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Abstract

The identification and characterization of the structural sites which contribute

to protein function are crucial for understanding biological mechanisms, evalu-

ating disease risk, and developing targeted therapies. However, the quantity of

known protein structures is rapidly outpacing our ability to functionally anno-

tate them. Existing methods for function prediction either do not operate on

local sites, suffer from high false positive or false negative rates, or require large

site-specific training datasets, necessitating the development of new computa-

tional methods for annotating functional sites at scale. We present COLLAPSE

(Compressed Latents Learned from Aligned Protein Structural Environments), a

framework for learning deep representations of protein sites. COLLAPSE oper-

ates directly on the 3D positions of atoms surrounding a site and uses evolution-

ary relationships between homologous proteins as a self-supervision signal,

enabling learned embeddings to implicitly capture structure–function relation-

ships within each site. Our representations generalize across disparate tasks in a

transfer learning context, achieving state-of-the-art performance on standard-

ized benchmarks (protein–protein interactions and mutation stability) and on

the prediction of functional sites from the PROSITE database. We use COLLAPSE

to search for similar sites across large protein datasets and to annotate proteins

based on a database of known functional sites. These methods demonstrate that

COLLAPSE is computationally efficient, tunable, and interpretable, providing a

general-purpose platform for computational protein analysis.
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1 | INTRODUCTION

The three-dimensional structure of a protein determines
its functional characteristics and ability to interact with

other molecules, including other proteins, endogenous
small molecules, and therapeutic drugs. Biochemical
interactions occur at specific regions of the protein
known as functional sites. We consider functional sites
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that range from a few atoms which coordinate an ion or
catalyze a reaction to larger regions which bind a cofactor
or form a protein–protein interaction surface. The identi-
fication of such sites—and accurate modeling of the local
structure–function relationship—is critical for determin-
ing a protein's biological role, including our understand-
ing of disease pathogenesis and ability to develop
targeted therapies or protein engineering technologies.
Significant effort has gone into curating databases to cat-
alog these structure–function relationships, (Akiva
et al., 2014; Furnham et al., 2014; Ribeiro et al., 2018) but
this cannot keep up with the rapid increase in proteins in
need of annotation. The number of proteins of the Pro-
tein Data Bank (PDB) (Berman et al., 2002) increases
each year, and AlphaFold (Jumper et al., 2021) has added
high-quality predicted structures for hundreds of thou-
sands more. This explosion of protein structure data
necessitates the development of computational methods
for identifying, characterizing, and comparing functional
sites at proteome scale.

Many widely used methods for protein function iden-
tification are based on sequence. Sequence profiles and
hidden Markov models built using homologous proteins
(Bernhofer et al., 2021; El-Gebali et al., 2019; Haft
et al., 2013; Mi et al., 2005; Mitchell et al., 2019) are often
used to infer function by membership in a particular fam-
ily, but these methods do not always identify specific
functional residues and can misannotate proteins in
mechanistically diverse families (Schnoes et al., 2009).
Additionally, structure and function are often conserved
even when sequence similarity is very low, resulting in
large numbers of false negatives for methods based on
sequence alignment (Rost, 1999; Tian & Skolnick, 2003).
Approaches based on identifying conserved sequence
motifs within families can help to address these issues
(Attwood, 2002; Sigrist et al., 2013). However, these
methods suffer from similar limitations as sequences
diverge, resulting in high false positive and false negative
rates, especially when the functional residues are far
apart in sequence (Fetrow & Skolnick, 1998). More gen-
erally, sequence-based methods cannot capture the com-
plex 3D conformations and physicochemical interactions
required to accurately define a functional site or inform
opportunities to engineer or mutate specific residues.

Recently, methods have applied machine learning to
predict function from sequence (Kulmanov & Hoehn-
dorf, 2020; Sanderson et al., 2021) or structure (Gligorijevi�c
et al., 2021). However, like profile-based methods, these
lack the local resolution necessary to identify specific func-
tional sites, and their reliance on nonspecific functional
labels such as those provided by Gene Ontology terms
(Ashburner et al., 2000) often limits practical utility
(Ramola et al., 2022). Machine learning approaches that
focus on local functional sites are either specific to a

particular type of site (e.g., ligand binding, [Tubiana
et al., 2022]; [Zhao et al., 2020] enzyme active sites [Moraes
et al., 2017]) or require building specific models for each
functional site of interest, (Buturovic et al., 2014; Torng &
Altman, 2019a) which can be computationally expensive
and demands sufficient data to train an accurate model.

A major consideration for building generalizable
machine learning models for protein sites is the choice of
local structure representation. FEATURE, (Bagley & Alt-
man, 2008) a hand-crafted property-based representation,
has shown utility for many functionally-relevant tasks
(Buturovic et al., 2014; Liu & Altman, 2011; Tang & Alt-
man, 2014). However, FEATURE uses heterogeneous fea-
tures (a mix of counts, binary, and continuous) which are
more difficult to train on and meaningfully compare in
high dimensions. Additionally, FEATURE consists of
radial features without considering orientation and does
not account for interactions between atoms in 3D, lead-
ing to loss of information (Torng & Altman, 2019a). Deep
learning presents an attractive alternative by enabling the
extraction of features directly from raw data, (LeCun
et al., 2015) but the high complexity of deep learning
models means that they require large amounts of labeled
data. To address this, a paradigm has emerged in which
models are pre-trained on very large unlabeled datasets
to extract robust and generalizable features which can
then be “transferred” to downstream tasks (Hu
et al., 2019; Oquab et al., 2014). This approach has been
successfully applied to learn representations of small
molecules (Duvenaud et al., 2015; Gilmer et al., 2017)
and protein sequences, (Alley et al., 2019; Rives
et al., 2019; Sanderson et al., 2021) but there are few
examples of representations learned directly from 3D
structure. Initial efforts focus on entire proteins rather
than sites and operate only at residue-level resolution
(Hermosilla & Ropinski, 2021; Zhang et al., 2022).

We address these issues by developing compressed
latents learned from aligned protein structural environ-
ments (COLLAPSE), a framework for functional site
characterization, identification, and comparison which
(a) focuses on local structural sites, defined as all atoms
within a 10 Å radius of a specific residue; (b) captures
complex 3D interactions at atom resolution; (c) works
with arbitrary sites, regardless of the number of known
examples; and (d) enables comparison between sites
across proteins. COLLAPSE combines self-supervised
methods from computer vision, (Grill et al., 2020) graph
neural networks designed for protein structure, (Jing
et al., 2020; Jing et al., 2021) and multiple sequence align-
ments of homologous proteins to learn 512-dimensional
protein site embeddings that capture structure–function
relationships both within and between proteins.

Self-supervised representation learning refers to the
procedure of training a model to extract high-level
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features from raw data using one or more “pretext tasks”
defined using intrinsic characteristics of the input data.
The choice of pretext task is critical to the utility of the
learned representations. A popular class of methods
involves minimizing the distance between the embed-
dings of two augmented versions of the same data point
(for example, cropped and rotated views of the same
image), thereby learning a representation that is robust
to noise which is independent of the fundamental fea-
tures of the original data (Che et al., 2020; Chen &
He, 2020; Grill et al., 2020). Since function is largely con-
served within a protein family, we draw an analogy
between homologous proteins and augmented views of
the same image. Specifically, we hypothesized that by
pulling together the embeddings of corresponding sites in
homologous proteins, we could train the model to learn
features which capture the site's structural and functional
role. In this scheme, sequence alignments are used to
identify correspondences between amino acids, which

are then mapped to 3D structures to define the structural
site surrounding each residue (Figure 1, Section 2.2).

Pre-trained representations are typically used in one
of two settings: (a) transfer learning, which leverages
general representations to improve performance on
problem-specific supervised tasks where access to labeled
data is limited; and (b) extracting insights about the
underlying data from the learned embedding space
directly (e.g., via visualization or embedding compari-
sons) (Detlefsen et al., 2022). In this paper, we illustrate
the utility of COLLAPSE protein site in both settings.
First, we demonstrate that COLLAPSE generalizes in a
transfer learning setting, achieving competitive or best-
in-class results across a range of downstream tasks. Sec-
ond, we describe two applications that demonstrate the
power of our embeddings for protein function analysis
without the need to train any downstream models: an
iterated search procedure for identifying similar func-
tional sites across large protein databases, and a method

FIGURE 1 Schematic of a single iteration of COLLAPSE algorithm. Clockwise from the top left, we show (1 a,b) the process of

sampling a pair of sites from the MSA, (2) extracting the corresponding structural environments, and (3) converting into a spatial graph. The

inset shows the node and edge featurization scheme. Finally, we show (4) a schematic of the network architecture, consisting of paired

graph neural networks followed by mean pooling over all nodes to produce site embeddings. (5) these embeddings are then compared using

a loss function weighted by the conservation of the position in the MSA, as shown by the sequence logo in center left
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for efficiently annotating putative functional sites in an
unlabeled protein. All datasets, models, functionality,
and source code can be found in our Github repository
(https://github.com/awfderry/COLLAPSE).

2 | RESULTS

2.1 | Intrinsic evaluation of COLLAPSE
embeddings

To evaluate the extent to which COLLAPSE embeddings
capture relevant structural and functional features, we
embedded the environments of all residues in a held-out
set consisting of proteins with varying levels of sequence
similarity to proteins in the training set. First, we find that
the degree of similarity between embeddings of aligned
sites is correlated with the level of conservation of that site
in the multiple sequence alignment (MSA) (Figure 2a).
Even at less than 30% conservation, aligned sites are sig-
nificantly more similar on average than a randomly sam-
pled background of nonaligned sites p<1�10�15ð Þ:

We also confirmed that our embeddings capture local
information at a residue-level resolution, meaning that

neighboring environments can be effectively distin-
guished from each other. Indeed, the normalized cosine
similarity between residue embeddings decreases
between the residues in sequence increases (Figure 2b).
This effect generalizes even to proteins far away from the
training set in sequence identity. Finally, among chains
with a single fold according to CATH 4.2 (Orengo
et al., 1997) (n¼ 11,270Þ, the top-level structural class can
be distinguished clearly in protein-level embeddings, sug-
gesting that secondary structure is a major feature cap-
tured by COLLAPSE (Figure 2c). Lower levels of the
CATH hierarchy also cluster clearly in low-dimensional
space (Figure S1).

2.2 | Transfer learning and fine-tuning
to improve performance on supervised
tasks

To assess COLLAPSE in a transfer learning context, we
use ATOM3D, a suite of benchmarking tasks and datasets
for machine learning in structural biology (Townshend
et al., 2021). We selected two tasks from ATOM3D which
focus on protein sites: protein interface prediction (PIP)

FIGURE 2 Analysis of learned embeddings. (a) Raw cosine similarity distributions (i.e., before quantile transformation) of aligned sites,

binned by the sequence conservation of the corresponding column of the MSA. Highly conserved positions also have highly similar

embeddings, but even less conserved positions have more similar embeddings than randomly sampled nonaligned sites (in pink). (b) Spatial

sensitivity of embedding similarity, as measured by the sequence distance between two sites. Results are stratified by the average distance to

the closest training protein, demonstrating that neighboring embeddings can be readily distinguished even for proteins with very low

similarity to the training set. (c) tSNE projection of average protein-level embeddings for single-domain chains, colored by the highest-level

CATH class, showing that embeddings effectively capture secondary structure patterns

TABLE 1 Performance of models trained on ATOM3D benchmark tasks

Task (metric)
COLLAPSE
(fixed)

COLLAPSE (fine-
tuned)

ATOM3D
3DCNN

ATOM3D
GNN

ATOM3D
ENN GVP-GNN

PIP (AUROC) 0.848 ± 0.018 0.881 ± 0.004 0.844 ± 0.002 0.669 ± 0.001 N/A 0.866 ± 0.004

MSP (AUROC) 0.616 ± 0.006 0.668 ± 0.018 0.574 ± 0.005 0.621 ± 0.009 0.574 ± 0.040 0.680 ± 0.015

Note: Comparisons are made with ATOM3D reference architectures—3D convolutional neural network (3DCNN), graph neural network (GNN), and
equivariant neural network (ENN)—as well as the geometric vector perceptron (GVP-GNN) results reported in Jing et al. (2021), which is state-of-the-art for
these datasets. The metric is area under the receiver operator characteristic curve (AUROC), and we report mean and standard deviation across three training
runs. Numbers in bold indicate best performance on each task (within one standard deviation).
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and mutation stability prediction (MSP). We compare per-
formance to the ATOM3D reference models and to the
task-specific GVP-GNN reported in (Jing et al., 2021),
which is state-of-the-art for all tasks. Table 1 reports the
results both with and without fine-tuning the embedding
model parameters. Without fine-tuning, COLLAPSE
embeddings and a simple classifier achieve results compa-
rable or better than the ATOM3D reference models
trained specifically for each task. Fine-tuning improves
performance further, achieving state-of-the-art on PIP and
comparable performance to the GVP-GNN on MSP, out-
performing FEATURE as well as the ATOM3D baselines
(Table S6). As an external evaluation, we also evaluated
COLLAPSE on the prediction of protein–protein interac-
tion sites compared to MaSIF, a deep learning model
designed for protein surfaces (Gainza et al., 2020). Our
models achieve close to the performance of MaSIF and
better than baseline methods despite the fact that the
randomly-sampled surface points of the MaSIF dataset are
out-of-distribution for our model pre-trained on environ-
ments centered around individual residues (Figure S8).

2.3 | Building functional site prediction
models using COLLAPSE embeddings

We train prediction models for 10 functional sites defined
by the PROSITE database, (Sigrist et al., 2013) which iden-
tifies local sites using curated sequence motifs. On sites
labeled true positive (TP) by PROSITE, COLLAPSE

outperforms the analogous FEATURE models and per-
form comparably or better than task-specific 3DCNN
models trained end-to-end, achieving greater than 86%
recall on all sites at a threshold of 99% precision (Figure
3). PROSITE also provides false negatives (FNs; true pro-
teins which are not recognized by the PROSITE pattern)
and false positives (FPs; proteins which match the PROSITE
pattern but are not members of the functional family).
Table 2 shows the number of proteins correctly reclassi-
fied by the models trained on TP sites. For all families,
COLLAPSE correctly identifies a greater or equal number
of FN proteins compared to FEATURE and 3DCNN clas-
sifiers. The improvement is notable in some cases, such
as a 162.5% increase in proteins detected for IG_MHC, a
37.5% increase for ADH_SHORT, and a 17.6% increase
for EF_HAND_1. For four of the seven proteins with FP
data, we correctly rule out all FPs. For ADH_SHORT and
EF_HAND_1, we perform 9.1% and 4.0% worse relative
to 3DCNN, respectively, but this slight increase in FPs is
not substantial relative to the improvement in FNs recov-
ered for these families. To evaluate our embeddings
beyond PROSITE, we also trained functional residue predic-
tion models on four benchmark datasets from (Xin &
Radivojac, 2011). Models based on COLLAPSE embed-
dings perform significantly better than the best-
performing method on the prediction of zinc binding sites
and enzyme catalytic sites (15.3% and 9.3% improvement,
respectively), and within 10% of the best-performing
method on DNA binding and phosphorylation sites
(Table S5).

FIGURE 3 Performance of models

trained on true positives from 10 PROSITE

functional sites in 5-fold cross-

validation: COLLAPSE embeddings +

SVM (blue), 3DCNN trained end-to-end

(dark gray), and FEATURE vectors +

SVM (light gray). Metric is the recall for

all TP annotations at a threshold, which

produces 99% precision. COLLAPSE

achieves better recall than FEATURE

and better or comparable recall to the

3DCNN
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2.4 | Iterative search for functional sites
across protein databases

While COLLAPSE embeddings can be used to train highly
accurate models for functional site detection, we can only
train such models for those functional sites for which we
have sufficient training examples. Another way to under-
stand the possible function of a site is to analyze similar
sites retrieved from a structure database. The set of hits
retrieved by this search may contain known functional
annotations or other information which sheds light on the
query site. We use iterative COLLAPSE embedding com-
parisons to perform such a search across the PDB. We
investigate the performance of this method on the PROSITE
dataset while varying two parameters: the number of itera-
tions and the p-value cutoff for inclusion at each iteration.
The method generally achieves high recall and precision
after 2–5 iterations at a p-value cutoff of 5�10�3 – 5�
10�4 (Figure 4; Figure S4). Notably, when evaluating on
the FN and FP subsets, our search method even outper-
forms the cross-validated models on some sites
(e.g., IG_MHC, Figure 4a). However, the precision and
recall characteristics vary widely across families; in some
cases it predicts the same set of proteins as the trained
model (e.g., TRYPSIN_HIS; Figure 4b), while in others it
performs worse (e.g., EF_HAND_1; Figure 4c). Impor-
tantly, the method requires no training and is very effi-
cient: runtime per iteration scales linearly with the size
of the query set and with database size (Figure S5).

2.5 | Annotation of functional sites in
protein structures

Our iterative search method assumes that a site of inter-
est has already been identified. However, when a new
protein is discovered and its structure is solved, the loca-
tions of functional sites are often unknown. By compar-
ing local environments in the protein's structure to
those contained in databases of known functional sites,
we can predict which sites are likely to be functional.
Figure 5 shows two example annotations using a modi-
fied mutual best hit criterion against a reference data-
base consisting of embeddings from PROSITE and the
catalytic site atlas (CSA). First, we show the structure of
meizothrombin, a precursor to thrombin and a trypsin-
like serine protease with a canonical His-Asp-Ser
catalytic triad. Our method correctly identifies all three
residues as belonging to the trypsin-like serine protease
family in PROSITE (Figure 5a). Hits against the CSA,
which are more specific, also include closely homolo-
gous proteins such as C3/C5 convertase. The associated
kringle domain is also identified by its characteristic
disulfide bond. Second, we show the structure of beta-
glucuronidase (Figure 5b), a validation set protein
which has no homologs in the training set. We correctly
identify all four catalytic residues defined by the CSA
(in yellow), as well as PROSITE signatures corresponding
to the glycosyl hydrolases family 2, the family which
contains beta-glucuronidase.

TABLE 2 Performance of models trained on PROSITE TP/TN on held-out PROSITE FP/FN annotations

Site PROSITE label COLLAPSE FEATURE 3DCNN PROSITE total

ADH_SHORT FN 11 8 7 14

FP 30 33 33 33

EF_HAND_1 FN 40 28 34 48

FP 120 106 125 128

EGF_1 FN 60 34 58 90

FP 19 19 19 19

IG_MHC FN 21 8 8 47

FP 31 31 31 31

PROTEIN_KINASE_ST FN 269 264 268 271

PROTEIN_KINASE_TYR FN 3 3 3 3

FP 14 20 20 20

TRYPSIN_HIS FN 10 3 10 16

FP 4 4 4 4

TRYPSIN_SER FN 9 9 9 12

FP 1 1 1 1

Note: Comparisons are made with FEATURE and 3DCNN numbers as reported in Torng et al. (2019). The number of proteins which are correctly reclassified
(i.e., FPs predicted as negative, FNs predicted as positive) is reported for each method (higher is better). Numbers in bold indicate best performance on
each site.
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FIGURE 4 Iterated functional site search performance per iteration for three PROSITE families. Colors denote different user-specified

empirical p-value cutoffs and error bars represent variance over three randomly sampled queries. From left to right, metrics shown are:

Precision across all results (including TP, FP, and FN), recall across all results, proportion of TP sites predicted correctly, proportion of FN

sites predicted correctly, and proportion of FP sites predicted correctly. For FN and FP, the performance of our CV-trained models is shown

as a red dashed line. Sample error is shown for three random starting queries. The three families shown are (a) IG_MHC, (b) TRYPSIN_HIS,

and (c) EF_HAND_1, in order of relative performance compared to CV-trained models. While the performance characteristics vary across

sites, the number of iterations and p-value cutoff can be tuned to achieve good performance

FIGURE 5 Results of functional annotation tool applied to (a) meizothrombin (PDB ID 1A0H) and (b) beta-glucuronidase (PDB ID

3HN3), both at p < 1�10�4. No member of the beta-glucuronidase family is in the training set (maximum sequence identity 2.8%).

Functional residues identified by our method are shown as spheres, with colors corresponding to the functional site. Hits labeled in bold are

also significant at a more stringent cutoff (p < 5�10�5). All hits represent either the correct function or those of very closely related

proteins, showing that COLLAPSE is effective for annotation of proteins whether or not similar proteins are present in the training set
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3 | DISCUSSION

3.1 | The COLLAPSE self-supervised
training framework enables the learning of
rich, informative embeddings of functional
sites

The utility of COLLAPSE embeddings for functional
analysis derives from several key features of the training
algorithm. First, the use of homology as a source of self-
supervision signal allows the model to learn patterns of
structural conservation across proteins, imbuing the
model with a biological inductive bias towards features
that may be important to the protein's function. Such pat-
terns could in theory be learned by a model which sees
each protein independently, but it would require much
more data and training time to identify subtle signals
across disparate proteins. The bootstrap training objective
not only forces the model to learn a distance function for
comparing embeddings that meaningfully captures the
functional relationship between sites, but by sampling
pairs of proteins and residues each iteration it also greatly
increases the effective size of the training set relative to
models that take in a single protein (or even residue) at a
time. Indeed, we have found empirically that nonboot-
strap objectives (e.g., those based on masked residue
modeling or autoencoders) produce representations that
are much less informative for functional tasks. While
MSAs have proved crucial to the success of sequence-
based models, to our knowledge this is the first time they
have been used to provide a supervision signal for a
structure-based model.

Second, by focusing on local protein sites, our embed-
dings are more precise and flexible than models which
produce a single representation of an entire protein.
COLLAPSE embeddings can be used for arbitrary tasks
on the level of single residues or even individual func-
tional atoms, to detect important regions in proteins, and
to identify functional relationships between proteins even
if they are divergent in sequence or global fold. Moreover,
by aggregating over multiple residues or entire proteins,
site-specific embeddings can also be applied to domain-
level or full-protein tasks. For simple tasks such as distin-
guishing high-level CATH class (Figure 2c), a naive
approach of averaging over all residues is sufficient, but
more complex aggregation methods will be necessary for
many problems. As a proof of concept, we trained a sim-
ple recurrent neural network (RNN) model on sequences
of COLLAPSE embeddings to make protein-level predic-
tions of fold and enzyme class (Supplementary Note 9).
Compared to 16 other sequence and structure based
methods, (Hermosilla et al., 2020) our RNNs trained on
COLLAPSE embeddings rank in the top five across all
tasks and testing sets (Figure S7).

Finally, by using an atomic graph representation and
a GVP-GNN encoder, COLLAPSE captures all inter-
atomic interactions (in contrast to methods which oper-
ate at a residue level) and produces representations that
are fully equivariant to 3D rotation and translation. The
importance of capturing local structural features in func-
tional site analysis is demonstrated by the improved per-
formance of COLLAPSE relative to sequence-based
methods such as MMSeqs2 (Steinegger & Söding, 2017)
(Table S4), especially on the more difficult FN and FP
proteins. While sequence embeddings from ESM-1b
(Rives et al., 2021) do produce very good predictive
models for certain sites, they dramatically overfit to
others (notably IG_MHC) and generally underperform
across all sites in search and annotation applications
(Figures S9–S10, Supplementary Note 5). This suggests
that sequence and structure representations are comple-
mentary, and many tasks may benefit from a combina-
tion of the two approaches.

3.2 | COLLAPSE produces general-
purpose representations which facilitate
the improvement of computational
methods for diverse applications in protein
function analysis

COLLAPSE is effective in transfer learning and as fixed
embeddings, and generalizes across tasks that require the
model to learn different aspects of the protein structure–
function relationship. Although it may not be the state-of-
the-art on every task, its competitive performance in every
context we tested demonstrates its utility as a general-
purpose representation. This flexibility makes COLLAPSE
embeddings ideal for not only building new predictive
models and performing comparative analyses, but also for
easily incorporating structural information into existing
computational methods. Given the improved performance
over FEATURE across our benchmarks, we also expect
that substituting COLLAPSE embeddings will lead to
improved performance for most applications addressed by
the FEATURE suite of methods (Liu & Altman, 2011;
Tang & Altman, 2014; Torng & Altman, 2019b).

Another important aspect which sets COLLAPSE
apart from task-specific machine learning methods is the
ability to perform meaningful comparisons between func-
tional sites directly in the embedding space. Due to the
bootstrap pre-training objective, the embedding distance
provides a functionally relevant distance measure for
comparing sites. Note that for all comparisons, our
method of standardizing embedding comparisons is criti-
cal for determining their statistical significance as well as
increasing their effective range (Supplementary Note 1).
We demonstrate the benefits of using comparisons
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directly in the embedding space by developing methods
for functional site search and annotation, both of which
are efficient, generalizable, and allow a user to tune the
sensitivity and specificity of the results. For example, for
discovery applications it may be desirable to optimize for
sensitivity at the cost of more false positives, while priori-
tizing drug targets for experimental validation may
require greater specificity.

The ability of iterative nearest-neighbor searches in
the embedding space to identify known sites in PROSITE

demonstrates that functional sites cluster meaningfully
in the embedding space. The effect of changing input
parameters (number of iterations and p-value cutoff) on
the sensitivity and specificity of the results varies some-
what across functional families. In some cases (notably
IG_MHC), this method achieves better sensitivity for FNs
than even machine learning models trained using CV,
while in others (EF_HAND_1, PROTEIN_KINASE_TYR)
it cannot achieve this without a significant drop in preci-
sion. This is likely due to differences in structural conser-
vation between sites, whereby sites which are more
structurally heterogeneous are more difficult to fully cap-
ture using a nearest-neighbor approach than a trained
model which can learn to recognize diverse structural
patterns. However, since training an accurate model
requires access to a representative training dataset which
is not always available, we consider our search method to
be a powerful complement to site-specific models in cases
where labeled data is scarce or where the similarity to a
specific query is important. We also note that while struc-
tural search methods exist for full proteins (Holm &
Rosenström, 2010; van Kempen et al., 2022) or binding
sites, (Liu & Altman, 2011; Valasatava et al., 2014; Zemla
et al., 2022) ours is the first search tool specifically
designed for arbitrary local structural sites.

Functional annotation of novel protein structures is
of great value to the structural biology and biochemistry
communities, but there are few tools for doing so at the
residue level. COLLAPSE provides a method for residue-
level annotation which is efficient and tunable, making it
suitable for both screening and discovery purposes. As
shown by the examples in Figure 5, the method identifies
known functional annotations while limiting false posi-
tives to closely related homologs, even when the input is
not related to any protein in the training set (<5%
sequence identity for beta-glucuronidase). Confidence in
a new prediction's accuracy can be assessed by its signifi-
cance level or more sophisticated evaluations for exam-
ple, multiple neighboring residues being annotated with
the same function may imply a more likely correct pre-
diction. Additionally, because we can identify many sites
on a single protein, it is also possible to identify previ-
ously unknown alternative functional sites or allosteric

sites. Importantly, all predictions can be explained and
cross-referenced by rich metadata from the reference data
sources, enhancing trust and usability. Of the PDBs
returned for true positive sites in meizothrombin and
beta-glucuronidase, 45.5% (20/44) and 87.5% (14/16),
respectively, were not hits in a protein PSI-BLAST search
with standard parameters, demonstrating the value of
local structural comparisons for functional annotation.
Additionally, the method is easy to update and extend
over time via the addition of new sources of functional
data, and reference databases can even be added or
removed on a case-by-case basis.

3.3 | Advances in protein structure
prediction provide great opportunities for
expanding functional analysis and
discovery

COLLAPSE depends on the availability of solved 3D pro-
tein structures in the PDB. This restricts not only the
number of homologous proteins that can be compared at
each training step, but also the set of protein families
which can even be considered—less than one third of
alignments in the CDD contained at least two proteins
with structures in the PDB. Including structures from
AlphaFold Structure Database (Varadi et al., 2022) would
dramatically increase the coverage of our training data-
set, but the utility of including predicted structures along-
side experimentally solved structures in training or
evaluation of machine learning models still needs to be
evaluated (Derry et al., 2022). A preliminary evaluation
of our annotation method on the predicted structure for
meizothrombin reveals high agreement with the corre-
sponding PDB structure (Figure S6) despite a root-mean-
square deviation of 3.67 Å between the two structures,
suggesting that COLLAPSE may already generalize to
AlphaFold predictions for some proteins. Given this find-
ing, we anticipate that COLLAPSE will be a powerful tool
for functional discovery within the AlphaFold database,
which has already yielded several novel insights (Akdel
et al., 2021; Bordin et al., 2022).

In summary, COLLAPSE is a general-purpose protein
structure embedding method for functional site analysis.
We provide a Python package and command-line tools
for generating embeddings for any protein site, conduct-
ing functional site searches, and annotating input protein
structures. We also provide downloadable databases of
embeddings for a nonredundant subset of the PDB and
for known functional sites. We anticipate that as more
data becomes available, these tools will serve as a catalyst
for data-driven biological discovery and become a critical
component of the protein research toolkit.
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4 | MATERIALS AND METHODS

4.1 | Training dataset and data
processing

COLLAPSE pre-training relies on a source of high-
quality protein families associated with known structures
and functions, as well as multiple sequence alignments
(MSAs) in order to define site correspondences. We use
the NCBI-curated subset of the Conserved Domain Data-
base (CDD), (Lu et al., 2020; Marchler-Bauer et al., 2003)
which explicitly validates domain boundaries using 3D
structural information. We downloaded all curated MSAs
from the CDD (n = 17,906 as of Sep. 2021) and filtered
out those that contained less than two proteins with
structures deposited in the PDB. After removing chains
with incomplete data or which could not be processed
properly, this resulted in 5643 alignments for training,
corresponding to 16,931 PDB chains (Figure S2). We then
aligned the sequences extracted from the ATOM records
in each PDB chain to its MSA, without altering the origi-
nal alignment, thus establishing the correct mapping
from alignment position to PDB residue number. As a
held-out set for validation, we select 1370 families
defined by PFAM (El-Gebali et al., 2019) which do not
share a common superfamily cluster (as defined by the
CDD) with any training family. We then bin these fami-
lies based on the average sequence identity to the nearest
protein in the training dataset and sample five families
from each bin, resulting in 50 validation families with
varying levels of similarity to the training data
(Table S1).

4.1.1 | Definition of sites and environments

In general, we define protein sites relative to the location
of the relevant residues. Specifically, we define the envi-
ronment surrounding a protein site as all atoms within
10 Å radius of the functional center of the central residue.
The functional center is defined as the centroid of the
functional atoms of the side chain as defined by previous
work (Bagley & Altman, 2008; Torng & Altman, 2019a).
For residues with two functional centers (Trp and Tyr),
during training one is randomly chosen at each iteration,
and at inference time the choice depends on the specific
application (i.e., if the function being evaluated depends
on the aromatic or polar group; see Table S2). If the func-
tional atom is not known (e.g., for annotating unlabeled
proteins), we take the average over all heavy side-chain
atoms.

4.1.2 | Empirical background calculation

To make comparisons more meaningful and to provide a
mechanism for calculating statistical significance, we
quantile-transform all cosine similarities relative to an
empirical cosine similarity distribution. To compute
background distributions, we use a high-resolution
(<2.0 Å), nonredundant subset of the PDB at 30%
sequence identity provided by the PISCES server (Wang
& Dunbrack, 2003) (5833 proteins). We compute the
embeddings of 100 sites from each structure, correspond-
ing to five for each amino acid type, sampled with
replacement. Exhaustively computing all pairwise simi-
larities is computationally infeasible, so we sample n¼
50,000 pairs of environments and compute the cosine
similarity of each. We performed this procedure to gener-
ate empirical similarity distributions S1, …, Snð Þ for the
entire dataset and for each amino acid individually
(Figure S3). Cosine similarities sð Þ are then quantile-
transformed relative to the relevant empirical cumulative
distribution function:

F sð Þ¼ 1
n

Xn
i¼1

1Si < s

The p-value for any embedding comparison is then
defined as 1 –F sð Þ, or the probability that a randomly
sampled pair of embeddings is at least as similar as the
pair in question. Amino acid–specific empirical back-
grounds are used for functional site search and are aggre-
gated into a single combined distribution for annotation.
For the functional site–specific background used to filter
hits during annotation, we use an empirical background
computed by comparing each functional site embedding
to the embeddings of the corresponding amino acid in
the 30% nonredundant PDB subset.

4.2 | COLLAPSE training algorithm

Each iteration of the COLLAPSE pre-training algorithm
consists of the following steps, as shown in Figure 1. We
trained our final model using the Adam optimizer
(Kingma & Ba, 2015) with a learning rate of 1 e-4 and a
batch size of 48 pairs for 1200 epochs on a single TESLA
V100 GPU. Model selection and hyperparameter tuning
was evaluated using intrinsic embedding characteristics
(Section 2.1) and ATOM3D validation set performance
(Section 4.3). See Supplementary Note 2 for further discus-
sion of hyperparameter selection and modeling choices.

10 of 15 DERRY AND ALTMAN



• Step 1. Randomly sample one pair of proteins from the
MSA and one aligned position from each protein
(i.e., there is not a gap in either protein). Map MSA
column position to PDB residue number using the pre-
computed alignment described in Section 2.2. Note
that this step ensures that each epoch, a different pair
of residues is sampled from each CDD family, effec-
tively increasing the size of the training dataset by
many orders of magnitude relative to a strategy which
trains on individual proteins or MSAs.

• Step 2. Extract 3D environment around each selected
residue (Section 4.1.1). Only atoms from the same
chain are considered. Waters and hydrogens are
excluded but ligands, metal ions, and cofactors are
included.

• Step 3. Convert each environment into a spatial graph
G¼ V, Eð Þ. Each node in the graph represents an atom
and is featurized by a one-hot encoding of the atom
type V � f carbon (C), nitrogen (N), oxygen (O), fluo-
rine (F), sulfur (S), chlorine (Cl), phosphorus (P), sele-
nium (Se), iron (Fe), zinc (Zn), calcium (Ca),
magnesium (Mg), and “other” g, representing the most
common elements found in the PDB. Edges in the
graph are defined between any pair of atoms separated
by than 4.5 Å. Following (Jing et al., 2021) edges
between atoms i, jð Þ with coordinates xi, xj

� �
are fea-

turized using (1) a 16-dimensional Gaussian radial
basis function encoding of distance r

���xj – xi
���� �

and
(2) a unit vector < xj – xi > encoding orientation.

• Step 4. Compute embeddings of each site. We embed
each pair of structural graphs G1, G2ð Þ using a pair of
graph neural networks, each composed of three layers
of Geometric Vector Perceptrons (GVPs), (Jing
et al., 2020; Jing et al., 2021) which learn rotationally-
equivariant representations of each atom and have
proved to be state-of-the-art in a variety of tasks involv-
ing protein structure (Hsu et al., 2022; Jing
et al., 2021). We adopt all network hyperparameters (e.
g., number of hidden dimensions) from (Jing
et al., 2021). Formally, each GVP learns a transforma-
tion of the input graph into 512-dimensional embed-
dings of each node:

f G1;θð Þ! zθ �ℝjV1j�512

f G2;ϕð Þ! zϕ �ℝjV2j�512

The final embedding of the entire graph is then com-
puted by global mean pooling over the embeddings of
each atom. While in principle, the two networks could be
direct copies of each other (i.e., have tied parameters

θ¼ϕ), we adopt the approach proposed by Grill
et al. (2020) which refers to the two networks as the
online encoder and the target encoder, respectively. Only
the online network parameters θ are updated by gradient
descent, while the target network parameters ϕ are
updated as an exponential moving average of θ:

ϕ μϕþ 1 – μð Þϕ,

where μ is a momentum parameter which we set equal to
0.99. No gradients are propagated back through the target
network, so only θ is updated based on the data during
training. Intuitively, the target network produces a
regression target based on a “decayed” representation,
while the online network is trained to continually
improve this representation. Only the online network is
used to generate embeddings for all downstream
applications.

• Step 5. Compute loss and update parameters. The loss
function is defined directly in the embedding space
using the cosine similarity between the target network
embedding zϕ �ℝ512 and the online network embed-
ding zθ �ℝ512 projected through a simple predictor net-
work pred zθð Þ�ℝ512. This predictor network learns to
optimally match the outputs of the online and target
networks and is crucial to avoiding collapsed represen-
tations. To increase the signal-to-noise ratio and
encourage the model to learn functionally relevant
information, we weight the loss at each iteration by
the sequence conservation wcons of that column in the
original MSA (defined by the inverse of the Shannon's
entropy of amino acids at that position, ignoring gaps).
To reduce bias, we include all proteins in the align-
ment curated by CDD for computing conservation,
even those without corresponding structures. As a
result of this, the loss function is expressed as:

L¼wcons � 2 – 2 � pred zθð Þ, zϕ
� �
pred zθð Þk k2 � jjzϕjj2

	 

,

where

wcons¼ 1
–

P
i � AA

pi log pið Þ

Finally, we symmetrize the loss by passing each site in
the input pair through both online and target networks
and summing the loss from each. This symmetrized loss
is then used to optimize the parameters of the online net-
work using gradient descent.
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4.3 | Transfer learning and fine-tuning

We retrieved the pre-processed PIP and MSP datasets
from (Townshend et al., 2021) as well as the performance
metrics for baseline models. Both datasets consist of
paired residue environments, so we embed the environ-
ments surrounding each residue in the pair, concatenate
the embeddings, and train a two-layer feed-forward neu-
ral network to predict the binary outcome (see Supple-
mentary Note 3 for details). For the comparison with
MaSIF, we obtained the MaSIF-site training and testing
datasets from (Gainza et al., 2020). Since MaSIF operates
on a dense mesh of points along the protein surface, we
computed embeddings for environments centered around
each surface coordinate. We then added a two-layer feed-
forward network to predict whether or not the residue is
part of a protein–protein interaction site (Supplementary
Note 4). For all tasks, we trained models with and with-
out allowing the parameters of the embedding model to
change (fine-tuned and fixed, respectively). Hyperpara-
meters were selected by monitoring the relevant metric
on the validation set.

4.4 | Training site-specific models on
PROSITE data

We choose 10 sites presented in (Torng & Altman, 2019a)
selected because they are the most challenging to predict
using FEATURE-based approaches (Buturovic et al., 2014;
Torng & Altman, 2019a). For each functional site, we train
a binary classifier on fixed COLLAPSE embeddings in
five-fold nested cross-validation (CV). The classifiers are
support vector machines (SVMs) with radial basis function
kernels and weighted by class frequency. Within each
training fold, the inner CV is used to select the regulariza-
tion hyperparameter C� 0:1, 1, 10, 100, 1000, 5000f g and
the outer CV is used for model evaluation. To enable
more accurate comparisons, we use the same dataset,
evaluation procedures as (Torng & Altman, 2019a). We
benchmark against reported results for SVMs trained
on FEATURE vectors (a direct comparison to our pro-
cedure) and 3D convolutional neural networks
(3DCNNs) trained end-to-end on the functional site
structures (the current state of the art for this task). We
use PROSITE FN/FP sites as an independent validation
of our trained models, using an ensemble of the models
trained on each CV fold and the classification thresh-
old determined above. A site is considered positive if
the probability estimate from any of the five-fold
models is greater than the threshold. Some proteins
contain more than one site; in these cases, the protein
is considered to be positive if any sites are predicted to
be positive.

4.5 | Iterated functional site search

First, we embed the database to be searched against using
the pre-trained COLLAPSE model. For the results pre-
sented in Section 2.4, we use the same PROSITE dataset
used to train our cross-validated models to enable accu-
rate comparisons. However, we also provide an embed-
ding dataset for the entire PDB and scripts for generating
databases for any set of protein structures. Then, we
index the embedding database using FAISS, (Johnson
et al., 2021) which enables efficient similarity searches
for high-dimensional data. For each site, we then per-
form the following procedure five times with different
random seeds in order to assess the variability of results
under different query sites. The input parameters are the
number of iterations niter and the p-value cutoff for select-
ing sites at each iteration pcutoff .

1. Sample a single site from the PROSITE TP dataset
(to simulate querying a known functional site), gener-
ate COLLAPSE embedding, and add to query set.

2. Compute effective cosine similarity cutoff scutoff using
the 1 – pcutoff

� �
quantile of the empirical background

for the functional amino acid of the query site
(e.g., cysteine for an EGF_1 site).

3. Compare embedding(s) of query to database and
retrieve all neighbors within scutoff of the query.

4. Add all neighbors to query set and repeat Step 3 niter
times. Note that when there is more than one query
point, neighbors to any point in the query are
returned.

5. Compute precision and recall of final query set, using
PROSITE data as ground truth.

4.6 | Protein site annotation

Instead of a database of all protein sites, the annotation
method requires a database of known functional sites.
We use all true positive sites defined in PROSITE. For each
pattern, we identify all matching PDBs using the Scan-
Prosite tool (Sigrist et al., 2013) and extract the residues
corresponding to all fully conserved positions in the pat-
tern (i.e., where only one residue is allowed). The envi-
ronment around each residue is embedded using
COLLAPSE. We also embed all residues in the CSA, a
curated dataset of catalytic residues responsible for an
enzyme's function. All data processing matches the pre-
training procedure. The final dataset consists of 25,407
embeddings representing 1870 unique functional sites.

The annotation method operates in a similar fashion
to the search method, where each residue in the input
protein is embedded and compared to the functional site
database. Any residue that has a hit with a p-value below
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the pre-specified cutoff is returned as a potential func-
tional site. To filter out false positives due to common or
nonspecific features (e.g., small polar residues in alpha-
helices), we also remove hits which are not significant
against the empirical distribution specific to that func-
tional site (Section 4.1.2). This results in a modified
mutual best hit criterion with two user-specified parame-
ters: the residue-level and site-level significance thresh-
olds. Along with each hit is the metadata associated with
the corresponding database entry (PDB ID, functional
site description, etc.) so each result can be examined in
more detail. For the examples presented we remove all
ligand atoms from the input structure to reduce the influ-
ence of nonprotein atoms on the embeddings.
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