
© AME Publishing Company. HepatoBiliary Surg Nutr 2025;14(1):78-95 | https://dx.doi.org/10.21037/hbsn-24-282

Review Article

Deciphering molecular crosstalk mechanisms between skeletal 
muscle atrophy and KRAS-mutant pancreatic cancer: a literature 
review
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Background and Objective: Cachexia-induced skeletal muscle atrophy is a critical manifestation in 
Kirsten rat sarcoma viral oncogene homologue (KRAS)-mutant pancreatic cancer (PC) patients, predominantly 
characterized by a shift in metabolic equilibrium towards catabolism that accelerates protein degradation in 
myofibers and leads to muscle atrophy. This metabolic reprogramming not only supports tumor growth but 
also precipitates energy depletion in skeletal muscle tissues. Exploring these mechanisms reveals potential 
therapeutic targets in the metabolic and proteolytic pathways associated with KRAS-mutant PC. 
Methods: A comprehensive search for literature was conducted in PubMed, Web of Science, Google 
Scholar and other search engines up to May 21st, 2024. Studies on PC models and patients were included.
Key Content and Findings: The crosstalk between KRAS-mutant PC and skeletal muscle atrophy can 
be categorized into four principal domains: (I) KRAS-driven metabolic reprogramming in cancer cells leads 
to the depletion of muscle energy reserves, thereby influencing the reallocation of myofiber energy towards 
fueling cancer cell; (II) KRAS-mutant cancer cells rely on nutrient-scavenging pathways, resulting in altered 
cytokine profiles, increased ubiquitin mRNA expression and autophagy-lysosome pathway, which facilitate 
myotube degradation and inhibit muscle regeneration, thereby disrupting muscular homeostasis and causing 
a one-way nutrient flux; (III) tumor-induced oxidative stress inflicts damage on myotubes, highlighting 
the detrimental effects of reactive oxygen species on muscle structure; (IV) KRAS-mutant cancer cells 
remodulate immune cell dynamics within the tumor environment, thereby reshaping host immunity. 
Together, these findings illuminate the intricate interplay between KRAS-mutant PC and skeletal muscle 
atrophy, mapping the pathophysiological framework that is crucial for understanding sarcopenia and related 
disorders. 
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Introduction

Cachexia, a significant complication in cancer progression, 
was first characterized by Evans et al. (1) as a syndrome of 
“consuming without gaining weight”, primarily manifested 
by a reduction in skeletal muscle mass. This syndrome is 
defined by involuntary weight loss due to muscle atrophy, 
which is non-responsive to nutritional supplementation 
and resistant to pharmacological treatments. Over the past 
decade, the impact of cachexia on the efficacy of multidrug 
chemotherapy regimens has become increasingly evident 
(2,3). Concurrently, the conceptualization and diagnostic 
criteria for cachexia have evolved. Initially, the 2011 Fearon 
criteria focused on weight loss and body mass index (BMI), 
where the main criterion for cachexia is weight loss >5% 
over past 6 months (in absence of simple starvation) (4).  
Subsequent revis ions have incorporated physical 
performance and other measurable indicators (5). The latest 
definition by the European Society of Medical Oncology 
(ESMO) in 2021 categorizes cachexia as malnutrition 
caused by disease-related systemic inflammation (6). This 
is further refined in the 2020 Global Leadership Initiative 
on Malnutrition (GLIM) criteria, which require a positive 
screening result and at least one phenotypic criterion, such 
as weight loss, low body mass, or diminished muscle mass, 
for a malnutrition diagnosis (7).

In the realm of pancreatic cancer (PC), cachexia is 
ubiquitously observed throughout all disease stages (8).  
Notably, about 80% of individuals diagnosed with 
pancreatic ductal adenocarcinoma (PDAC) endure cachexia 
at some phase of their disease, representing the highest 
incidence among all cancers (9) (Figure 1). This underscores 
the critical need to integrate cachexia management within 
the therapeutic strategies for PC. Although criteria for 
weight loss and low body mass have been clearly defined, 
consensus on defining “reduced muscle mass” continues 
to be ambiguous. Existing diagnostic metrics, such as the 
sex-specific L3 vertebrae skeletal muscle index, mid-upper 

arm muscle area, and appendicular skeletal muscle index, 
predominantly assess sarcopenia (4,10-14). 

Nonetheless, advancing our understanding of the 
molecular mechanisms underlying muscle wasting in PC 
may facilitate the development of more targeted biomarkers, 
thereby improving both diagnosis and treatment of PC-
associated cachexia. We present this article in accordance 
with the Narrative Review reporting checklist (available at 
https://hbsn.amegroups.com/article/view/10.21037/hbsn-
24-282/rc). 

Methods

We searched for literature with terms “Cachexia/
Sarcopenia”, “Skeletal Muscle Wasting/Atrophy”, 
“Pancreatic Cancer”, and “KRAS Mutation” published in 
PubMed, Web of Science, Google Scholar and other search 
engines, encompassing articles in the English language 
up to May 21st, 2024. Studies on PC models and patients 
were included. For detailed information, please refer to the 
search strategy summary in Table 1.

Molecular crosstalk mechanisms between 
skeletal muscle atrophy and Kirsten rat sarcoma 
viral oncogene homologue (KRAS)-mutant PC

KRAS-mutant PC mediates depletion of muscle energy 
reserves and energy reallocation

Cachexia, a defining feature of PC, is characterized by a 
metabolic shift favoring catabolism over anabolism, which 
fosters a state of chronic inflammation. This metabolic 
alteration impairs muscle protein synthesis, enhances 
proteolysis, and accelerates myofiber degradation. Notably, 
oncogenic modifications in PC, particularly KRAS 
mutations, drive a systemic metabolic reprogramming that 
supports both tumor proliferation and cachectic muscle 
wasting (Figure 1).

Conclusions: This comprehensive analysis advances our understanding of the complex etiology of cancer 
cachexia and stimulates the development of targeted therapeutic strategies.
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KRAS mutation, in conjunction with metabolic 
disturbances such as insulin resistance, plays a critical role 
in PC pathophysiology. Insulin resistance increases the risk 
of developing PDAC and has been shown to be mitigated 
by anti-diabetic treatments (15,16). Furthermore, the 
interaction between KRAS mutation and a hyperglycemic 
environment creates a self-sustaining cycle conducive to both 
tumor growth and muscle wasting. This mutation enhances 
glycolytic flux by upregulating key enzymes, and elevated 
glucose levels lead to pancreas-specific DNA damage, further 
accelerating the mutation process (17,18). In cells with KRAS 
mutations, increased glucose uptake via glucose transporters 

(GLUTs) and heightened glycolysis provides intermediates 
essential for biosynthetic pathways (19).

Moreover, the pentose phosphate pathway (PPP) serves 
a dual role in PC cells by generating nicotinamide adenine 
dinucleotide phosphate (NADPH) and ribose bases, vital 
for nucleotide synthesis and maintaining redox balance. 
PC cells also exhibit the Warburg effect, a metabolic 
phenomenon where glucose is predominantly converted 
to pyruvate and lactate in the cytosol under anaerobic 
conditions. This increased glycolytic activity leads to 
enhanced glucose uptake and lactate secretion, contributing 
to the systemic energy depletion characteristic of cancer 

Figure 1 Skeletal muscle atrophy in KRAS-mutant pancreatic cancer due to disruption of anabolic and catabolic balance. KRAS-mutant 
pancreatic cancer is predominantly characterized by a metabolic shift towards catabolism, with multiple factors collectively accelerating 
protein degradation in myofibers, ultimately leading to muscle atrophy. KRAS, Kirsten rat sarcoma viral oncogene homologue.

Table 1 The search strategy summary

Items Specification

Date of search The literature search was conducted on May 21, 2024

Databases and other 
sources searched

PubMed, Web of Science, Google Scholar. Additional searches were conducted using relevant search engines 
to ensure comprehensive coverage

Search terms used A combination of MeSH terms and free-text keywords was employed, including: “Cachexia/Sarcopenia”, 
“Skeletal Muscle Wasting/Atrophy”, “Pancreatic Cancer”, and “KRAS Mutation”

Timeframe The search covered studies published up to May 2024

Inclusion and exclusion 
criteria

Inclusion: studies involving pancreatic cancer models or patients, with a focus on KRAS mutations

Exclusion: case reports or studies lacking relevance to the molecular mechanisms linking pancreatic cancer 
and muscle wasting

Selection process Two independent reviewers screened the studies, with disagreements resolved by consensus. Only studies 
meeting the predefined inclusion criteria were selected

KRAS, Kirsten rat sarcoma viral oncogene homologue. 

Muscle protein synthesis ↓ 
Anabolism ↓ 

Muscle protein breakdown ↑ 
Catabolism ↑ 

- Anabolic energy supply ↓
- Glycolytic abnormalities
- Barriers to exercise
- Food intake ↓
- Activity of anabolic pathways ↓

- Expression of proteolytic enzymes ↑
- Oxidative stress ↑
- Pro-inflammatory cytokine levels ↑
- Metabolic reprogramming
- Immune cells remodeling

KRAS-mutant pancreatic cancer associated 
skeletal muscle atrophy 

Non-cachexia Cachexia 
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Table 2 Overview of potential biomarkers for assessing skeletal muscle atrophy in patients with KRAS-mutant pancreatic cancer

Origin Potential biomarkers

PC cachexia induction factors MURF-1, Atrogin-1, myostatin, GDF15, GLUT4, Activin A, PAUF, IRS-1, Ang II, PTHrP, SIRT1/NOX4

Systematic inflammation and 
immunity factors

PLR, CRP, MyD88

Activators of NF-κB signaling: TNF-α, IL-1β, IL-6, MCP-1/CCL2, TWEAK, PTX3, OSMR/EDA2R/NIK

Immune cells and related markers: M2-like macrophages, Ly6G+ neutrophils and granulocytic MDSCs, 
NLR, LCN2, Cathepsin B

Muscle and lipid wasting 
products

Fat wasting: ATGL, HSL, UCP1, LCN2, ZAG, C18:C24 ceramide ratio

Skeletal muscle wasting: CNDP1, β-dystroglycan

Non-coding RNAs miR-21, miR-155, miR-let-7b-5p, miR-373, miR-30b/c, miR-494-3p, miR-9, miR-338-3p, miR-106b, 
miR-93, miR-27b

Extra-cellular matrix factors TIMP-1

KRAS, Kirsten rat sarcoma viral oncogene homologue; PC, pancreatic cancer; MURF-1, muscle RING-finger protein-1; GDF15, 
growth differentiation factor 15; GLUT4, glucose transporter 4; PAUF, pancreatic adenocarcinoma upregulated factor; IRS-1, insulin 
receptor substrate 1; Ang II, angiotensin II; PTHrP, parathyroid hormone-related protein; SIRT1, Sirtuin1; PLR, platelet-lymphocyte 
ratio; CRP, C-reactive protein; MyD88, myeloid differentiation primary response gene 88 protein; NF-κB, nuclear factor kappa B; TNF-α, 
tumor necrosis factor alpha; IL-1β, interleukin 1 beta; IL-6, interleukin 6; MCP-1, monocyte chemoattractant protein 1; CCL2, CC-
motif chemokine ligand 2; TWEAK, TNF-α-like weak inducer of apoptosis; PTX3, pentraxin 3; OSMR, oncostatin M receptor; EDA2R, 
ectodysplasin A2 receptor; NIK, NF-κB-inducing kinase; MDSCs, myeloid-derived suppressor cells; NLR, neutrocyte-lymphocyte 
ratio; LCN2, lipocalin 2; ATGL, adipose triglyceride lipase; HSL, hormone-sensitive lipase; UCP1, uncoupling protein-1; ZAG, zinc-α2-
glycoprotein; CNDP1, carnosine dipeptidase 1; TIMP-1, tissue inhibitor of metalloproteinases-1. 

cachexia (20,21).
In addition, PC cells exploit alternative carbon sources 

to fuel the tricarboxylic acid (TCA) cycle, such as glutamine 
and aspartate, both of which are integral to maintaining 
skeletal muscle mass (22). Glutamine importation through 
solute carrier family 1 member 5 (SLC1A5) and its 
transformation to glutamate by glutaminase 1 (GLS1) 
fuel the TCA cycle (23), emphasizing glutamine’s role 
in energy production. Inhibiting glutamine transport 
by downregulating its transporter SLC1A5 has been 
shown to attenuate weight loss in PC, albeit without 
impeding tumor growth (24). Conversely, obstructing 
aspartate transportation into mitochondria through 
UCP2 transporter diminishes PDAC cell growth (25). 
This underscores the versatility of PC in utilizing diverse 
nutritional sources, often at the expense of body and muscle 
mass. KRAS mutations further reprogram metabolism by 
channeling TCA cycle intermediates via malic enzyme 1 
(ME1) to produce NADPH and amino acids, enhancing 
cellular antioxidant capacity and providing synthesis 
substrates. Simultaneously, KRAS mutations drive fatty 
acid oxidation (FAO) for energy and NADPH production 
(26,27), underscoring the metabolic flexibility of cancer 
cells to meet their energy needs. Collectively, metabolic 

reprogramming by PC leads to energy extraction from 
skeletal muscle myotubes. This streamlined overview 
encapsulates the metabolic intricacies associated with 
KRAS-driven PC, spotlighting the interplay between tumor 
growth and host energy metabolism (Table 2).

Lipid metabolism in PC

In PC, lipolysis and adipocyte browning are critical 
phenomena associated with cachexia, serving as energy 
sources to fuel cancer cell proliferation. Lipolysis, the 
enzymatic cleavage of triglycerides into fatty acids and 
glycerol, is enhanced in PC cachexia, primarily catalyzed 
by enzymes such as adipose triglyceride lipase (ATGL) and 
hormone-sensitive lipase (HSL), with elevated expressions 
observed in this condition (28,29). Adipocyte browning, the 
conversion of white adipocytes to brown-like adipocytes, 
is characterized by an increase in uncoupling protein-1 
(UCP1) activity, which shifts metabolism from energy 
storage to energy expenditure (30). UCP1, activated by 
adrenergic stimulation, forms part of a thermoporter 
complex that includes the mitochondrial calcium uniporter 
(MCU) and essential MCU regulator (EMRE), facilitating 
mitochondrial thermogenesis (31). Additionally, lipocalin 2  
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(LCN2), an adipocytokine secreted by PDAC-induced 
adipocytes, plays a dual role in enhancing thermogenesis 
via UCP1 and inducing fat and muscle degradation through 
ATGL and muscle RING-finger protein-1 (MURF-1) (32).

Zinc-α2-glycoprotein (ZAG), encoded by AZGP1, 
promotes lipolysis by upregulating UCP1 expression 
in brown adipose tissue (33) and is found in higher 
concentrations in PC patients with cachexia (34,35). 
Intriguingly, ZAG also impedes tumor progression in PDAC 
by inhibiting epithelial-mesenchymal transition through the 
transforming growth factor beta/extracellular signal-regulated 
kinase (TGF-β/ERK) signaling pathway (36).

Ceramides, essential components in lipid metabolism, 
modulate fatty acid absorption and utilization, prioritizing 
these processes over glucose metabolism, which can contribute 
to insulin resistance (37). In muscle cells, de novo synthesis of 
ceramides can trigger apoptosis (38). Furthermore, in PC, 
the ratio of C18:C24 ceramides serves as a distinguishing 
marker between cachectic patients and non-cachectic controls, 
highlighting its potential as a biomarker (39).

Parathyroid hormone-related protein (PTHrP) not 
only facilitates tumor growth and metastasis in PC but 
also significantly influences cachexia (40). Elevated levels 
of PTHrP are associated with weight loss and diminished 
handgrip strength, indicative of skeletal muscle depletion. 
The action of PTHrP shifts the energy balance toward a 
catabolic state, enhancing body fat oxidation and adipose 
tissue reduction, which are indicative of cachexia alongside 
skeletal muscle wasting (41).

Disruption of muscular homeostasis by KRAS-mutant PC

Protein synthesis and degradation are crucial determinants 
of skeletal muscle mass and function. The insulin-like 
growth factor 1 (IGF-1)/insulin signaling pathway plays 
a central role in regulating muscle size by enhancing 
protein synthesis and inhibiting protein breakdown. 
This pathway predominantly exerts its effects through 
the phosphoinositide 3 kinase (PI3K)/protein kinase B 
(Akt) signaling axis (42,43). Activation of Akt leads to the 
phosphorylation of forkhead box O (Foxo) transcription 
factors, notably inhibiting the translocation of Foxo3 to 
the nucleus. This inhibition prevents the transcription of 
ubiquitin ligases MAFbx/Atrogin-1 and MURF-1, which 
are integral to protein degradation (44). When the Akt/
Foxo3 pathway is suppressed, these ubiquitin ligases 
become active, leading to the breakdown of key structural 
and regenerative proteins in skeletal muscle (Figure 2).

Additionally, the PI3K/Akt pathway modulates the 
expression of glucose transporter 4 (GLUT4), essential 
for insulin-mediated glucose uptake, serving both as a 
nutritional source for skeletal muscle cells and a systemic 
regulator of serum glucose levels (45). However, in 
PC, defects in the PI3K signaling pathway result in 
compromised glucose utilization in skeletal muscle and 
disruption of overall glucose metabolism (46).

The nuclear factor kappa B (NF-κB) signaling pathway 
also plays a significant role in muscle degradation, as NF-
κB directly binds with the MURF-1 promoter, thereby 
promoting muscle catabolism (47). In PDAC patients, NF-κB 
activation is facilitated by ectodysplasin A2 receptor (EDA2R) 
through NF-κB-inducing kinase (NIK) activity, enhancing 
muscle atrophy via upregulated Atrogin-1 and MURF-
1 expression. Transcriptional levels of EDA2R are notably 
higher in cachectic patients compared to non-cachectic 
individuals and non-cancer controls, and it is upregulated 
in response to tumor-induced oncostatin M (OSM) binding 
with its muscle-specific receptor, oncostatin M receptor  
(OSMR) (48). Targeting the OSMR/EDA2R/NIK signaling 
axis may thus offer therapeutic potential for mitigating muscle 
atrophy in cachexia.

F u r t h e r m o r e ,  i n  P C ,  t h e  N F -κB  p a t h w a y  i s 
hyperactivated due to systemic inflammation induced 
by cytokines from the TGF-β superfamily, which also 
activates the Janus kinase/signal transducer and activator of 
transcription 3 (JAK/STAT3) and SMAD family member 
2 and 3 (SMAD2/3) pathways. These pathways collectively 
suppress myogenesis by downregulating myoblast 
determination protein (MyoD) (49,50), contributing to the 
muscle wasting observed in cachexia. 

Ubiquitin proteasomal degradation in PC cachexia

Insulin receptor substrate 1 (IRS-1) and MG53
IRS-1 is a crucial element of the insulin receptor signaling 
pathway, further regulated by MG53, a ubiquitin E3 ligase. 
Elevated levels of circulating MG53 do not necessarily 
affect glucose handling or insulin signaling, yet there are 
conflicting reports regarding its role in glucose metabolism 
and myogenesis, particularly in PC mouse models (51,52). 
These discrepancies highlight the necessity for further 
research into MG53’s complex functions in PC cachexia.

Angiotensin II (Ang II)
Ang II acts as a significant early-stage regulator in cachexia, 
augmenting the proteolytic activity of ubiquitin-proteasome 
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Pancreatic 
cancer 
cells

Figure 2 Panoramic view of molecular crosstalk mechanisms between skeletal muscle atrophy and KRAS-mutant pancreatic cancer. 
Oncogenic KRAS mutations result in increased glucose uptake, redirection of metabolic pathways toward biosynthesis, glutamine 
reprogramming, and regulation of ROS, also activate distinctive metabolic scavenging pathways, such as macropinocytosis, autophagy, lipid 
synthesis, and FAO. These processes collectively contribute to skeletal muscle atrophy through various critical interconnected crosstalk 
mechanisms: (I) KRAS-driven metabolic reprogramming in cancer cells depletes muscle energy reserves, leading to the reallocation of 
myofiber energy to support cancer cell growth. (II) KRAS-mutant cancer cells rely on nutrient-scavenging pathways, which result in 
altered inflammatory cytokine profiles, increased degradation of ubiquitin-tagged proteins, and activation of the autophagy-lysosome 
pathway. These changes facilitate myotube degradation and inhibit muscle regeneration, disrupting muscular homeostasis and creating 
a unidirectional nutrient flux. (III) Tumor-induced oxidative stress damages myotubes, highlighting the detrimental effects of reactive 
oxygen species on muscle structure and integrity. (IV) KRAS-mutant cancer cells remodulate immune cell dynamics within the tumor 
environment. ATGL, adipose triglyceride lipase; HSL, hormone-sensitive lipase; LCN2, lipocalin 2; UCP1, uncoupling protein-1; ZAG, 
zinc-α2-glycoprotein; FFA, free fatty acids; Ang II, angiotensin II; CNDP1, carnosine dipeptidase 1; MyD88, myeloid differentiation 
primary response gene 88 protein; IGF, insulin-like growth factor; PAUF, pancreatic adenocarcinoma upregulated factor; IRS-1, insulin 
receptor substrate 1; Akt, protein kinase B; Foxo, forkhead box O; MURF-1, muscle RING-finger protein-1; AS160, Akt substrate of 
160 kDa; SLC1A5, solute carrier family 1 member 5; TCA, tricarboxylic acid; GLUT, glucose transporter; FA, fatty acid; NADPH, 
nicotinamide adenine dinucleotide phosphate; KRAS, Kirsten rat sarcoma viral oncogene homologue; ME1, malic enzyme 1; LDH, 
lactate dehydrogenase; AA, amino acid; MCT, monocarboxylate transporter; ncRNA, non-coding RNA; SIRT/NOX4, Sirtuin/NADPH 
oxidase 4; mTOR, mammalian target of rapamycin; OSM, oncostatin M; OSMR, oncostatin M receptor; EDA-A2, ectodysplasin A2; 
EDA2R, ectodysplasin A2 receptor, ectodysplasin A2 receptor; Fn14, fibroblast growth factor-inducible 14; JAK/STAT, Janus kinase/signal 
transduction and transcription activation; SMAD, suppressor of mother against decapentaplegic (protein family); NIK, NF-κB-inducing 
kinase; PTX3, pentraxin 3; NF-κB, nuclear factor kappa B; MyoD, myoblast determination protein; ROS, reactive oxygen species; FAO, 
fatty acid oxidation. 
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pathways, which leads to protein degradation in myotubes. 
This proteolysis can be mitigated by insulin-like growth 
factor (IGF) (53). Elevated plasma levels of Ang II are 
directly linked to skeletal muscle wasting and inversely 
associated with survival in PC patients (54).

Pancreatic adenocarcinoma upregulated factors 
(PAUFs)
PAUFs, secreted by PC cells, not only promotes tumor 
progression and metastasis (55) but also contributes to 
cachexia. Administration of PAUFs has been shown to induce 
body weight loss and muscle atrophy through mechanisms 
including the upregulation of Atrogin-1 via rapid deactivation 
of the IRS-1/Akt/Foxo3 signaling pathway (56).

Sirtuin1 (SIRT1)/NADPH oxidase 4 (NOX4) pathway
SIRT1, part of the silent information regulator 2 (SIR2) family, 
functions as an NAD+-dependent protein deacylase, regulating 
Foxo transcription factors (57). In PC, secreted factors reduce 
SIRT1 expression, activating Foxo and leading to increased 
levels of Atrogin-1 and MURF-1. Reduced SIRT1 activity 
also enhances NF-κB signaling, inducing oxidative stress 
through NOX4 (58). Inhibition of both SIRT1 and NOX4 
has proven effective in reducing body weight loss and muscle 
atrophy, positioning the SIRT1/NOX4 pathway as a potential 
therapeutic target for cachexia in PC.

Toll-like receptor (TLR)/myeloid differentiation 
primary response gene 88 protein (MyD88)/XBP1 
signaling
The MyD88 acts as a crucial adaptor for TLRs, excluding 
TLR3 and the type-1 interleukin receptor (IL-1R) family. In 
PDAC, MyD88 is associated with poor survival outcomes, 
primarily due to its role in systemic inflammation. Crucially, 
MyD88 is essential for PDAC cachexia progression, 
mediating the upregulation of Foxo1, Atrogin-1, and 
MURF-1 (59), suggesting its utility as a biomarker for this 
condition.

These interacting factors collectively promote skeletal 
muscle degradation over regeneration, contributing to the 
progressive decline of skeletal muscle in cachexia.

Autophagy-lysosome pathway
KRAS-mutant cells rely on nutrient-scavenging pathways, 
including macropinocytosis and autophagy-lysosome 
pathway, to release free biosynthetic precursors for cancer 
cell utilization. Consequently, autophagy emerges as the 
main catalyst of skeletal muscle proteolysis in PC under 

catabolic conditions. PDAC features an upregulation 
of autophagy, or enhanced macropinocytosis to offset 
autophagy blockade (60,61). In PC patients, systematic 
interleukin 6 (IL-6) and tumor necrosis factor alpha 
(TNF-α) induce muscular autophagy via inhibitory kappa 
B kinase alpha (IKKα)/NF-κB and AMP-activated protein 
kinase/mammalian target of rapamycin (AMPK/mTOR) 
signaling, leading to skeletal muscle wasting (62,63). 
KRAS-mutant PC cells transport extracellular protein 
macropinocytosis to meet their metabolic demands (64), 
causing a one-way nutrient flux from skeletal muscle cells to 
PC cells.

PC-induced oxidative stress damages myotubes 

NF-κB signaling
PC is often accompanied by chronic inflammation, which 
inflicts oxidative stress on skeletal muscle cells and results in 
cell damage directly. This oxidative damage is significantly 
influenced by the TGF-β superfamily. Key members, 
including myostatin, Atrogin-1 and growth differentiation 
factor 15 (GDF15), induce the production of pro-cachectic 
cytokines TNF-α, interleukin 1 beta (IL-1β), IL-6,  
monocyte chemoattractant protein 1/CC-motif chemokine 
ligand 2 (MCP-1/CCL2) and TNF-α-like weak inducer 
of apoptosis (TWEAK) (65-67). These cytokines activate 
the NF-κB signaling pathway, which contributes to skeletal 
muscle wasting by inducing oxidative stress, which is a 
known facilitator of muscle atrophy (68). While MCP-1/ 
CCL2 levels upon diagnosis correlate with future skeletal 
muscle wasting (67), the reliability of these cytokines as 
biomarkers of cancer cachexia is yet to be established, 
warranting further investigation (Figure 2). 

Activin A, another TGF-β  superfamily member 
expressed by PDAC cells, promotes both tumor growth 
and cachexia, with variations based on sex (69). PDAC 
cells release soluble factors, triggering Activin A secretion 
from both tumor tissue and distant organs, correlating with 
increased cachexia severity and myotube atrophy. Notably, 
cachexia presents less severely in females, potentially due 
to estradiol’s influence (65). Targeting Activin A signaling 
appears to inhibit tumor progression and muscle wasting, 
thus extending survival (70,71), indicating its significant 
prognostic and therapeutic potential.

The pentraxin 3 (PTX3) gene, with NF-κB binding sites 
(72,73), encodes a humoral pattern recognition protein 
elevated in PC patients (72). Serum PTX3 levels have been 
identified as a risk factor for skeletal muscle and correlate 
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with inflammatory markers as well as disease severity (74), 
suggesting its utility as a biomarker for PC and related 
cachexia.

Biomarkers for assessing skeletal muscle atrophy in KRAS-
mutant PC

Myofiber components
Detection of altered levels of skeletal muscle cell 
components in the serum, particularly during muscle 
wasting, is a key diagnostic indicator in PC. β-dystroglycan, 
a central component of the dystroglycan complex, 
plays a pivotal role in skeletal muscle cells by linking 
the intracellular actin cytoskeleton to the extracellular  
matrix (75). In PC patients, β-dystroglycan undergoes 
aberrant glycosylation and shows significant upregulation. 
These changes have led to its adoption as a marker for 
cachexia in clinical settings (76,77).

Carnosine, predominantly located in the muscle tissue, is 
metabolized by carnosine dipeptidase 1 (CNDP1). Intriguingly, 
circulating levels of CNDP1 show a positive correlation with 
survival rates, BMI and fat mass in PC patients. Conversely, 
these levels inversely associate with percentage of weight loss 
and other cachexia-related factors (78).

Extracellular matrix
Tissue inhibitor of metalloproteinases-1 (TIMP-1) have 
emerged as a crucial regulator of matrix metalloproteinase 
(MMP) activity. In PC, TIMP-1, along with intercellular 
adhesion molecule 1 (ICAM1), has been identified as a 
biomarker superior to carbohydrate antigen 19-9 (CA19-
9) in global quantitative proteomics profiling (79). 
Additionally, TIMP-1 upregulation positively correlates 
with weight loss and serves as a prognostic indicator in 
cachectic PDAC patients without jaundice (80).

Non-coding RNAs (ncRNAs)
ncRNAs, particularly microRNAs (miRNAs), are emerging 
cachexia mediators in PC cachexia. MiR-21, secreted 
by micro-vesicles, activates the toll-like receptor 7/
c-Jun N-terminal kinase (TLR7/JNK) pathway, inducing 
myoblast apoptosis (81). Serum miR-155 levels correlate 
with the severity of PC cachexia, influencing TNF-α 
signaling and regulatory T cell (Treg) function, as well 
as TLR signaling via suppressor of cytokine signalling 1 
(SOCS1), forkhead box P3 (Foxp3) and TGF-β-activated 
kinase 1 binding protein 2 (TAB2) (82-85). Both miR-
21 and miR-155 are overexpressed in intraductal papillary 

mucinous neoplasms (IPMNs) lesions, precursors of PC, 
suggesting their potential as predictive biomarkers for both 
PC and associated cachexia (86). 

MiR-let-7b-5p, a PC-derived exosomal miRNA, 
targets RNF20, an E3 ubiquitin ligase. This interaction 
al lev iates  insul in  res i s tance in  myotube cel l s  by 
deactivating the STAT3/Foxo1/GLUT4 axis (87). In 
PC, ZIP4 activates the cyclic adenosine monophosphate 
(cAMP) response element binding protein (CREB)-
miR-373-PH domain and leucine-rich repeat protein 
phosphatase 2 (PHLPP2) feed-forward loop, where the 
suppression of PHLPP2 promotes both tumor growth 
and cachexia by dephosphorylating Akt and inhibiting 
downstream CyclinD1 and STAT5-TGF-β signaling (88). 
CircANAPC7, a long non-coding circular RNA, functions 
as a miR-373 sponge, counteracting the suppression of 
PHLPP2, and inhibiting skeletal muscle wasting (89). 
In the adipose tissue of PC patients, ncRNAs modulates 
lipid metabolism and thermogenesis. MiRNAs such as  
miR-30b/c, miR-494-3p, miR-9, miR-338-3p, miR-106b, 
miR-93, and miR-27b are implicated in the regulation of 
UCP1 and other thermogenic proteins (90-94).

Immune cell remodeling in PC-induced sarcopenia and 
cachexia

The orchestration of immune responses plays a pivotal role 
in skeletal muscle regulation, where a delicate equilibrium is 
maintained between the removal of damaged muscle fibers 
and the promotion of myogenesis. This balance is disrupted 
in the immunosuppressive milieu of PC, dominated by 
an abundance of M2-like macrophages, myeloid-derived 
suppressor cells (MDSCs), and Tregs, overshadowing the 
roles of M1-like macrophages and effector T cells (95,96) 
(Figure 3).

Macrophages are central to the repair and remodeling 
of skeletal muscle. Initially, circulating monocytes are 
recruited to the site of injury, differentiating into M1-like 
macrophages that facilitate the clearance of necrotic tissue 
and support satellite cell proliferation (97). Subsequently, 
a phenotypic transition to M2-like macrophages occurs, 
favoring myogenesis (98). In the context of PC, however, 
M2-like macrophages synergize with tumor cells, 
promoting muscle wasting via STAT3 signaling (99) and 
crosstalk. PC cells overexpress CCL2, which upregulates 
CC-motif chemokine ligand 5 (CCL5) secreted by M2 
macrophages, stimulating PC cells to release TWEAK via 
CCL5/TNF receptor associated factor 6 (TRAF6)/NF-
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Figure 3 Mechanisms of immune cell remodeling in KRAS-mutant pancreatic cancer sarcopenia. The orchestration of immune responses 
is critical for skeletal muscle regulation, maintaining a delicate balance between the removal of damaged muscle fibers and the promotion 
of myogenesis. This equilibrium is disrupted in the immunosuppressive environment of KRAS-mutant pancreatic cancer, which is 
characterized by an abundance of M2-like macrophages, MDSCs, neutrophils, and Tregs. This altered immune landscape leads to myotube 
damage, muscle wasting, and a loss of regenerative myogenesis and plasticity. ECM, extracellular matrix; Tregs, regulatory T cells; KRAS, 
Kirsten rat sarcoma viral oncogene homologue; MDSCs, myeloid-derived suppressor cells. 

κB signaling, leading to skeletal muscle wasting through 
MURF-1 activation (100).

Furthermore, Kupffer cells, liver-resident macrophages, 
exhibit a correlation with both nutritional decline and 
tumor proliferation in PC (101).

Neutrophils, as initial responders to muscle injury, 
primarily focus on clearing debris. However, their 
prolonged presence can hinder muscle regeneration (102). 
PC cachexia is characterized by increased neutrophil counts 
and the upregulation of neutrophil-derived proteases, such 
as Cathepsin B (54), with neutrophils also being a significant 
source of LCN2, a mediator of both metabolic regulation 
and anorexia (103,104). Moreover, the presence of Ly6G+ 
neutrophils and granulocytic MDSCs (gMDSCs) has been 
linked to muscle wasting in PC (105), with the neutrophil/
lymphocyte ratio serving as a biomarker for cachexia-related 
inflammation (54).

T lymphocytes, particularly CD8+ cells, exert control 
over muscle mass independently and through modulation 
of macrophage function (106-108). Cachexia in early-
stage PDAC is associated with diminished levels of tumor-
infiltrating CD8+ T cells (109), where the activation of 
TLR7 on CD8+ T cells has been shown to counteract 
cachexia and limit tumor growth (110,111), underscoring a 
crucial inverse relationship between CD8+ T cell presence 
and cachexia. Conversely, the roles of CD4+ T helper 
cells and Tregs appear unchanged in cachexia, though a 
decrease in liver IL-4 mRNA has been observed, indicating 
a potential area for further exploration regarding CD4+ T 

cells’ involvement in cachexia (98).

Current therapeutic interventions for PC-
associated cachexia

Current therapeutic strategies against cachexia focus on 
restoring the balance between skeletal muscle degeneration 
and regeneration. Efforts to promote muscle regeneration 
include countering anorexia, nutritional supplementation, 
and encouraging physical activity, while strategies to 
discourage muscle degeneration involve suppressing 
inflammation and other catabolic signaling pathways  
(Table 3).

Prophagic therapy

In PC cachexia, the central nervous system is an integral 
and complex regulator of appetite. Inflammation in the 
PC milieu suppresses prophagic responses and enhances 
anorexigenic responses in the hypothalamus by endocrine 
hormones leptin and ghrelin (117). Growth hormone 
secretagogue receptor (GHS-R) functions as ghrelin’s 
receptor and controls the release of growth hormone as 
well, the latter an upstream regulator of IGF-1 in the 
muscle tissue. GHS-R delivers outstanding performance 
as a therapeutic target. Its antagonists, anamorelin and 
macimorelin are rising stars in the field of cachexia 
therapy. Anamorelin for PC associated cachexia treatment 
made its debut with the ONO-7643 trial and landed 

Immune cell remodeling in pancreatic cancer sarcopenia 

Neutrophils

Impact on 
skeletal muscle 

Outcome

ECM degradation
Myofiber degradation 
Vascular permeability 
Recruite monocytes

Myofiber degradation 
Recruite monocytes

M1–MΦ Triggering 
Myogenesis inhibition

M1 to M2 Polarization 
immune suppression

M1 to M2 polarization Phagocytosis 
Satellite cells growth
Fibroblast expansion 
Vascular permeability

Immune suppression
Suppress M1-MΦ
Pro tumorigenic 

Collagen Deposition

Muscle wasting ↑
Pro-inflammatory ↑ 
Myofiber damage ↑

Regenerative myogenesis ↓
Myofiber wasting ↑

Myotube remodeling ↑
Myotube fibrosis ↑
Myofiber damage ↑

Regenerative myogenesis ↓
Myofiber wasting ↑

Myotube remodeling ↑
Myotube fibrosis ↑

Myotube plasticity ↓
Myofiber damage ↑

CD8+

T cell
CD4+

T cell Treg cell Dendritic 
cell M1–MΦ M2–MΦ
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Table 3 Current therapeutic targets for pancreatic cancer-associated sarcopenia and cachexia

Pharmaceutical 
therapy

Therapeutical target or 
biochemical feature

Compound Clinical trial No. Phase and design Population N Primary outcomes
Cachexia/
sarcopenia

Study start and completion 
dates

Results

Prophagic therapy GHS-R Anamorelin NCT04844970 II, randomized, double blind, placebo-
controlled

US, unresectable or metastatic PDAC 100 Weight change Cachexia April 01, 2023 to NP Recruiting

Macimorelin NCT01614990 II, randomized, triple blind, placebo-
controlled

US, incurable solid tumor 15 Change in body weight, IGF-1 plasma levels 
and QoL score

Cachexia May 2012 to December 
2012

Published (112)

GDF15 Ponsegromab NCT05546476 II, randomized, double blind, placebo-
controlled

US, NSCLC, pancreatic, colorectal cancer 187 Weight change Cachexia November 21, 2022 to 
March 13, 2024

Active, not recruiting

Progestogens Progesterone Megestrol acetate NCT00637728 III, randomized, double blind, placebo-
controlled

US, stage II, III, or IV lung or pancreatic 
cancer

5 Caloric intake Cachexia June 2006 to September 
2006

Completed (not published)

Androgen Decanoate NCT03263520 Not applicable, randomized, double-
blind, vs. dexamethasone

Brazil, palliative high gastro-intestinal, 
hepatobiliary and pancreatic cancer

60 BMI, body weight, body composition, QoL 
score

Cachexia, 
sarcopenia

February 2016 to October 
31, 2017

Completed (not published)

Pro-myogenesis TNF-α Infliximab NCT00060502 II, randomized, double blind, placebo-
controlled

US, newly diagnosed pancreatic cancer 73 Change in lean body mass Sarcopenia April 2003 to February 2006 Completed (113)

Thalidomide NCT06017284 III, randomized, double blind, placebo-
controlled

China, metastatic PDAC 100 Rate of nausea/vomiting Cachexia November 01, 2023 to NP Recruiting

IL-1α Xilonix NCT03207724 I, open-label, single group assignment US, advanced or locally advanced 
pancreatic cancer

16 Maximum tolerated dose of Xilonix and 
onivyde, 5-fluorouracil/folinic acid in 
combination with Xilonix

Neither October 16, 2017 to 
October 27, 2020

Completed (114)

Activin type 2 receptors Bimagrumab NCT01433263 II, randomized, double blind, placebo-
controlled

Lithuania, Romania, Switzerland, UK, US, 
stage IV NSCLC or stage III/IV pancreatic 
adenocarcinoma

57 Thigh muscle volume change Sarcopenia August 2011 to April 2014 Completed (not published)

Myostatin LY2495655 NCT01505530 II, randomized, triple blind, placebo-
controlled

US, unresectable or metastatic pancreas 
cancer

125 Overall survival Neither December 2011 to January 
2016

Completed (not published)

Anti-inflammation Nutrients EPA and DHA NCT02681601 II, randomized, open-label vs. standard 
dietary intervention

US, unresectable PDAC 2 Body weight and body composition Cachexia, 
sarcopenia

July 19, 2016 to October 
01, 2021

Terminated

NSAIDs Ibuprofen Unknown Unknown Pancreatic cancer 16 Resting energy expenditure, serum CRP level Cachexia Unknown Completed (115)

Celecoxib IRCT201407222027N4 III, randomized, triple blind, placebo-
controlled

Iran, esophageal, gastric, colorectal and 
pancreatic cancer

90 Quality of life, body weight Cachexia October 2015 to NP Completed (116)

NSAIDs Ketorolac acid NCT05336266 Early I, open-label, single group 
assignment

US, advanced and refractory PDAC 20 Patient compliance Neither July 01, 2022 to NP Recruiting

Corticosteroids Prednisolone and 
dexamethasone

– – – – – – – – –

GHS-R, growth hormone secretagogue receptor; PDAC, pancreatic ductal adenocarcinoma; NP, not published; IGF-1, insulin-like growth factor 1; QoL, quality of life; GDF15, growth differentiation factor 15; NSCLC, non-small cell lung cancer; BMI, body mass index; TNF-α, tumor necrosis factor alpha;  
IL-1α, interleukin 1 alpha; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; NSAIDs, non-steroidal anti-inflammatory drugs; CRP, C-reactive protein. 
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approval in Japan in 2020 (118,119). It significantly 
improves body weight, lean body mass and appetite (118), 
whereas responsiveness is associated with higher total 
protein, albumin, transferrin and prognostic nutritional 
index, and lower neutrophil/lymphocyte and C-reactive 
protein (CRP)/albumin ratios (120). Anamorelin is still 
undergoing phase II clinical trials in PC patients in the US 
(NCT04844970). Macimorelin awaits further investigation 
based on its pilot trial (NCT01614990) (112). In the pilot 
trial, continual daily oral administration of macimorelin 
lasted one week. Although no statistic difference in body 
mass, physical function endpoints, appetite, food intake or 
energy expenditure was observed, body weight and quality 
of life exhibit numerical improvement (112). Anorexia is 
also induced by GDF15/GDNF family receptor alpha-
like (GFRAL) signaling (121). GFRAL’s ligand GDF15 is 
a potential therapeutical target for PC-associated cachexia. 
Ponsegromab (PF-06946860), a humanized monoclonal 
antibody (mAb) against GDF15, is currently under phase II 
trial (NCT05546476). 

Progestogens

Megestrol acetate is a progesterone derivative earliest 
u sed  for  acqu i red  immunode f i c i ency  syndrome 
(AIDS)-associated cachexia treatment as an appetite  
stimulant (122). Its anti-cachectic usage has extended 
to cancer-associated cachexia, effectively improving 
appetite and body weight in PC patients (NCT00637728) 
(123,124). Nandrolone decanoate is a minor endogenous 
androgen that managed to improve body weight, lean 
body mass and functionality in human immunodeficiency 
virus (HIV)-afflicted cachexia patients (125,126). A trial 
has been conducted on nandrolone decanoate’s efficacy for 
treating malnutrition in cancer patients, which included 
cachectic PC patients (NCT03263520), though no results 
have been published yet.

Inflammation suppression

In PC-associated cachexia, the integrated JAK/STAT3 and 
SMAD2/3 signaling aforementioned pathway is activated 
upon cytokine, activin and myostatin stimulation, which 
downregulates the expression of MyoD, a pro-myogenesis 
molecule. Cytokines, especially TNF-α and interleukin 
1 alpha (IL-1α) (82), as well as activin and myostatin, 
are potential therapeutic targets in cachexia treatment. 
Infliximab and thalidomide are TNF-α suppressants. 

Infliximab is a chimeric IgG1-κ mAb against TNF-α, while 
thalidomide is an inhibitor of TNF-α synthesis. However, 
neither drug resulted in significant improvement in cachexia 
in PC patients (113,127-129). 

Xilonix or bermekimab (MABp1) is a mAb specific 
to human IL-1α. It is currently under phase I trial 
(NCT03207724).

Bimagrumab (BYM338) is a human mAb against activin 
type 2 receptors. LY2495655 is a humanized IgG1 mAb 
against myostatin. Both studies have completed phase 
II trials on PC patients but neither exhibited promising  
results (130) (NCT01433263, NCT01505530). 

Anti-inflammatory nutrients 

Eicosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA) are ω3 or n-3 polyunsaturated fatty acids (PUFAs) 
found in cold-water fish. In PC patients, EPA managed 
to stabilize body weight as well as reduce CRP, IL-6 and 
cortisol-to-insulin ratio, while improving serum insulin, 
creating a pro-myogenesis profile (131-133). However, 
there were controversial results showing EPA failed to 
outperform placebo in weight stabilization (134,135). 
EPA plays an anti-cachectic role by inhibiting proteolysis, 
enhancing protein synthesis and aiding chemotherapy, and 
is most effective when provided in early stages of cachexia 
development (136,137). 

Non-steroidal anti-inflammatory drug (NSAIDs) and 
corticosteroids

Ibuprofen and celecoxib are selective COX2 inhibitors. 
Ibuprofen was shown to reduce resting energy expenditure 
as well as CRP levels, and celecoxib resulted in weight gain 
when combined with megestrol acetate in PC patients with 
cachexia (115,116,138). Ketorolac acid is a COX enzyme 
inhibitor, also known as a NSAID. In cancer-bearing 
mice with cachexia, it has shown to prolong survival and 
ameliorate weight, adipose and muscle loss in a T-cell-
dependent manner (139). It is still recruiting candidates 
for an early phase I trial on advanced and refractory 
PDAC patients (NCT05336266). Short-term usage of 
corticosteroids in treating cancer-associated cachexia 
already acquired moderate strength recommendation (140).

Anti-inflammatory diet

The Mediterranean diet is a balanced, pro-health structure 
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based on plant-origin foods, delivering a broad spectrum 
of nutrients and fibers essential to overall health. It also 
comprises moderate seafood, which is abundant in ω3 or 
n-3 PUFAs. The food pyramid of the Mediterranean diet 
includes fruit, vegetables and cereal as its bottom layer. 
Virgin olive oil is rich in monounsaturated oleic acids 
and antioxidant compounds, and it serves as the major 
culinary fat. Other natural sources of lipids include olives, 
nuts and seeds. Fish, shellfish, white meat and eggs are 
moderately consumed as the main source of animal protein 
instead of red meats. In addition to food consumption, 
culinary and physical activity in a sense of socialization 
as well as adequate rest is also an essential part of the 
Mediterranean lifestyle, contributing to an overall health 
and well-being (141). A study on stage III–IV colorectal 
cancer patients with cachexia delivered promising results. 
The Mediterranean diet increased weight, lean body mass, 
muscle strength, the global health status score and physical 
performance score while lowering TNF-α, high-sensitive-
C-reactive protein (hs-CRP) and IL-6 serum levels 
(IRCT20211027052884N1) (142). These results may shed 
light on future applications in PC.

Physical activity

Exercise, according to the 2020 American Society of 
Clinical Oncology (ASCO) guideline, awaits further 
evaluation to be approved for effective cancer-associated 
cachexia treatment (140). It is currently under investigation 
as a part of multimodal trials on PC patients with cachexia 
(NCT05420259 and NCT04907864).

These therapeutic interventions represent a multifaceted 
approach to tackling the complex issue of cachexia in PC, 
with a mix of pharmacological, nutritional, and lifestyle 
modifications aimed at improving patient outcome.

Conclusions

Comprehensive evidence updates the intricate crosstalk 
between KRAS-mutant PC and skeletal muscle atrophy, 
delineating the pathophysiological context essential for 
grasping sarcopenia and associated disorders. Thorough 
analysis enriches our knowledge of the complex causes of 
PC cachexia and sarcopenia and promotes the development 
of targeted therapeutic strategies.
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