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The hydrolyzation of raffinose into melibiose by using invertases under mild conditions
improves the nutritional value of soybean products. However, this strategy has
received little attention because a suitable invertase remains lacking. In this study,
a novel invertase named InvDz13 was screened and purified from Microbacterium
trichothecenolyticum and characterized. InvDz13 was one of the invertases with the
highest specific activity toward raffinose. Specifically, it had a specific activity of
229 U/mg toward raffinose at pH 6.5 and 35◦C. InvDz13 retained more than 80% of
its maximum activity at pH 5.5–7.5 and 25–40◦C and was resistant to or stimulated
by most cations that presented in soymilk. In soymilk treated with InvDz13 under
mild conditions, melibiose concentration increased from 3.1 ± 0.2 to 6.1 ± 0.1 mM
due to raffinose hydrolyzation by InvDz13. Furthermore, the prebiotic property of
InvDz13-treated soymilk was investigated via in vitro fermentation by human gut
microbiota. Results showed that InvDz13 treatment increased the proportion of the
beneficial bacteria Bifidobacterium and Lactobacillus by 1.6- and 3.7-fold, respectively.
By contrast, the populations of Escherichia and Collinsella decreased by 1.8- and
11.7-fold, respectively. Thus, our results proved that the enzymatic hydrolysis of raffinose
in soymilk with InvDz13 was practicable and might be an alternative approach to
improving the nutritional value of soymilk.

Keywords: invertase, soymilk pretreatment, raffinose hydrolyzation, melibiose, gut microbiota

INTRODUCTION

Raffinose (α-D-galactopyranosyl-[1→6]-α-D-glucopyranosyl-[1→2]-β-D-fructofuranoside) acc-
ounts for the second-highest concentration of galacto-oligosaccharides in soybean. Raffinose
concentration in legume ranges from 4.8 to 20.1 mg/g dry matter on the basis of seed sources
(Hartwig et al., 1997). It has been recognized as a candidate human prebiotic because it promotes
the growth of beneficial microbes, such as Bifidobacterium and Lactobacillus, in the gut (Trojanová
et al., 2006; Gibson et al., 2017; Adamberg et al., 2018; Zartl et al., 2018). However, raffinose leads
to flatulence in humans due to its utilization by gut bacteria, such as Escherichia, Enterococcus,
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and Streptococcus (Mao et al., 2018). Many studies have evaluated
the effectiveness of different processing techniques, including
soaking, cooking, germination, and enzymatic hydrolyzation, for
raffinose removal from soybeans (Oboh et al., 2000; Medeiros
et al., 2018). Among these techniques, enzymatic hydrolysis using
α-galactosidases to hydrolyze raffinose into galactose and sucrose
is thought to be a promising strategy because raffinose is an
α-galactosyl derivative of sucrose (Huang et al., 2018; Jang et al.,
2019; Katrolia et al., 2019; Geng et al., 2020). Furthermore,
enzymatic reactions are frequently conducted under mild energy-
and cost-saving conditions (Jang et al., 2019).

Raffinose is a conjunction of melibiose and fructose. Melibiose
is a reducing disaccharide that is composed of galactose and
glucose with α-1,6 linkages (Xu et al., 2017). Melibiose has
gained considerable attention since the early 21st century
because of its beneficial attributes. For example, it promotes
calcium absorption in the intestines and helps cure atopic
dermatitis (Kaneko et al., 2004). Evidence suggests that melibiose
is a novel autophagy-inducing small molecule that inhibits
aggregation-mediated neurodegenerative disorders, including
Alzheimer’s and Parkinson’s diseases, as well as polyglutamine-
mediated diseases (Lee et al., 2015; Rusmini et al., 2019; Lin
et al., 2020). Melibiose is a disaccharide that is indigestible by
humans. It can be used as a high-value additive in human
functional foods and pharmaceuticals to maintain and promote
good health (Tanaka et al., 2016). The appropriate intake of
melibiose increases Bifidobacterium growth and improves stool
condition in healthy humans (O’Connell et al., 2013; Adamberg
et al., 2018). In contrast to the hydrolysis of raffinose into
sucrose and galactose, the hydrolysis of raffinose into melibiose
improves the nutritional value of soybean and soymilk, which
contains 8.4–30 mg/g dry matter of raffinose (Garro and
Savoy, 2012). Several studies have focused on the enzymatical
hydrolysis of raffinose into melibiose. For example, an engineered
Saccharomyces cerevisiae was constructed to improve the whole-
cell biocatalytic production of melibiose from raffinose (Zhou
et al., 2017). However, no investigation was conducted to
hydrolysis of raffinose into melibiose in soybean and soymilk,
and no work has paid attention to evaluating the effect of the
end-products of this process on human health, especially gut
microbial diversity.

Invertases (EC 3.2.1.26) are carbohydrases that catalyze the
hydrolysis of sucrose, raffinose, and other related glycosides
(Kotwal and Shankar, 2009). The direct hydrolysis of raffinose
into melibiose and fructose by using invertase is a simple way to
obtain melibiose in soymilk. Commercially, soymilk is obtained
by soaking and grinding soybeans with tap water. The crude
slurry is then filtered, boiled, and kept at boiling temperature
for about 5–15 min. Finally, the heated soymilk was quickly
cooled to room temperature to obtain soymilk (Zuo et al.,
2016). The invertases added into soymilk are recommended to
complete raffinose hydrolysis at moderate or lower temperatures
to facilitate soymilk preparation. Furthermore, given that soymilk
has a pH of approximately 5.5–7.0 and is rich in cations (Jiang
et al., 2013; Zuo et al., 2016), the invertases used in soymilk
preparation must show high activity toward raffinose under
mild conditions. However, the raffinose hydrolysis capability of

only several invertases have been evaluated (Cuezzo de Ginés
et al., 2000; Zhou et al., 2016; Xu et al., 2017). Characterized
invertases, such as invertases from Penicillium chrysogenum
sp. 23 (Yakimova et al., 2017) and pea seedlings (Kim et al.,
2011), have limited utility in raffinose hydrolyzation because
of their low activities (highest activity of approximately 10%
under optimal conditions) and specific activities toward raffinose
(<50 U/mg) under mild conditions (pH 5.5–7.0 and ambient
or low temperatures). Hence, discovering novel invertases with
high raffinose hydrolysis activity under mild conditions will help
hydrolyze raffinose into melibiose in soybean products.

Microbial sources that thrive in cold environments, such
as the Antarctic, have attracted considerable attention because
their hydrolytic enzymes typically have higher activity at
lower temperatures than the hydrolytic enzymes of microbes
from temperate environments (Perfumo et al., 2018). In the
present study, a novel invertase from GH68 was screened and
characterized. Its application in hydrolyzation and improving the
prebiotic property of soymilk was also evaluated. Our results
demonstrated that InvDz13 was one of the invertases with
the highest specific activity toward raffinose and was resistant
to or even stimulated by most cations in soymilk. InvDz13-
treated soymilk increased the proportion of the beneficial bacteria
and decreased the populations of Escherichia and Collinsella.
Therefore, InvDz13 is suitable for hydrolyzing raffinose into
melibiose in soymilk under mild conditions to improve the
prebiotic property of soymilk.

MATERIALS AND METHODS

Screening for Positive Clones With
Invertase Activity
Antarctic sediment soil (S 62◦8′7.8′′, W 58◦58′50.03′′) was
collected in Dec. 2016 and stored at −20◦C until use. One gram
of wet sediment was mixed with 9 mL of sterilized seawater
and shaken at 200 rpm and 15◦C for 2 h. The suspension was
diluted through the standard dilution-to-extinction method to
10−6. Then, 100 µL aliquots of the dilutions were spread on
agar screening plates containing 0.2% raffinose, 0.5% tryptone,
0.1% yeast extract, 3.3% synthetic sea salt, and 1.0% agar and
incubated at 16◦C for 7 days. Colonies grown on screening
plates were picked and cultured in liquid screening medium
in 24-well plates at 16◦C for 3 days. Then, supernatants were
withdrawn and used for invertase activity determination with
raffinose as the substrate. Samples with high activities were used
for further research.

Identification of the Invertase-Producing
Strain
Positive strains were cultured in 5 mL of standard synthetic
sea salt medium (Sigma-Aldrich, St. Louis, MO, United States)
and incubated at 16◦C on a rotary shaker at 180 rpm for 24 h.
Then, the cells were withdrawn, and total genomic DNA was
extracted in accordance with the manufacturer’s instructions
(Sangon Biotech, Shanghai, China) and used as the template.

Frontiers in Microbiology | www.frontiersin.org 2 April 2021 | Volume 12 | Article 646801

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-646801 March 31, 2021 Time: 16:33 # 3

Liu et al. Novel Invertase for Raffinose Hydrolysis

The 16S rRNA gene was amplified by using the eubacteria
primers of Bact-27F (5′-AGAGTTTGATCMTGGCTCAG-3′)
and Bact-1492R (5′-GGTTACCTTGTTACGACTT-3′). The PCR
products were cloned into the pGEM-T vector (Promega, WI,
United States) and sequenced (Sangon Biotech, Shanghai, China).
A Blast search of NCBI1 was performed to determine the most
closely related species.

Purification of InvDz13 From the Culture
Supernatant
After culturing the strain Dz13 in 1 L Erlenmeyer flasks
containing 400 mL of liquid screening medium at 200 rpm
and 16◦C for 72 h, the culture supernatant was withdrawn by
centrifugation at 10,000 × g for 5 min and partially purified
with a DEAE-Sepharose FF column (10 mm × 200 mm,
Amersham Pharmacia, Uppsala, Sweden). The column was pre-
equilibrated with citrate–phosphate buffer and eluted with a
linear gradient of NaCl (0–1 M in a citrate–phosphate buffer
with the flow rate of 0.8 mL/min). The fractions exhibiting
invertase activity were pooled, concentrated in a low-binding
regenerated cellulose membrane, and further purified via gel
filtration through Sephacryl S100 (Amersham Pharmacia) pre-
equilibrated with 50 mM citrate–phosphate buffer (pH 6.5),
1 mM EDTA, 10% (v/v) glycerol, 5 mM β-mercaptoethanol, and
150 mM NaCl. The purified invertase was designated as InvDz13.

Identification and Sequence Analysis of
InvDz13
The purified InvDz13 was identified by using LC–ESI–MS/MS
(LTQ, Thermo Fisher Scientific, Shanghai, China) and mapped
to the GenBank database. On the basis of strain and protein
identification results, the InvDz13 gene was then cloned from
the genome of strain Dz13 by using the InvF (5′-ATGCACAC
TCCCCCGAAG-3′) and InvR (5′-TCAGGGCAGCGGCGTG
ACC-3′) primers designed with the levansucrase gene from
Microbacterium trichothecenolyticum as the reference. The PCR
product was sequenced by Sangon Biotech (Shanghai, China).

The sequence similarity search of InvDz13 was performed
by using BlastP at NCBI2. The enzyme’s module structure was
analyzed with the simple modular architecture research tool
SMART3. The multiple sequence alignment of InvDz13 with
other related invertase sequences was performed by using Clustal
X 2.0 and GeneDoc4.

Invertase Activity Assay
Protein samples were diluted in a suitable volume of citrate–
phosphate buffer (50 mM, pH 6.5). Invertase activities were
measured in 1 mL reaction mixtures containing 20 µL of the
purified enzyme, 50 mM citrate–phosphate buffer (pH 6.5),
and 200 mM sucrose and incubated at 35◦C for 5 min. The
reaction was terminated by heating the assay mixture at 100◦C

1https://www.ncbi.nlm.nih.gov/
2http://www.blast.ncbi.nlm.nih.gov
3http://smart.embl-heidelberg.de/
4http://www.psc.edu/biomed/genedoc

for 5 min. The amounts of released glucose and fructose were
measured by using the 3,5-dinitrosalicylic acid method (Ashwell
and Hickman, 1957). The unit (U) of invertase activity was
defined as the amount of enzyme required to hydrolyze 1 µmol
of sucrose per min under assay conditions.

Biochemical Characterization
The homogeneity of the target protein was determined through
sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) in 12% polyacrylamide gel and stained with
Coomassie brilliant blue R250. Protein concentration was assayed
by using the Bradford method at 595 nm with bovine serum
albumin as the standard (Sangon Biotech). The SDS-PAGE
gel was washed with 50 mM citrate–phosphate buffer at pH
6.5 for 1 h to remove SDS for native-PAGE analysis. It was
then incubated in an acetate–phosphate buffer (50 mM, pH
6.5) containing 200 mM sucrose at 35◦C for 30 min and
actively stained with 100 mM NaOH solution containing 0.2%
triphenyl tetrazolium chloride after sucrose solution removal
(Van et al., 2013).

The effect of pH on enzymatic activity was determined
at 35◦C in 50 mM citrate–phosphate buffer (pH 4.5–8.5)
and 50 mM Tris–HCl buffer (pH 8.5–9.5). The effect of
temperature on enzymatic activity was determined at pH 6.5 and
temperatures ranging from 10–55◦C. Enzyme stabilities against
pH and temperature were determined by incubating proteins at
various temperatures and different pH values. Residual activities
were determined as mentioned above. All experiments were
performed in triplicate.

The effects of metal ions, including Na+, K+, Mg2+, Cd2+,
Sr2+, Cu2+, Ca2+, Mn2+, Co2+, Zn2+, Ni2+, Fe2+, and Cr2+,
on InvDz13 activity were investigated in the presence of 5 mM
each ion at pH 6.5 and 35◦C by using sucrose and raffinose
as the substrates.

Kinetic Analysis
The appropriate concentration of InvDz13 was utilized under
optimal conditions to determine kinetic parameters (Km, Vmax,
and kcat/Km). The reaction was carried out by incubating the
enzyme in 50 mM citrate–phosphate buffer (pH 6.5) containing
sucrose, raffinose, or stachyose at concentrations of 1–1,000 mM
at 35◦C for 5 min. The amount of released glucose was
quantified by using the glucose oxidase method (Rongsheng
Biotech, Shanghai, China). The kinetic constants and their
corresponding errors were calculated by fitting the measured rate
to the Michaelis–Menten equation with the computer program
Origin 8.0 (n = 9).

Carbohydrate Assay
The reaction supernatants were collected after 10 min of
reaction and used to determine the mono-, di-, and tri-
saccharides released from sucrose, raffinose, or stachyose after
InvDz13 addition. Saccharides were determined by using high-
performance liquid chromatography (HPLC). Briefly, 50 µL of
each sample was analyzed at 30◦C by using a TSKgel Amide-80
column (4.6 mm × 250 mm, 5 µm, Tosoh Corporation, Kyoto,
Japan) and an evaporative light-scattering detector 2424 (Waters,
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United States). The eluting buffer was acetonitrile:water (70: 30,
v/v) at the flow rate of 0.4 mL/min.

Treatment of Soybean Milk With InvDz13
Soybeans harvested in northeast China were obtained from
Anhui RenRenFu Bean Co., LTD and soaked in water (water:
dry soybean, 3:1, w/w) for 8 h at 20◦C. The soaked soybeans
were ground with water at a total ratio of 1:7 by using a
colloid mill for three passes. Subsequently, the crude slurry
was filtered through muslin cloth to obtain the crude soymilk.
Boiled soymilk was prepared by boiling the crude soymilk for
15 min. The enzymatic hydrolysis of saccharides in soymilk
was performed as follows: InvDz13 at a final concentration of
10 U/mL was added into 100 mL of crude or boiled soymilk.
The reaction was conducted at 30◦C for 1 h on a shaker at
100 rpm. The crude soymilk was further boiled for 15 min
after treatment with InvDz13. Five milliliters of each soymilk
sample were mixed with 70% ethanol (1:1, v/v) for 5 min.
Then, the samples were centrifuged at 20,000 × g to discard
proteins. The supernatant was recovered and filtered through
0.22 µm filters. The saccharides were determined through HPLC
as described above.

In vitro Fermentation of Human Fecal
Samples With Soymilk and
InvDz13-Treated Soymilk
Fresh fecal samples were obtained from three physically and
mentally healthy adult donors (two females and one male)
who volunteered to participate in the experiment. All donors
were 20 years old, were on a regular diet, and did not
have gastrointestinal diseases or undergone antibiotic treatment
within 3 months. The same amount of fecal sample from
each donor was promptly suspended in pre-prepared sterile
physiological saline (0.9%, w/v) and blended to yield 15% (w/v)
fecal slurry. After 5 min of centrifugation at 500 × g for 5 min,
the suspension was diluted 10 times with gut microbiota medium
[1.0 L, containing 2 g of tryptone peptone, 2 g of yeast extract,
0.02 g of hemin, 0.5 g of L-cysteine, 0.5 g of bile salts, 0.1 g
of NaCl, 0.04 g of K2HPO4, 0.04 g of KH2PO4, 0.01 g of
MgSO4·7H2O, 0.01 g of CaCl2·6H2O, 2 g NaHCO3, 1.0 mL of
resazurin solution (1%, w/v), 2.0 mL of Tween-80, and 10 µL
of vitamin K] (Di et al., 2018; Control group) or gut microbiota
medium containing 1/5 (v/v) soymilk (RAF group) or InvDz13-
treated soymilk (M + F group). All samples were incubated
under anaerobic conditions at 37◦C for 24 h, removed from
incubation, submerged in an ice bath to halt microbial activity,
and subjected to DNA analysis. Each experiment was replicated
independently three times.

DNA Extraction and 16S rRNA Gene
Amplicon Analysis
Genomic DNA from different fermentative fecal samples was
extracted by using an E.Z.N.A. R©Stool DNA Kit (D4015, Omega,
Inc., United States) in accordance with the manufacturer’s
instructions. The V3–V4 region of the prokaryotic 16S
rRNA gene was amplified with slightly modified versions of

primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R (5′-
GACTACHVGGGTATCTAATCC-3′) in a two-step procedure
to limit amplification bias. The final amplified products
were purified by using AMPure XT beads (Beckman Coulter
Genomics, Danvers, MA, United States) and quantified with
Qubit (Invitrogen, United States). The amplicon pools were
prepared for sequencing. The amplicon library’s size and quantity
were assessed by using an Agilent 2100 Bioanalyzer (Agilent,
United States) and a Library Quantification Kit for Illumina
(Kapa Biosciences, Woburn, MA, United States), respectively.
The samples were sequenced on an Illumina MiSeq platform in
accordance with the manufacturer’s recommendations provided
by LC-Bio (Hangzhou, China).

Raw sequence reads were quality-filtered in accordance with
Fqtrim (v0.94). Chimeric sequences were filtered by using
Vsearch software (v2.3.4). Sequences with ≥97% similarity were
assigned to the same operational taxonomic units (OTUs)
by Vsearch (v2.3.4). Ribosomal Database Program (classifier)
was used for the taxonomic classification of sequences and
assignment to particular clusters. The differences in the dominant
species in different groups and multiple sequence alignments
were determined by using Mafft software (v7.310) to study
the phylogenetic relationship of different OTUs. OTU abundance
information was normalized by using the standard sequence
number corresponding to the sample with the lowest number
of sequences. The alpha diversity of samples was analyzed and
calculated by using QIIME (v1.8.0). Beta diversity was calculated
through PCoA and cluster analysis with QIIME software (v1.8.0).
Taxonomic changes that differed significantly between different
groups were analyzed through linear discriminant analysis effect
size (LEfSe) algorithm by using the software LEfSe 1.0.

Statistical Analysis
All of the experimental data were presented as mean ± standard
deviation. Statistical significance was evaluated through one-way
ANOVA followed by Student’s t-test with GraphPad Prism 7.0.
P < 0.05 was considered statistically significant.

RESULTS AND DISCUSSION

Screening and Sequence Analysis of
InvDz13
An invertase from strain Dz13 (defined as InvDz13) with high
specific activity toward raffinose (ca., 130 U/mg) was screened out
through the primary screening of invertase-producing bacteria
on agar plates, the rescreening of high-activity invertase by using
liquid fermentation, and the testing of invertase activity in the
culture supernatant. The 16S rRNA gene of strain Dz13 shared
99.93% sequence identity (100% coverage) and 99.93% sequence
identity (99% coverage) with that of an uncultured bacterium
clone CZ121 (Accession No. GU272293) and Microbacterium
sp. strain L4 (KY412841) in the GenBank database, respectively.
It shared 99.1% sequence identity (100% coverage) with an
M. trichothecenolyticum type strain in the EZbiocloud database
(Accession No. JYJA01000006). Given that 98.65% 16S rRNA
gene sequence similarity could be used as the threshold for
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differentiating two bacterial species (Kim et al., 2014), Dz13 was
thus named temporarily as M. trichothecenolyticum Dz13.

Invertase activity reached 4,460 U/L after 72 h of the
cultivation of M. trichothecenolyticum Dz13 in liquid screening
medium (Figure 1A). Several bands were observed in the
SDS-PAGE gel loaded with the culture supernatant withdrawn
at 72 h (Figure 1B). However, triphenyl tetrazolium chloride
staining results showed only one band with invertase activity
(Figure 1C; Van et al., 2013). This protein, which was named
InvDz13, was further purified successfully from the culture
supernatant by using an ion-exchange column and gel filtration
column (Figure 1D) and was identified through the LC–TOF–
MS/MS technique. InvDz13 was matched to a levansucrase
from M. trichothecenolyticum with 99% probability (KJL40835).
Only three strains from genus Microbacterium, including
Microbacterium paraoxydans (Ojha et al., 2016), Microbacterium
laevaniformans (Kim et al., 2005), and Microbacterium
saccharophilum K-1 (Ohta et al., 2014), have been reported
to produce beta-fructofuranosidase or levansucrase. Therefore,
our research on invertase from M. trichothecenolyticum
Dz13 will deepen our understanding of invertases from
Microbacterium spp.

The InvDz13 gene was cloned by using the
M. trichothecenolyticum Dz13 genome as the template
and two primers designed with the levansucrase gene from
M. trichothecenolyticum as the reference. The cloned InvDz13
was 537 aa in length. It shared the same sequence with a GH68
protein from M. trichothecenolyticum (WP_045301577) and
89.49–96.46% sequence identities with other GH68 proteins
from the GenBank database. All these proteins are annotated
from many different RefSeq genomes and have not been
biochemically characterized5. InvDz13 possessed the Pfam
signature of Glyco-hydro-68 from residues 60 to 522 (E-value
3.1 × e-145). In InvDz13, a signal peptide was predicted from
residues 1 to 35 in accordance with the detection of invertase

5http://www.ncbi.nlm.nih.gov/

activity in the culture broth. Comparison with the amino acid
sequences of the characterized invertases revealed that InvDz13
had 11 specific conserved regions of the GH68 family6. Therefore,
InvDz13 was a member of the GH68 enzyme family.

Biochemical Characterization of InvDz13
InvDz13 displayed maximum activity at pH 6.5 when sucrose was
used as the substrate and retained more than 70% of its maximum
activity at pH 5.0–8.5 (Figure 2A). The optimal temperature of
InvDz13 was 35◦C. InvDz13 retained 50% of its original activity
when tested at 15◦C and 10% of its highest activity when tested at
45◦C (Figure 2B). The optimal pH and temperature of InvDz13
were similar to those of bacterial invertases from Bacillus sp.
HJ14 (Zhou et al., 2016; Table 1), Arthrobacter globiformis (Win
et al., 2004), and Bifidobacterium infantis (Warchol et al., 2002),
which have optimal pH values and temperatures of 6.0–7.5 and
30–40◦C, respectively.

The pH stability of InvDz13 was assayed at 30◦C. InvDz13
was stable at pH 6.0 and retained approximately 50% of its
original activity after 8 h of incubation at the optimal pH of 6.5
(Figure 2C). It lost its activity quickly after 1 h of incubation at
pH 5.0. InvDz13 was stable at temperatures lower than 30◦C with
a half-life time of more than 7 h. By contrast, its half-life times at
35◦C and 40◦C were 1.2 and 0.5 h, respectively, (Figure 2D). It
became inactive after incubation at 45◦C for 30 min. These data
indicated that InvDz13 was a psychrophilic invertase. pH and
thermal stabilities are important commercially profitable features
of an enzyme given that the operation of enzyme-catalyzed
reactions at moderate temperatures and weak acidic/neutral pH
reduces energy and equipment costs (Singh et al., 2018).

The effects of cations on InvDz13 activity were evaluated by
using sucrose and raffinose as the substrates (Table 2). Overall,
cations showed similar effects on InvDz13 activity regardless of
the substrate used. Most of the commonly used cations, such
as Na+, K+, Mg2+, Ca2+, Zn2+, and Cr3+, had little effect

6http://www.cazy.org/

FIGURE 1 | Expression and purification of InvDz13. (A) Time course of invertase activity in culture supernatant of M. trichothecenolyticum Dz13. (B,C) Coomassie
brilliant blue (B) and triphenyl tetrazolium chloride (C) stained 15% SDS-PAGE gel of InvDz13 in culture supernatant of M. trichothecenolyticum Dz13.
(D) Coomassie brilliant blue stained 15% SDS-PAGE gel of InvDz13 after ion-exchange column and gel filtration column purification.
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FIGURE 2 | Effects of pH and temperature on the activity and stability of InvDz13. (A) pH optimum. Samples were incubated at 35◦C. (B) Temperature optimum.
Samples were incubated at pH 5.0. (C) pH stabilities at pH 5.0, 6.0, 6.5, and 7.0, respectively. Samples were incubated at 30◦C. (D) Thermostabilities at 30, 35, and
40◦C, respectively. Samples were incubated at pH 6.5. Standard deviations and values were calculated from triplicate technical repeats of measurements.

on enzyme activity, with 10% stimulatory or inhibitory effects
at the concentration of 5 mM. The cations Fe2+, Fe3+, and
Mn2+ increased invertase activity to 169.5, 148.8, and 432.6%,
respectively. The capability of the metal ion Mn2+ to increase
the enzymatic activity of several invertases has been reported.
For example, Mn2+ enhances the activity of invertase from
Aspergillus phoenicis by up to 277% (Rustiguel et al., 2015).
Mn2+ increases INVA and INVB activities by 80% and 20%,
respectively, (Pérez de los Santos et al., 2016). The tolerance
of InvDz13 to these commonly used ions suggested that it
could hydrolyze substances containing various ions, such as
soymilk. Cu2+ was the only ion that inhibited InvDz13 activity
severely. Specifically, only 30–40% activity was retained in the
presence of 5 mM Cu2+, suggesting that thiol groups or His
residues that are important for enzyme activity were present.
Cu2+ may coordinate with His residues on protein groups and
induce conformational changes in protein structure (Pérez de
los Santos et al., 2016). Furthermore, Cu2+ oxidizes cysteine
residues in proteins and cause structural changes and protein
activity alterations.

Substrate Specificity and Kinetic
Constants
The substrate specificity and action mode of InvDz13 were
investigated by incubating the enzyme with sucrose, cellobiose,
maltose, lactose, raffinose, and stachyose at pH 6.5 and 35◦C.
In contrast to most bacterial invertases that were highly
specific for sucrose (Table 1), purified InvDz13 had specific
activities of 225, 229, and 24 U/mg for sucrose, raffinose, and
stachyose, respectively. InvDz13 released fructose from sucrose,
raffinose, and stachyose (Figure 3) but failed to hydrolyze other
saccharides, including cellobiose, maltose, and lactose, because
they lacked the β-D-fructofuranosyl moiety (Supplementary
Table 1), suggesting that InvDz13 was an invertase (Zhang
et al., 2015). Only a few bacterial invertases show activities
toward other saccharides, such as raffinose (Table 1). Similar
to InvDz13, Lactobacillus reuteri CRL 1100 invertase was active
on sucrose, raffinose, and stachyose. However, it only showed
sucrose activities of 29% and 23% toward raffinose and stachyose,
respectively, (Cuezzo de Ginés et al., 2000). Some other reports
have shown approximately 10% sucrose activity toward raffinose
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TABLE 1 | Comparison of biochemical properties of InvDz13 with other bacterial invertases.

Microorganism Opt. pH Opt. temp.
(◦C)

Km (mM) Specific activity (U/mg) References

Sucrose Raffinose Sucrose Raffinose

Microbacterium trichothecenolyticum 6.5 35 4.5 ± 0.2 14.2 ± 0.7 225 229 This study

Synechocystis sp. 7.0 30 14.7 NR# NR NR Kirsch et al., 2018

Leuconostoc mesenteroides 6.0 45 25.66 ± 1.2 56.82 ± 1.5 469 ± 23 195 ± 16 Xu et al., 2017

Bacillus sp. HJ14 8.0 30–32.5 62.9 NR 155.1 ± 1.5 4.5 ± 0.1 Zhou et al., 2016

Microbacterium saccharophilum K-1 6.5 40 NR NR 140.1 ± 14.1 NR Ohta et al., 2014

Bifidobacterium longum KN29.1 6.2 50 29.4 ± 1.5 NR 106.09 NR Jedrzejczak-Krzepkowska
and Stanislaw Bielecki, 2011

Bifidobacterium adolescentis G1 5.7 50 38 79.4 86 NR Omori et al., 2010

Enterobacter pCNK4 8.0 37 NR NR 0.438 NR Kumar et al., 2016

Enterobacter pCNK5 8.0 37 NR NR 0.184 NR Kumar et al., 2016

Thermotoga maritima 5.5 60 51 NR NR NR Menéndez et al., 2013

Microbulbifer rFF33 6.0 35 NR NR 685.6 150.83 Kobayashi et al., 2012

Microbulbifer rIN33 6.0 35 NR NR 30 6.6 Kobayashi et al., 2012

Bifidobacterium longum 6.2 37 31.45 64.56 NR NR Bujacz et al., 2011

Leishmania 5–7 40 152 ± 30 141 ± 30 NR NR Belaz et al., 2015

Bifidobacterium adolescentis G1 6.1 45 11 NR 101 NR Muramatsu et al., 2014

#NR: not reported.

TABLE 2 | Effects of cations on InvDz13 activity.

Metal ions Sucrose Raffinose

None 100.0 100.0

K+ 94.5 ± 0.9 104.0 ± 0.9

Na+ 97.5 ± 2.7 106.8 ± 5.0

Sr2+ 108.8 ± 0.2 111.3 ± 0.8

Cu2+ 41.9 ± 0.2 33.5 ± 1.9

Fe3+ 148.8 ± 3.2 128.8 ± 1.5

Mg2+ 97.4 ± 0.7 82.1 ± 1.3

Ca2+ 94.9 ± 7.9 89.0 ± 1.2

Co2+ 169.5 ± 0.8 169.3 ± 3.3

Mn2+ 432.6 ± 16.5 152.6 ± 1.3

Zn+ 100.5 ± 4.6 101.9 ± 0.4

Ni2+ 95.5 ± 4.3 85.7 ± 2.9

Fe2+ 128.2 ± 0.3 123.0 ± 0.6

Cr3+ 103.4 ± 1.0 91.4 ± 1.3

Samples were incubated in the presence of 5 mM each ion at pH 6.5 and 35◦C
using sucrose and raffinose as the substrates, respectively.

(Table 1). The activities of bacterial invertases toward stachyose
have been rarely reported (Lincoln and More, 2018).

The kinetic constants of rInvDz13 on sucrose were tested
under optimal conditions. The values of the kinetic parameters
Km, kcat, and kcat/Km were 4.5 ± 0.2 mM, 504 ± 0.1 s−1, and
112 ± 1.3 mM−1 s−1, respectively, (Supplementary Figure 1A).
The Km value of InvDz13 fell at the lower end of the Km values
of 2.4–370 mM reported for most bacterial invertases, suggesting
that the sucrose affinity of InvDz13 was stronger than that of
most bacterial invertases (Table 1). For example, invertase from
Synechocystis sp. shows a Km of 14.7 mM toward sucrose (Kirsch
et al., 2018), whereas invertases from Erwinia amylovora (Bogs
and Geider, 2000) and Bacillus cereus TA-11 (Yoon et al., 2007)
have Km values of 125 and 370 mM, respectively.

The kinetic parameters Km, kcat, and kcat/Km of InvDz13
toward raffinose and stachyose were 14.2 ± 0.7 mM,
3944 ± 15.3 s−1, 277 ± 27.6 mM−1 s−1, 65.2 ± 3.07 mM,
2368.3 ± 7.1 s−1, and 36.3 ± 5.6 s−1, respectively,
(Supplementary Figures 1B,C), suggesting that InvDz13
had better affinity for sucrose than for raffinose and stachyose.
However, the raffinose and stachyose affinity of InvDz13
could not be compared with that of other bacterial invertases
because the Km values of only two bacterial invertases, namely,
L. mesenteroides [56.82 ± 1.5 mM, (Xu et al., 2017)] and
Bifidobacterium adolescentis G1 [79.4 mM, (Omori et al., 2010)],
for raffinose have been reported, and no Km data of bacterial
invertases for stachyose have been reported (Table 1).

Application of InvDz13 in Saccharide
Hydrolysis in Soymilk
Soymilk is a traditional food in Asian countries. It contains
8.4–30 mg/g dry matter raffinose (Garro and Savoy, 2012). The
hydrolysis of raffinose-type saccharides in soymilk would reduce
flatulence symptoms after drinking soymilk. Given that InvDz13
showed high activities toward sucrose and raffinose and the
capability to hydrolyze stachyose, it was utilized to hydrolyze
raffinose-type saccharides in soymilk. Our results showed that
sucrose, melibiose, raffinose, and stachyose were present in
crude and boiled soymilk (Figure 4). Boiling partially removed
raffinose from soymilk. Raffinose concentration decreased from
2.8 mM to 2.2 mM after 15 min of boiling. However,
boiling did not affect melibiose concentration in soymilk. By
contrast, the concentrations of sucrose and stachyose increased
from 4.6 to 10.6 mM and from 1.1 to 4.35 mM after
15 min of boiling, respectively, (Figure 4). InvDz13 hydrolyzed
saccharides effectively in soymilk. In crude or boiled soymilk,
InvDz13 hydrolyzed sucrose, raffinose, and stachyose completely
within 1 h. Melibiose concentration increased from 3.1 to
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FIGURE 3 | Bioconversion of sucrose, raffinose, or stachyose through InvDz13 hydrolysis. Reaction supernatants were collected after 10 min reaction and used to
determine mono-, di-, and tri-saccharides released from sucrose, raffinose, or stachyose after adding InvDz13. Saccharides were determined using HPLC at 30◦C
by using a TSKgel Amide-80 column and an evaporative light-scattering detector 2424.

FIGURE 4 | Treatment of soymilk with InvDz13. The crude soymilk (A) and boiled soymilk (B) were treated with 10 U/mL InvDz13 at 30◦C for 1 h. Then the crude
soymilk was further boiled for 15 min. Each soymilk sample was mixed with 70% ethanol (1:1, v/v) for 5 min, centrifuged at 20,000 × g to discard proteins, and
determined using HPLC to detect the saccharides. Values are the means of three replication ± standard deviation.

5.6 mM in crude soymilk and from 3.1 to 6.1 mM in boiled
soymilk (Figure 4).

Different processing techniques for the removal of raffinose
from soybeans and soymilk have been investigated (Oboh et al.,
2000; Medeiros et al., 2018). Among these techniques, the
enzymatic hydrolysis of raffinose into sucrose and galactose
by using α-galactosidases has been extensively investigated
because raffinose is an α-galactosyl derivative of sucrose
(Huang et al., 2018; Jang et al., 2019; Katrolia et al., 2019;

Geng et al., 2020). In contrast to the strategy of using α-
galactosidase, the hydrolyzation of raffinose into melibiose
will increase the nutrient value of soybean products because
melibiose possesses several beneficial attributes (Kaneko et al.,
2004; O’Connell et al., 2013; Lee et al., 2015; Adamberg et al.,
2018; Rusmini et al., 2019; Lin et al., 2020). However, no
invertase has been used to treat raffinose-type saccharides in
soymilk due to the lacking of suitable invertases. We confirmed
that the bacterial invertase InvDz13 successfully transformed
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the flatulence-inducing raffinose into melibiose and doubled
melibiose concentration in soymilk. Therefore, the enzymatic
hydrolysis of raffinose in soymilk by using InvDz13 is practicable
and may be an alternative method for improving the nutritional
value of soymilk.

Effects of Soymilk or InvDz13-Treated
Soymilk on the in vitro Fermentation of
Human Gut Microbiota
In vitro fermentation studies on fecal consortia with soymilk
(RAF group, containing raffinose) or InvDz13-treated soymilk

(M + F group, wherein raffinose was hydrolyzed into melibiose
and fructose) were performed to investigate the variation
in human gut microbiota composition and further illustrate
the nutrition-improving value of hydrolyzing raffinose-type
saccharides in soymilk by using InvDz13. Interestingly,
soymilk and InvDz13-treated soymilk caused significant overall
structural changes in human gut microbiota (α- and β-diversity,
Supplementary Figure 2 and Figure 5A). Comparison with
the control revealed that both kinds of soymilk increased
Bacteroidetes and Actinobacteria but reduced Firmicutes and
Proteobacteria proportion (Figure 5B and Supplementary
Figure 3). In detail, soymilk and InvDz13-treated soymilk

FIGURE 5 | The effects of soymilk (RAF) and InvDz13-treated soymilk (M + F) on human gut microbiota via in vitro fermentation. (A) Principal component analysis.
(B) The taxonomic composition distribution at the phylum level. (C) The relative abundance of phylum Bacteroidetes to Firmicutes. (D) The relative abundance of
phylum Proteobacteria. (E) The taxonomic composition distribution at the genus level. (F) The relative abundance of genus Escherichia. (G) The relative abundance
of genus Bifidobacterium. (H) The relative abundance of genus Lactobacillus. The data were analyzed using student’s t- test (**P < 0.01, ***P < 0.001, and
****P < 0.0001). Data show mean ± SD, n = 4.
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increased the Bacteroidetes:Firmicutes ratio, a standard signature
seen in lean and healthy phenotypes (Ridaura et al., 2013; Sharma
et al., 2018), by 1.6- and 3.7-fold (Figure 5C). By contrast, the
population of Proteobacteria in the treated samples decreased
by 1.8- and 11.7-fold, respectively, compared with that in the
control samples (Figure 5D).

In the control group, Proteobacteria genera, such as
Enterobacter, Enterobacteriaceae, Klebsiella, and Escherichia,
dominated due to their capability to metabolize amino
acids as carbon and energy sources under carbohydrate-
limited conditions (Figure 5E and Supplementary Figure 4;
Adamberg et al., 2018). Escherichia abundance was reduced
more significantly in the InvDz13-treated soymilk group (M + F:
2.1 ± 0.74%; P < 0.0001) than in the control group (RAF:
17.6 ± 1.98%, P < 0.0001; Figure 5F). The intake of raffinose,
especially at high doses, causes flatulence in sensitive hosts
due to the gas produced by gut bacteria, such as Escherichia,
Collinsella, Enterococcus, and Streptococcus, during raffinose
metabolism (Rey et al., 2013; Mao et al., 2018). Thus, the
population of g_Collinsella in the samples treated with soymilk
was significantly up-regulated compared with that in the
control samples (P < 0.0001). This phenomenon was not

observed in samples prepared with InvDz13-treated soymilk.
Furthermore, the InvDz13-treated soymilk group had lower
ratios of g_Streptococcus and g_Enterococcus than the soymilk
group (P < 0.05; Figure 5E and Supplementary Figures 4, 5).
A similar signature was observed in soymilk-treated groups: the
abundances of the two reported prebiotic genera Bifidobacterium
and Lactobacillus had increased dramatically (P < 0.0001 or
P < 0.001) due to their capability to adhere to intestinal mucus
and inhibit gastrointestinal pathogens (Figures 5G,H; Schroeder
et al., 2018; Sanders et al., 2019). Furthermore, the proportion
of the butyrate-producing bacteria g_Anaerostipes, which can
stimulate prebiotic effects with Bifidobacterium and increase
the content of acetic acid, propionic acid, and butyric acid to
promote human health (Scott et al., 2014; Sanders et al., 2019),
was 9.4-fold higher in the InvDz13-treated soymilk group than
in the control group (P < 0.01; Supplementary Figure 4).

Specific bacteria that varied with soymilk types were detected
on the basis of LEfSe. A total of 167 significantly different OTUs
were identified in the three groups (Figure 6). Among these
OTUs, 89, including o_Enterobacteriales, p_Proteobacteria, and
g_Escherichia, were associated mainly with the control group.
Fifty-seven OTUs, consisting of the prebiotic g_Lactobacillus

FIGURE 6 | Comparisons of microbiota among Control, soymilk (RAF), and InvDz13-treated soymilk (M + F) groups based on linear discriminant analysis effect size
(LEfSe). Taxa enriched in microbiota from Control (red), RAF (blue), or M + F (green) were indicated with a positive LDA score, respectively, (taxa with LDA score >2
and significance of α < 0.05 determined by Wilcoxon signed- rank test).
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(Zartl et al., 2018; Sanders et al., 2019) and the flatulent
g_Collinsella (Rey et al., 2013), were highly related to the control
group. However, 21 OTUs, including only prebiotic bacteria,
such as g_Bifidobacterium and g_Anaerostipes (Scott et al., 2014;
Gibson et al., 2017; Zartl et al., 2018; Sanders et al., 2019),
were associated with the InvDz13-treated soymilk group. All
these results proved that InvDz13 treatment can help improve
the nutritional value of soymilk by increasing the proportion of
beneficial bacteria, but dramatically decreased the population of
gas-producing bacteria.
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