copies in larger genomes. Using the GPS, an 
in-depth analysis of each query can be conducted 
to determine whether or not there are Retroid 
agents that have more than a RT gene, but less than 
a full length Retroid genome in larger host 
genomes. These data will reveal whether or not 
there are indeed degraded copies of these agents 
in larger genomes. 

Those Retroid agents that are present in the 
most full length copies in larger genomes, like 
MUTSUDR3 and DRR1 (Figure 8), are expected 
to have similar selective pressures on them in both 
D. rerio and O. latipes (both of which are freshwater 
fi sh), allowing them to expand their host genomes. 
D. rerio, however, is much older that O. latipes, 
thereby having more time to accumulate these 
agents. One would expect that sequences like REX3 
would have accumulated more copies in D. rerio 
than in the other three fi sh given its later divergence, 
but this is not the case (Figure 6). Retroid agents 
can be more degraded in one genome than in 
another due to relative insertion time, insertion site, 
and the selective pressure (or lack of selective pres-
sure) on that section of the host’s genome. Only in 
a detailed analysis of each Retroid agent can its 
timing of insertion and subsequent fate be deter-
mined in an effort to understand the footprints that 
have been left in host genomes.

Transposable elements have been documented 
to insert into intergenic regions, heterochromatin, 
into or near other single copy sequences, or into 
other transposable elements (Kidwell, 2002). 
Because the GPS outputs the exact positions of 
each Retroid genome, the distribution of these 
sequences on chromosomes can quickly and easily 
be determined. We conducted a pilot study of full 
length Retroid genome distribution on chromo-
some one of all four fi sh. This chromosome was 
chosen because it does not have signifi cantly higher 
or lower numbers of full length Retroid agents 
compared to the other chromosomes in all four 
fi sh. The GPS’s analysis of chromosome one of T. 
nigroviridis shows all full length copies fall on the 
second half of the chromosome, with no full length 
copies falling on the 5′ terminus of the chromo-
some. O. latipes has a very even distribution of full 
length sequences on its chromosome one, and in 
D. rerio only two out of 34 full length copies fall 
outside the middle two-thirds of the chromosome. 

Table 4. Location of Fish TERTs and their Percent 
Identity to the FTERT Query. The fi rst column is organ-
ismal TERT gene name, the second is the chromosome 
on which each TERT is located and the third is the 
percent identity of each new TERT to the FTERT 
query.

Agent Chromosome %aa id to FTERT
DRTERT 19 43%
OLTERT 11 68%
GATERT 10 73%
TNTERT 21 80%
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G. aculeatus, however, has about 44% of its full 
length copies on chromosome one located in the 
5′ and 3′ 10% of the chromosome. The GPS’s 
results for the current iterations of chromosome 
one sequences for the four fi sh indicate a variety 
of patterns of insertion for full length Retroid 
agents. Only the data from chromosome one of the 
G. aculeatus genome suggests some preferential 
insertion into heterochromatin over euchromatin 

as suggested by transposable element data in 
general. When taking into account all full length 
Retroid agents (including both retrotransposons 
and retroposons), the distribution of Retroid agents 
does not appear to show a preference for hetero-
chromatin over euchromatin. A full study of 
Retroid agent chromosome position distribution 
cannot be conducted until all four fi sh genomes are 
completely sequenced and assembled.
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Figure 10. Phylogenetic tree of fi sh retroviruses. The tree was constructed using RT amino acid sequences from 23 retroviruses (both en-
dogenous and exogenous) and only includes RTs which have all six motifs of the OSM (see Methods). This tree was made using the MEGA 
3.0 software (Kumar et al. 2004), using the UPGMA (Sneath et al. 1973) method with bootstrap values (3000 repetitions) (Felsenstein et al. 
1985). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phyloge-
netic tree. The evolutionary distances were computed using the Poisson correction method (Zuckerkandl et al. 1985) and are in the units of 
the number of amino acid substitutions per site. Organism name, chromosome number, and then Retroid name label tree tips for those 
novel agents pulled out by a query. The retroviruses and accession numbers that are not included on the query host organism tree (Figure 3) 
are Walleye epidermal hyperplasia virus type 1 (WEHV1) (AF014792), Walleye epidermal hyperplasia virus type 2 (WEHV1) (AF014793), 
Atlantic salmon swim bladder sarcoma virus (SSSV) (DQ174103) and Rous sarcoma virus (RSV) (NC_001407). In addition to RSV, GYPSY, 
HTLV1, HIV1 and SRV2 (Figure 3) are included as non-fi sh-retrovirus out groups. 
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The novel DRR1 agent is classified as a 
retrotransposon, rather than a retrovirus, because 
all of its gene components are closely related to 
other retrotransposon genes (data not shown), and 
there is no degraded ENV gene. Fourteen copies of 
the DRR1 retrotransposons have unique 5′ and 3′ 
LTRs that share a 69% nucleotide identity. These 
novel LTRs are unrelated to any LTR sequences 
from the NCBI viral and non-redundant databases 
as determined by a BLAST search.

The TERT sequences located in all four fi sh 
show the strength of the GPS method. Although 
the D. rerio genome sequencing is incomplete, the 
GPS was still able to detect the presence of a 
potential TERT gene, even though all six RT motifs 
are not present (Figure 9). Further assembly efforts 
will also place the T. rubripes sequence onto chro-
mosomes, showing whether or not the TERT 
sequence is present on the same chromosome as 
the closely related pufferfish, T. nigroviridis. 
Synteny studies will also be of particular interest 
and will show whether or not the chromosome on 
which the TERT is located in one fi sh correlates to 
a similar location in the other fi sh genomes.

A number of novel retroviruses have been iden-
tifi ed in D. rerio, O. latipes and G. aculeatus. 
Examples of these new retroviruses are shown in 
Figure 10, along with the known fi sh retroviruses. 
Phylogenetic reconstruction using RT amino acid 
sequences of all known fi sh retroviruses and the 
new ones discovered in this study suggest that there 
are three clades and two outliers of retroviruses 
(Figure 10). The first main clade includes the 
previously identifi ed ERV3_Tet from T. nigro-
viridis, one lineage of novel O. latipes ERV3_Tet 
–like retroviruses, one of the new DRERV viruses 
(lineage four from D. rerio) and a lineage of new 
G. aculeatus DRERV4-like retroviruses. The 
second main clade includes the previously identifi ed 
ERV2_Tet, the novel DRERV1 lineage from 
D. rerio, and the exogenous viruses walleye 
epidermal hyperplasia virus type 1 (WEHV1), 
walleye epidermal hyperplasia virus type 2 
(WEHV2) and walleye dermal sarcoma virus 
(WDSV). The third clade includes ERV4_Tet, 
Atlantic salmon swim bladder sarcoma virus 
(SSSV), a novel retrovirus lineage from O. latipes 
the previously identifi ed zebrafi sh endogenous 
retrovirus (ZFERV), the novel, single copy 
DRERV2 retrovirus from D. rerio, and a novel 
G. aculeatus retrovirus lineage. The novel DRERV3 
and DRERV5 lineages are outliers and currently 

have no representatives in O. latipes, G. aculeatus 
and T. nigroviridis (Figure 10), but this may not be 
the case when sequencing is complete for these 
genomes. Low bootstrap values will be resolved 
when the more detailed analysis of fi sh retroviruses 
is complete. An in-depth study of fi sh retroviruses 
is in progress, and will include the phylogenetic 
reconstruction of each gene and the novel LTRs 
found in the results reported here.

The multiple families of retroposons found in 
all four fi sh are a contrast to the single family of 
retroposons found in primates. There are also a 
number of highly diverse, full length retrotranspo-
sons in the four teleost fi sh genomes, while human 
does not have any full length retrotransposons 
(McClure et al. 2005). There are many hypotheses 
on how and why diverse families of Retroid agents 
are maintained in compact genomes. Among 
eukaryotes, in general, larger genomes tend to have 
more transposable elements, of which Retroid 
agents are the largest subgroup, and it is proposed 
that these large genomes show a slower rate of 
deletion in both transposable elements and 
pseudogenes (Petrov, 2002). T. nigroviridis exhibits 
a more rapid deletion rate of repetitive pseudogenes 
than human does, which, combined with an 
apparent resistance to large insertions, may explain 
why T. nigroviridis has the smallest known verte-
brate genome (Neafsey, 2003). 

Further work on the Retroid agent content of fi sh 
will include the Xiphophorus maculatus (platyfi sh) 
and T. rubripes genomes when they are assembled 
into chromosomes. Comparing T. rubripes and T. 
nigroviridis will provide a look at how Retroid 
agents evolve over shorter divergence times in these 
two closely related pufferfi sh. Furthermore, when 
all sequences have been placed on chromosomes, a 
chromosomal position comparison can be conducted 
between the six fi sh species. This study will be of 
particular interest due to the whole genome duplica-
tion known to have occurred shortly after the teleost 
divergence (Jallion et al. 2004), illustrating which 
Retroid agents were present before this duplication 
and their behavior in subsequent speciation.

An extremely benefi cial aspect of the GPS is 
the ability to analyze new releases of genomes 
effi ciently and rapidly. We were able to add the 
G. aculeatus Retroid content to this paper within 
three days of the sequenced genome’s release. 
The GPS is able to fi nd novel sequences, even 
when the LTRs are novel as well, as shown by the 
DRR1 and DRERV sequences. The GPS is also 
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able to fi nd novel TERT sequences, even when 
they are not entirely sequenced and have multiple 
introns. The GPS is a powerful method in identi-
fying Retroid agents, with the capability of being 
applied to other elements in any genome and the 
ability to provide data for a very in-depth study 
of each element of interest as well as a global 
overview of Retroid agents across multiple 
genomes.

Acknowledgments 
We thank Anoop Winston and Rochelle Clinton 
for technical support. This research was supported 
by NIH/NIAID AI028309-13A2. This paper was 
made possible by NIH Grant Number P20 RR-
16455-04-06 from the IDeA Network of Biomed-
ical Research Excellence (INBRE) Program of the 
National Center for Research Resources. Its 
contents are solely the responsibility of the authors 
and do not necessarily represent the offi cial views 
of the NIH.

References
Altschul, S.F., Gish, W., Miller, W. et al. 1990. Basic local alignment search 

tool. J. Mol. Biol., 215(3):403–10.
Baranov, P.V., Gesteland, R.F. and Atkins, J.F. 2002. Recoding: transla-

tional bifurcations in gene expression. Gene., 286(2):187–201.
Bell, M.A. and Foster, S.A. 1994. (eds.) The evolutionary biology of the 

threespine stickleback (Oxford University Press, Oxford).
Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J. et al. 2000. GenBank. 

Nucleic Acids Res., 28(1):15–8.
Blond, J.L., Lavillette, D., Cheynet, V. et al. 2000. An envelope glycoprotein 

of the human endogenous retrovirus HERV-W is expressed in the 
human placenta and fuses cells expressing the type D mammalian 
retrovirus receptor. J. Virol., 74(7):3321–9.

Buzdin, A., Kovalskaya-Alexandrova, E., Gogvadze, E. et al. 2006. GREM, 
a technique for genome-wide isolation and quantitative analysis of 
promoter active repeats. Nucleic Acids Res., 34(9):e67.

DiBiase, A., Harte, R.A., Zhou, Y. et al. 2006. Piloting the zebrafi sh genome 
browser. Dev. Dyn., 235(3):747–53.

Driever, W., Solnica-Krezel, L., Schier, A.F. et al. 1996. A genetic screen 
for mutations affecting embryogenesis in zebrafi sh. Development, 
123:37–46.

Felsenstein, J. 1985. Confi dence limits on phylogenies: An approach using 
the bootstrap. Evolution, 39:783–91.

Fischer, C., Ozouf-Costaz, C., Roest Crollius, H. et al. 2000. Karyotype and 
chromosome location of characteristic tandem repeats in the puffer-
fi sh Tetraodon nigroviridis. Cytogenet. Cell Genet., 88(1–2):50–5.

Gish, W. (1996–2004). http://blast.wustl.edu
Hubbard, T.J., Aken, B.L., Beal, K. et al. 2007. Ensembl 2007. Nucleic 

Acids Res., 35(Database issue):D610–7.
Hull, R. 2001. Classifying reverse transcribing elements: a proposal and a 

challenge to the ICTV. International Committee on Taxonomy of 
Viruses. Arch. Virol., 146(11):2255–61.

Hull, R. 1999. Classifi cation of reverse transcribing elements: a discussion 
document. Arch. Virol., 144: 209–14.

Jaillon, O., Aury, J.M., Brunet, F. et al. 2004. Genome duplication in the 
teleost fi sh Tetraodon nigroviridis reveals the early vertebrate proto-
karyotype. Nature, 431(7011):946–57.

Kidwell, M.G. 2002. Transposable elements and the evolution of genome 
size in eukaryotes. Genetica, 115(1):49–63.

Kimmel, C.B. 1989. Genetics and early development of zebrafi sh. Trends 
Genet., 5(8):283–8.

Kishi, S, Uchiyama, J., Baughman, A.M. et al. 2003. The zebrafi sh as a 
vertebrate model of functional aging and very gradual senescence. 
Exp. Gerontol., 38(7):777–86.

Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. et al. 1992. Crystal 
structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed 
with an inhibitor. Science, 256(5065):1783–90.

Kordis, D. and Gubensek, F. 1998. Unusual horizontal transfer of a long 
interspersed nuclear element between distant vertebrate classes. Proc. 
Natl. Acad. Sci. U.S.A., 95(18):10704–9.

Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for 
Molecular Evolutionary Genetics Analysis and sequence alignment. 
Brief Bioinform., 5(2):150–63.

Mallet, F., Bouton, O., Prudhomme, S. et al. 2004. The endogenous 
retroviral locus ERVWE1 is a bona fide gene involved in homi-
noid placental physiology. Proc. Natl. Acad. Sci. U.S.A., 
101(6):1731–6.

McClure, M.A. 1991. Evolution of retroposons by acquisition or deletion 
of retrovirus-like genes. Mol. Biol. Evol., 8(6):835–56.

McClure, M.A., Johnson, M.S., Feng, D.F. et al. 1988. Sequence com-
parisons of retroviral proteins: relative rates of change and gen-
eral phylogeny. Proc. Natl. Acad. Sci. U.S.A., 85(8):2469–73.

McClure, M.A. 1999. “The Retroid Agents: Disease, Function, and Evolu-
tion” in Origin and Evolution of Viruses, Eds. Domingo, E., Webster, 
R. and Holland J. Academic Press, London. p163–95.

McClure, M.A., Richardson, H.S., Clinton, R.A. et al. 2005. Automated 
characterization of potentially active retroid agents in the human 
genome. Genomics, 85(4):512–23.

Medstrand, P., Landry, J.R. and Mager, D.L. 2001. Long terminal repeats are 
used as alternative promoters for the endothelin B receptor and apoli-
poprotein C-I genes in humans. J. Biol. Chem., 276(3):1896–903.

Mi, S., Lee, X., Li, X. et al. 2000. Syncytin is a captive retroviral envelope 
protein involved in human placental morphogenesis. Nature, 
403(6771):785–9.

Moore, J.K. and Haber, J.E. 1996. Capture of retrotransposon DNA at the sites 
of chromosomal double-strand breaks. Nature, 383(6601):644–6.

Neafsey, D.E. and Palumbi, S.R. 2003. Genome size evolution in pufferfi sh: 
a comparative analysis of diodontid and tetraodontid pufferfi sh 
genomes. Genome Res., 13(5):821–30.

Pardue, M.L., Danilevskaya, O.N., Lowenhaupt, K. et al. 1996. Drosophi-
la telomeres: new views on chromosome evolution. Trends Genet., 
12(2):48–52.

Petrov, D.A. 2002. Mutational equilibrium model of genome size evolution. 
Theor. Popul. Biol., 61(4):531–44.

Samuelson, L.C., Wiebauer, K., Gumucio, D.L. et al. 1988. Expression 
of the human amylase genes: recent origin of a salivary amylase 
promoter from an actin pseudogene. Nucleic Acids Res., 
16(17):8261–76.

Shima, A., Himmelbauer, H., Mitani, H., et al. 2003. Fish genomes fl ying. 
Symposium on Medaka Genomics. EMBO Rep., 4(2):121–5.

Smit, A.F.A., Hubley, R. and Green, P. 1996–2004. RepeatMasker Open-3.0. 
<http://www.repeatmasker.org>.

Sneath, P.H.A. and Sokal, R.R. 1973. Numerical Taxonomy. Freeman, San 
Francisco. 

Temin, H.M. 1985. Reverse transcription in the eukaryotic genome: retro-
viruses, pararetroviruses, retrotransposons, and retrotranscripts. Mol. 
Biol. Evol., 2(6):455–68.

Temin, H.M. 1989. Reverse transcriptases. Retrons in bacteria. Nature, 
339(6222):254–5.

Volff, J.N. 2005. Genome evolution and biodiversity in teleost fi sh. Heredity, 
94(3):280–94.

Wheeler, D.L., Chappey, C., Lash, A.E. et al. 2000. Database resources of 
the National Center for Biotechnology Information. Nucleic Acids 
Res., 28(1):10–4.



195

Retroid Agents in Fish

Evolutionary Bioinformatics 2007: 3 

Xiong, Y.E. and Eickbush, T.H. 1988. Functional expression of a sequence-
specifi c endonuclease encoded by the retrotransposon R2Bm. Cell, 
55(2):235–46.

Yamanoue, Y., Miya, M., Inoue, J.G. et al. 2006. The mitochondrial genome 
of spotted green pufferfi sh Tetraodon nigroviridis (Teleostei: Tetra-
odontiformes) and divergence time estimation among model organ-
isms in fi shes. Genes Genet. Syst., 81(1):29–39.

Yang, Z., Boffelli, D., Boonmark, N. et al. 1998. Apolipoprotein(a) gene enhancer 
resides within a LINE element. J. Biol. Chem., 273(2):891–7.

Yap, W.H., Yeoh, E., Brenner, S. et al. 2005. Cloning and expression of the 
reverse transcriptase component of pufferfi sh (Fugu rubripes) telom-
erase. Gene., 353(2):207–17.

Yu, R.M., Chen, E.X., Kong, R.Y. et al. 2006. Hypoxia induces telomerase 
reverse transcriptase (TERT) gene expression in non-tumor fi sh 
tissues in vivo: the marine medaka (Oryzias melastigma) model. BMC 
Mol. Biol., 7:27.

Zhong, T.P., Rosenberg, M., Mohideen, M.A. et al. 2000. gridlock, an HLH 
gene required for assembly of the aorta in zebrafish. Science, 
287(5459):1820–4.

Zuckerkandl, E. and Pauling, L. 1965. Evolutionary divergence and con-
vergence in proteins. Evolving Genes and Proteins, edited by 
V. Bryson and H.J. Vogel. Academic Press, New York. p  97–166.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


