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Abstract

Culling of infected individuals is a widely used measure for the control of several plant and animal pathogens but culling
first requires detection of often cryptically-infected hosts. In this paper, we address the problem of how to allocate resources
between detection and culling when the budget for disease management is limited. The results are generic but we
motivate the problem for the control of a botanical epidemic in a natural ecosystem: sudden oak death in mixed evergreen
forests in coastal California, in which species composition is generally dominated by a spreader species (bay laurel) and a
second host species (coast live oak) that is an epidemiological dead-end in that it does not transmit infection but which is
frequently a target for preservation. Using a combination of an epidemiological model for two host species with a common
pathogen together with optimal control theory we address the problem of how to balance the allocation of resources for
detection and epidemic control in order to preserve both host species in the ecosystem. Contrary to simple expectations
our results show that an intermediate level of detection is optimal. Low levels of detection, characteristic of low effort
expended on searching and detection of diseased trees, and high detection levels, exemplified by the deployment of large
amounts of resources to identify diseased trees, fail to bring the epidemic under control. Importantly, we show that a slight
change in the balance between the resources allocated to detection and those allocated to control may lead to drastic
inefficiencies in control strategies. The results hold when quarantine is introduced to reduce the ingress of infected material
into the region of interest.
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Introduction

There is increasing interest in coupling epidemiological with

economic models in order to identify optimal strategies for disease

control [1–5]. Sethi [6] and others [7–9] first used optimal control

theory to identify optimal strategies for disease control under a

range of simplified epidemiological scenarios. More recent work

has focused on introducing more realistic scenarios, for example

when resources for control are limited [2], when disease occurs in

heterogeneous landscapes [1], and when the time-scales for control

occur within and across multiple seasons [3]. In this paper, we use

these new approaches to address the problem of optimization of

disease control in mixed species stands. We focus on a culling

strategy, a widely used method for the control of plant and animal

diseases in which infected hosts are removed to prevent further

transmission of infection so that they are no longer capable of

spreading infection [10–13]. Our principal objective is to identify

optimal culling strategies for disease control and to investigate how

limited resources should be balanced between disease detection

and eradication in order to maximize the effectiveness of the

control policy. Here, we define eradication in the sense frequently

used in plant disease epidemiology as reducing the rate of

production of inoculum during the course of the epidemic by

destroying the sources of inoculum (culling) [14,15].

We motivate our analyses for the control of a particular class of

unidirectional epidemics in mixed two-species stands, in which

both species are susceptible but one is a spreader and the other is an

epidemiological dead-end to the pathogen cycle of infection. Such a

scenario has been observed in the dynamics of diseases such as

bubonic plague [16] in which rats are the spreader species, with

humans being largely infected by the rat population [16]. Another

example, which we study here, occurs in sudden oak death (SOD)

in which the spreader may be an under-storey species, with the dead-

end species frequently being a target for preservation [17,18].

When the dead-end species is indeed targeted for preservation, a

simple solution to the problem of disease control might be to

eradicate the species driving the infection. Such a naı̈ve solution is,

however, far from optimal. Although it prevents further spread

onto the target species, complete removal of the spreader species

may have extremely negative impacts on the stability of the

ecosystem. An optimal control strategy must seek to preserve both

species. How this is done depends upon the growth and infection

dynamics of the two host species, and importantly too on the ease

with which infected spreader hosts are detected and removed.

Specifically, we consider the control of an epidemic of sudden

oak death in Californian coastal forests, where the pathogen, an

oomycete, (Phytophthora ramorun) mainly affects bay laurel (Umbel-

luria californica) - coast live oak (Quercus agrifolia) communities
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[10,19]. The causal agent, P. ramorun, affects bay laurel that, in

turn, acts as a source of inoculum for secondary infection. From

infected bay laurel, the pathogen produces spores that spread

aerially, by wind and rain splash dispersal mechanisms, to

susceptible individuals (bay laurel and coast live oak)[10]. Bay

laurel is an effective spreader species that seldom dies from infection.

Coast live oak is only infected from bay laurel and dies from

infection, accounting for millions of tree mortalities in California

[10]. There is no transmission of infection from coast live oak but

it is also primarily targeted for preservation. Several control

methods have been tested to prevent and contain the spread of P.

ramorum on bay laurel in Californian forests but culling of infected

spreader trees and a quarantine policy to minimize introduction of

inoculum are by far the most commonly used methods [18]. We

consider a mixed species stand of bay laurel and coast live oak, in

which the objective is to deploy a fixed amount of resource to

preserve as many healthy trees of both species as possible, subject to

placing a greater utility in preserving coast live oak than bay laurel.

We show first that when there is a limit on expenditure, it is optimal

to cull as many infected bay laurel trees as possible for SOD in two-

species mixed evergreen communities. The result is unsurprising but

our analyses yield considerably greater insight into the effectiveness

of control strategies when allowance is made for incomplete

knowledge of the infection status. The limited resource then needs

to be partitioned into expenditure on detection as well as culling. In

particular we investigate the trade-off in detection with eradication

in achieving efficient disease control. Finally, we extend the results

to consider how to optimize strategies that also include quarantine

measures to reduce the ingress of infected material, for example by

limiting access to forest.

Model
A pair of systems of non-linear differential equations is used to

describe the dynamics of an epidemic spreading on a community

comprising two species, with unidirectional coupling and external

infection. Control is applied to the system through culling of

infected individuals and quarantine. These control measures

respectively reduce the internal and external force of infection.

By taking into account the economic costs attached to control

strategies, we address the problem of disease control as a cost-

effectiveness problem.

Epidemic Model. We consider a community in which a

pathogen (P. ramorum) is able to infect two different host species.

We assume that disease builds up on bay laurel, the spreader species,

from which it spreads on to the coast live oak (dead-end), hereafter

referred to as species 1 and 2 respectively. Each individual within

the host community exists in one of the following states: susceptible

(S) and infected (I). Since species 1 (spreader) is primarily targeted

for control, its infected class can be further sub-divided into two

sub-classes: infected and not yet detected (I1) and infected and

detected (D1). We also assume that the community is subject to an

external source of infection due to free-living inoculum (X )
coming from outside the region of interest. The vital dynamics of

each species are constrained by the carrying capacity of the

environment, and the natural competition between species.

Control is effected by culling involving constant removal of

detected individuals from the species 1. The dynamics of the

epidemic are given by the following set of differential equations:

d S1

dt
~g1{d1S1{c1S1X{b11S1(I1zD1)

d I1

dt
~c1S1Xzb11S1(I1zD1){(m1zd1za)I1

ð1Þ

d D1

dt
~aI1{wfD1{m1D1{d1D1

d S2

dt
~g2{d2S2{c2S2X{b12S2(I1zD1)

d I2

dt
~c2S2Xzb12S2(I1zD1){(d2zm2)I2

ð2Þ

where gi and di represent respectively the recruitment function

and the rate of loss of each species, m{1
i the infectious period, and

ci the rate of external infection with i~1,2. b11 is the rate of

infection within the first species, and b12 is the rate of infection

from the first species to the second species; a is the rate of detection

of infected individual and f is the proportion of detected

individuals that are culled. The parameter w is the rate at which

culled individuals are removed from the population. For the sake

of simplicity, we assume that culled individuals are instantaneously

removed from the population, giving w~1. The model assumes

homogeneous mixing (i.e., a spore originating from one individual

is equally likely to land on and start infection on any other

individual in the system). Given the scale of interest, namely a

forest stand, this is a plausible assumption for P. ramorum which has

the ability to spread readily by aerial dispersal of copiously

produced spores over several kms.

For the sake of simplicity, we assume henceforth that the growth

functions gi are given by the simple monomolecular function

gi~bi(k{
P2

j~1 (SjzIj){D1) with i~1,2; where k is the

carrying capacity of the environment, and bi is the recruitment

rate of each species. However, the results derived below hold for

more complex functions, such as the commonly used logistic

growth function. It is important to note that even though the

disease dynamics on species 2 do not directly affect the behaviour

of the epidemic on species 1, they do affect the vital dynamics of

the second species which in return affect the influx of the first

species.

Objective function. The criterion for optimization is to

maximize the density of healthy individuals of both species, by

controlling the culling rate subject to a budget constraint and

differential utilities for species 2 over species 1. Hence we have to

choose f to maximize the integral

J~

ð?
0

e{rt(p1S1zp2S2)dt, ð3Þ

under the propagation equations Eqs. 1–2 subject to the

constraints of the epidemiological and economical system. Here,

we denote the utility of species 1 and 2, by p1 and p2, respectively:

r is a discount rate. The discount rate represents the rate the

policy-maker is willing to pay to trade off the value of controlling

today against the ensuing cost of increased infection in the future

[20].

To solve the problem, we use an optimization approach based

upon the Hamiltonian method [1,2], which is a device for

maximizing the objective function subject to economic constraints

and the epidemiological dynamics of the model. Basically, we

choose f (the proportion of detected individuals culled per unit

time) so as to maximize the current value of a mathematical

expression known as the Hamiltonian, which takes into account

the influence of the current infection and future evolution of

disease as given by the state equations Eqs. 1–2 (see Methods). We

assume that expenditure on detection and culling is constrained by

a fixed budget (M ) and is given by:

Balance Detection and Control
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Cd (aI1)zCcfD1ƒM, ð4Þ

where Cc is the cost of culling per individual and Cd (aI1) is the

cost of detection per unit time. For a given detection strategy (a),
we assume that at a certain cost aV it would be possible to detect a

very small number of infected individuals (I1?0). As the number

of infected individuals (I1) increases, the cost of detection

decreases. This is justified by the fact that as the infected

population becomes abundant, less marginal effort is required to

detect additional infected individuals. Hence we define the cost of

detection as Cd (aI1)~aVe{laI1 , where l is the per capita rate at

which the cost of detection (Cd ) decreases. M is the expenditure

limit per unit time. The simple fixed budget constraint is used so as

to encompass logistical limitations (e.g. finances and green waste

disposal facilities) and for mobilisation and delivery of resources at

the point of infection (e.g. trained personnel). In this paper we

focus on the sensitivity of the outcome of the control strategy to the

rate of detection, a. Given the way we define the cost of detection,

it follows that changing the value of a may be regarded as a

surrogate for the effort expended on detection. For example,

increased effort may involve visiting more sites and screening more

trees within a site or increasing the amount of personnel-time

deployed in detection.

Quarantine control. The effect of quarantine is implement-

ed in combination with the culling strategy by reducing the rate of

external infection (ci (i~1,2)). In the case of sudden oak death,

quarantine may be effected by reducing human-mediated dispersal

by restricting access or by preventing import of potentially infected

ornamental plants into designated regions at risk of disease.

Control of this type is costly to implement and may also inflict

indirect costs arising from restrictions on free circulation.

Following [2], quarantine is introduced into the model by

adjusting ci, such that ci~ci0
h(Q) where Q is the total amount

of direct and indirect costs involved in the quarantine policy. We

assume that Q[½0, Qmax�, h(0)~1, h(Qmax)~0. Thus, when there

are no restrictions the rate of external infection ci is equal to ci0
,

and when a total ban is imposed ci~0 and the cost of restrictions

is equal to Qmax. We assume that dh=dQv0 and d2h=dQ2
w0: ci0

is then the value of ci in the absence of quarantine. We choose

h(Q)~(e{bQ{e{bQmax )=(1{e{bQmax ) as, with b being a constant

measuring the efficiency of the spending Q. We also assume that

the budget for quarantine is separated from the budget for

detection and culling. The optimal strategy is now to choose f and

Q so as to maximize the integral

J~

ð?
0

e{rt(p1S1zp2S2{Q)dt, ð5Þ

subject to the same constraints as before plus an addition

constraint Q[½0,Qmax� and ci~ci0
h(Q). To solve the optimal

control problem, we use the Pontryagin maximum principle [21]

and follow the same procedure as with Eq. 3.

We first derive analytical solutions for the optimal strategies

without quarantine by maximizing the objective function Eq. 3,

subject to the epidemiological dynamics Eqs. 1–2 and the

economic constraints (Eq. 4). Subsequently, we analyse the effects

of changing the efficiency of detection on the effectiveness of

control, with biologically plausible parameters for P. ramorum on

bay laurel and coast live oak (Table 1). The scaled difference

between the area under the disease progress curve (AUDPC) [22] for the

epidemic with and without control is used as a measure to evaluate

the efficiency of a given detection strategy on the effectiveness of

control. The scaled difference between the AUDPCs is termed the

Difference in control. We conclude our analysis by deriving an optimal

Table 1. The values given here are used in numerical simulations unless stated otherwise.

Symbol Description Value

k carrying capacity 3

b1 birth rate of bay laurel 1=100y{1

d1 natural death rate of bay laurel 1=100y{1

b2 birth rate of coast live oak 1=100y{1

d2 natural death rate of coast live oak 1=100y{1

b11 rate of infection from bay laurel to bay laurel 0:2

b12 rate of infection from bay laurel to coast live oak 0:05

c1 rate of primary infection on bay laurel b11=100

c2 rate of primary infection on coast live oak 0

m1 rate of death of bay laurel due to disease 1=90y{1

m2 rate of death of coast live oak due to disease 1=6y{1

X amount of external inoculum 0.01

p1 utility of bay laurel per individual per unit time 3y{1

p2 utility of coast live oak per individual per unit time 15y{1

r discount rate 0.05y{1

a rate of detection of infected trees varied

M expenditure limit per unit time 0:1y{1

Cc cost of culling per individual 1

The epidemiological parameter values were derived from [28] and J.M.Davidson unpublished data. The relative magnitudes for the cost of culling and the utilities of bay
laurel and coast live oak are expressed in arbitrary units.
doi:10.1371/journal.pone.0012317.t001
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solution when quarantine is used in combination with culling

(Eq. 5).

Results

The optimal strategy of control (see Methods) satisfies the

following:

f ~min(1,(M{Cd (aI1))=CcD1): ð6Þ

We conclude that the optimal solution is to cull as many detected

individuals as possible in species 1 (bay laurel). These results hold

for all parameter values. We now analyse the quantitative effects of

changing the detection rate (a) on the optimal solution.

Using the default parameter values given in Table 1, numerical

simulations were carried out for different values of the initial

density of infected trees and the rate of detection. At low detection

rates, the disease dynamics under the optimal culling strategy are

almost identical to those without control (see a~0:01 in Figs. 1).

This is consistent with only a small proportion of infected

individuals being detected when a is low. It follows that a large

proportion of infected individuals remain undetected throughout

the epidemic. Only a small proportion of available resources are

used for detection, leaving most of the available resources for

culling. But because the majority of infected individuals remain

undetected, culling has an insignificant effect on the dynamics of

the epidemic even if 100% of detected individuals are culled at

each unit of time.

For high detection rates, our simulations show that the culling

strategy has little effect on the dynamics of infection. In fact, when

an extensive detection strategy is used, for high values of a, most of

the infected individuals are detected over time, leaving only a small

proportion of undetected sources of infection (see a~0:5 in Figs. 1).

In this scenario, most of the available resources are used in detecting

infected individuals and the remaining resources may just be

enough to cull a small proportion of those individuals which have

been detected (see a~0:5 in Figs. 1). The remaining proportion of

detected individuals that cannot be culled, due to the shortage of

resources, continue to spread the infection. As with low detection

rates, the dynamics of infection are scarcely affected by control.

The success of control strategies in preserving oaks (species 2) is

remarkably sensitive to intermediate levels of detection efforts (c.f.

a~0:1 and 0:2 in Fig. 1). Above a certain value of a, successful

control is restricted to the early part of the epidemic but thereafter

failing to bring the epidemic under control (c.f. infected oaks for

a~0:2 in Fig. 1). In this case, while there are sufficient resources to

detect and remove a substantial proportion of detected bay laurel

trees early on, the epidemic soon outstrips the resources available

for control, negating the short-term advantage of a comparatively

high expenditure on detection. We show, however, that when the

detection level (and the associated cost) is reduced (c.f. a~0:1),

that the epidemic can be brought under control and a healthy

population of oaks preserved (Fig. 1).

It is intuitively appealing to enquire how the balance of costs for

control and detection change during the course of an epidemic.

We show this in Fig. 2 for different values of a. While long-term

Figure 1. Dynamics of infection for different values of the detection rate (a). The dashed lines represent the dynamics without control,
whereas the solid lines represent the dynamics under the optimal culling strategy. The figures are given respectively for a equal to 0.01, 0.1, 0.2 and
0.5 (from the left to the right). For a~0:01 and 0:5, dynamics under control are almost identical to those without control.
doi:10.1371/journal.pone.0012317.g001
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trends are apparent, simple interpretation of the early dynamics

for cost (cf oscillations in Fig. 2) is not straightforward. The

particular dynamics depend not only on the initial conditions but

also on the interactions between the functional relationships of the

costs (Eq. 4) and the underlying disease dynamics. Nevertheless,

the principal result of our analyses (Fig. 1) shows clearly the

importance of selecting intermediate levels of detection in efficient

management of disease under fixed budgets.

The optimal choice of a depends upon the value of the

expenditure limit (M). It cannot be derived analytically.

Numerical simulations show that the range of values of a for

which the control strategy has a large positive effect on the

dynamics of infection (measured by the difference in control)

increases with the budget. The optimal value for a is deflected to

the left, i.e. decreases as M decreases (Fig. 3). Moreover, for a

given value of the expenditure limit (M ), there exists a threshold

value for the detection rate (a) above which the control strategy

fails to bring the epidemic under control.

Our results show that the trade-off between the cost (and

efficiency) of detection and the cost of culling is an important

factor that must be taken into account for optimal use of resources,

when as is usually the case, there are budgetary constraints.

Quarantine control
Now, we suppose that in addition to culling of infected bay

laurel, the transmission rate, ci (i~1,2) can be altered by imposing

a quarantine control that restricts the rate of entry of external

infection. The optimal solution is obtained by selecting f and Q in

the objective function Eq. 5. When f is given by Eq. 6, the optimal

value Q̂Q is given by

Q̂Q~min Qmax,max 0,{
1

b
log

1{e{bQmax

~mm

� �� �� �
, ð7Þ

where ~mm~b((m1{m2)c10
S1Xz(m4{m5)c20

S2X ), and mi are

co-state variables defined in the Methods.

Using the default parameter values given in Table 1, numerical

simulation shows that it is not always optimal to apply quarantine.

The decision to implement quarantine or not is a function of the

efficiency of the quarantine measures, and of the level of external

inoculum that enters the system (Fig. 4). The monotonic behaviour

of the optimal quarantine strategy is a direct consequence of the

assumption of a constant rate of entry of external inoculum Eqs. 1

and 2. The time at which it is no longer optimal to apply

quarantine is delayed as the amount of external inoculum X
increases, and decreases with increasing M (results not shown).

Numerical simulation shows that, for small values of M it is not

possible to bring an epidemic under control, regardless of the

efficiency of the quarantine measures. This is consistent with the

assumption that disease increase is mainly driven by the internal

forces of infection. We conclude that it is therefore not optimal to

apply quarantine For small values of M.

Discussion

We have used an SI-X metapopulation model to describe the

dynamics of an epidemic spreading on a two-species host

community in which there is a spreader host (bay laurel) and a

target species that we wish to preserve (coast live oak). A

combination of control theory with an epidemiological model,

enabled us to identify optimal strategies for the detection and

control of the pathogen (P. ramorum) in order to preserve the target

Figure 2. Ratio of costs of eradication to costs of detection for
different values of the detection rate (a). The ratios correspond
respectively to the different scenarios presented in Fig. 1. For high
levels of detection (a~0:5), most resources are allocated to detection
and almost none are left for eradication. For intermediate levels of
detection (a~0:2 and 0.1), the short-term behaviour of the costs ratio is
very sensitive to the value of the detection rate a.
doi:10.1371/journal.pone.0012317.g002

Figure 3. Difference in control on bay laurel and coast live oak for different disease monitoring strategies (detection rates). The
difference in control is defined as to be the scaled value of the difference between the area under disease progress curves for the epidemics without
and with control. The range of optimal disease monitoring strategies increase with the expenditure limit (M~0:1 vs M~0:2).
doi:10.1371/journal.pone.0012317.g003
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species within the community. We first considered a simple culling

strategy directed at the detection and removal of symptomatic

plants from the spreader species.

In contrast with many previous analyses for optimal control of

disease [3,5,8], we assume that resources for control are limited. We

also assume that expenditure for disease detection (sampling) and

control (culling) are drawn from the same funds. In considering

culling in the absence of quarantine, we have proved, analytically,

that the optimal culling strategy involves removal of as many

detected individuals as possible, in the spreader (bay laurel) species

driving the epidemic. The efficiency of the optimal culling strategy

in bringing the epidemic under control depends upon a careful

balancing of resources for disease detection and for culling (Figs. 1

and 3). We show, in particular, that both high and low detection

rates fail to bring the epidemic under control. Successful control, in

terms of maximizing the amounts of susceptible bay laurel and coast

live oak, is more likely to be achieved at intermediate levels of

detection (Fig. 1). The optimal level of detection depends upon the

value of the expenditure limit (M ) (cf Fig. 3). The addition of

quarantine to the control strategy serves to reduce human-mediated

dispersal of inoculum into the region of interest. Our results suggest,

however, that priority should still be given to the culling strategy

(detection and culling) rather than quarantine in the allocation of

the budget for epidemics in which most spread is driven by

secondary infection within the region of interest. The current

analysis holds for a spatial structure for stand size of the order of

several kms in which most infection occurs by secondary

transmission within the stand. Analyses for larger scales, could

naturally be addressed using a metapopulation framework [23] in

which sub-populations represent stands with some transmission of

infection occurring amongst stands. We anticipate that the role of

quarantine would acquire greater importance in this situation.

Surprisingly little attention has previously been given to

optimization of control strategies that take account of costs and

benefits for detection and control of infected hosts. Previous work,

has focused on the control of invading species, exemplified by

gypsy moth Lymantria dispar [14]. Bogich et al. [14] demonstrated

the importance of incorporating the trade-off between detection

and eradication in models of invasive species control. But, the

analyses were done without taking account of the temporal

dynamics of colony distribution of the pest. Hence Bogich et al.

[14], address the problem of resource allocation as a one time

allocation which does not allow reallocation of resources in

response to the temporal dynamics. The approach is analogous to

the identification of treatment efforts that are designed to reduce

the basic reproductive number (R0) below one for a pest or

pathogen. While such an approach may be effective in preventing

an epidemic or pest outbreak, it is not necessarily economically

optimal in terms of matching the treatment effort with changing

infection pressure reflected in the transient dynamics of the pest or

pathogen. Hence Zaric and Brandeau [24] show that allowing for

reallocation of funds may generate more health-benefit than

strategies based upon a fixed (one-time) allocation of resources.

In applying our model to the spread of sudden oak death in a

plant community typical of mixed evergreen forests in coastal

California, our analyses were designed to identify optimal culling

and quarantine strategies to preserve as much as possible of the

spreader species (bay laurel) and especially the target (coast live

oak) species within the community. The objective is based upon

three major concerns. Firstly, the threat of P. ramorum is more

pronounced on oak trees than other species [10,25]. Secondly, oak

trees promote greater biodiversity within forest communities than

bay laurel [10]. Lastly, in many areas, especially close to

conurbations such as San Francisco, coast live oak is considered

to have greater aesthetic and conservation value than bay laurel.

The balance of expenditure on detection and treatment for disease

management, however, applies to a very wide range of practical

disease control problems. Although our analyses have been

motivated for a specific host-pathogen system, the methodology

is generic and can be applied to a wide range of host pathogen

systems in which budgets have to be allocated to detection and

control. We postulate that intermediate levels of detection are

likely to prove optimal for many of these.

Several assumptions were used in the derivation of the model

and execution of the analyses. Foremost amongst these are the

epidemiological assumptions that the rates of infection are

constant over time and that culling occurs without delay after

detection of symptomatic hosts. The methods can easily be

adapted to allow, for example, for temporal forcing due to seasonal

variations typified by the spread of P. ramorum, which is mainly

driven by seasonal factors such as rainy seasons and EL Niño

[17,18]. Preliminary analysis suggests that accounting for temporal

forcing does not change the qualitative nature of the results.

Future work will consider first, the effect of logistical delays

between detection and culling, as well as adjustments in the

detection rate as a response to disease progression and control.

Methods

To maximize the objective function

J~

ð?
0

e{rt(p1S1zp2S2)dt, ð8Þ

subject to the disease dynamics equations, we use the Pontryagin

maximum principle [21] which is commonly used to address

problems of optimal control for continuous state system [3,5,26].

This is done by optimizing the current value of the Hamiltonian as

given by

H~e{rt(p1S1zp2S2)zm1
d S1

dt
zm2

d I1

dt
zm3

d D1

dt

zm4
d S2

dt
zm5

d I2

dt

ð9Þ

where mi (i~1,::,5), the costate variables, satisfy the following

Figure 4. Optimal quarantine effort and corresponding value
of ª1. The value of c1 is multiplied by 10, for convenience in matching
the scale of c1 to that of Q. Default parameters values were used,
except b~100, a~0:1 and Qmax~5.
doi:10.1371/journal.pone.0012317.g004
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system of differential equations

d mi

dt
~{

LL

Lxi

i~1,::,5 ð10Þ

where xi is the state variable corresponding to mi. Because of the

presence of the constraint

Cd (aI1)zCcfD1ƒM, ð11Þ

the standard procedure requires the introduction of a Lagrangian

defined as

L~Hzm6(M{Cd (aI1){CcfD1)zm7f zm8(1{f ) ð12Þ

where m6, m7 and m8 are Lagrangian multipliers which satisfy the

complementarity slack conditions [21]

m6§0, M{Cd (aI1){CcfD1§0,

m6(M{Cd (aI1){CcfD1)~0
ð13Þ

m7§0 and m8§0. The first order conditions for an optimum

require that

LL

Lf
~{(m3zCcm6)D1zm7{m8~0, ð14Þ

along the trajectory of an optimal solution, and f being chosen

such as to maximize the Hamiltonian. From the maximum

condition on the Hamiltonian, it follows that

as m3w0, f ~0

as m3~0, f [½0,(M{Cd (aI1))=Cc D1�

as m3v0, f ~min(1,(M{Cd (aI1))=CcD1):

As the rate of detection is taken to be constant over time, there is

a positive correlation between the inflow of infected individuals

(
d I1

dt
) and that of detected individuals (

d D1

dt
). Given that culling is

restricted to detected individuals (D1), it is therefore natural that the

optimal condition on f (culling strategy) depends on m3 (the

marginal benefit of increasing the stock of detected individuals (D1)).

Interior solution
Consider a path which satisfies the first order conditions above,

and suppose that

f [½0,(M{Cd (aI1))=CcD1� ð15Þ

over an open segment of this path. Within this segment it must be

the case that m3~0. By differentiating m3 over that open segment,

it follows that
d m3

dt
~0. Hence from Eq. 10, we have

m1b1z(m1{m2)b11S1zm4b2

z(m4{m5)b12S2zm6(Ccf )~0:
ð16Þ

From an economical view point, the costate variables can be

interpreted as shadow prices. Where variables m1 and m2 indicate

respectively the marginal benefit to society of increasing the stock

of susceptible individuals (S1) and infected individuals (I1) of the

first species by one unit [5,27]; and m4 and m5 are marginal

benefits from the second species. Because infection is harmful, and

increasing the stock of infected individuals will result in decreasing

the stock of susceptible individuals, the shadow prices m2 and m5

are negative. It then follows that we have m1§0, m4§0,
m1{m2§0 and m4{m5§0. From the complementary slack

conditions, m6§0. It follows that the left hand side of Eq. 16 is

positive. Therefore Eq. 16 is satisfied if and only if

mi~0, Vi~1,::,6 on the open interval. But since mi is a solution

of Eq. 10, and
LL

LS1
(0),

LL

LS2
(0)=0, it follows that one cannot have

m1 and m4 equal to 0 on an open interval. Hence, we conclude

that there is no path satisfying the first order conditions for an

optimum, for which m3~0 on an open interval.

Optimal solution
From the above results, it follows that an optimal trajectory for

the control variable f is either given by f ~0,

f ~min(1,(M{Cd (aI1))=Cc D1) ð17Þ

or a switch strategy between f ~0 and f ~ min (1,(M{

Cd (aI1))=CcD1). Given that
d m3

d t
§0, an optimal switching

strategy can only be a single switch from

f ~ min (1,(M{Cd (aI1))=CcD1) ð18Þ

to f ~0.

Extensive numerical simulation shows that the optimal

trajectory of the control variable is given by

f ~ min (1,(M{Cd (aI1))=CcD1): ð19Þ

This can be justified by the fact that there is a constant inflow of

pathogen from sources external to the community. Therefore,

having f ~0 would give free course for disease to build up within

the community, and subsequently generating a new outbreak.

Quarantine
The Hamiltonian for the case with quarantine is the same as Eq.

9 except for ci which are replaced by ci0
h(Q) and the objective

function which is given by Eq. 5. Analysis shows that the optimal

culling strategy is still given by

f ~ min (1,(M{Cd (aI1))=CcD1): ð20Þ

With the additional constraint that the quarantine variable Q is

selected from the set ½0,Qmax� so as to maximize the Hamiltonian, tak-

ing all other variables as given. The optimal value of Q is thus equal to

Q̂Q~min Qmax,max 0,{
1

b
log

1{e{bQmax

~mm

� �� �� �
ð21Þ

where ~mm~b((m1{m2)c10
S1Xz(m4{m5)c20

S2X ).
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