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ABSTRACT
Motivation: Circular RNAs (circRNAs) are long non-coding RNAs (lncRNAs) often
associated with diseases and considered potential biomarkers for diagnosis and
treatment. Among other functions, circRNAs have been shown to act as microRNA
(miRNA) sponges, preventing the role of miRNAs that repress their targets.
However, there is no pipeline to systematically assess the sponging potential of
circRNAs.
Results: We developed circRNA-sponging, a nextflow pipeline that (1) identifies
circRNAs via back-splicing junctions detected in RNA-seq data, (2) quantifies their
expression values in relation to their linear counterparts spliced from the same gene,
(3) performs differential expression analysis, (4) identifies and quantifies miRNA
expression from miRNA-sequencing (miRNA-seq) data, (5) predicts miRNA binding
sites on circRNAs, (6) systematically investigates potential circRNA-miRNA sponging
events, (7) creates a network of competing endogenous RNAs, and (8) identifies
potential circRNA biomarkers. We showed the functionality of the circRNA-sponging
pipeline using RNA sequencing data from brain tissues where we identified two
distinct types of circRNAs characterized by a distinct ratio of the binding site length.
The circRNA-sponging pipeline is the first end-to-end pipeline to identify circRNAs
and their sponging systematically with raw total RNA-seq and miRNA-seq files,
allowing us to better indicate the functional impact of circRNAs as a routine aspect in
transcriptomic research.
Availability: https://github.com/biomedbigdata/circRNA-sponging
Contact: markus.daniel.hoffmann@tum.de; markus.list@tum.de
Supplementary Material: Supplementary data are available at Bioinformatics
online.

INTRODUCTION
Circular RNAs (circRNAs) are classified as long non-coding RNAs (lncRNAs) even
though a few have been reported to encode proteins [1]. circRNAs are characterized
by their loop structure, which makes them less prone to degradation [2,3]. The
biogenesis of circRNAs is explained by the occurrence of a back-splicing event (see
Suppl. Fig. 1) during the alternative splicing process of precursor messenger RNA
(pre-mRNA), where the 5’ terminus of an upstream exon and the 3’ terminus of a
downstream exon are covalently joined [2]. The difference between circRNAs and
linear RNAs is the lack of a 5’ cap and a 3’ polyadenylation (poly(A)) tail along with
its circular shape, which makes circRNAs more stable and, in most cases, resistant
to exonuclease activity [4–6]. These circular molecules can be made up of exonic
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and intronic regions of its spliced pre-mRNA and are thus found in a huge variety of
sizes, ranging from 100 to >4,000 nucleotides [4,7]. circRNAs are conserved across
species and their expression is tissue- and disease-specific [3,8,9]. Hence, they can
play an important role as biomarkers and therapeutic targets [9–11]. Another type of
non-coding RNA is microRNA (miRNA) which plays a role in post-transcriptional
gene regulation [12–14] and is involved in many biological processes and diseases
[15]. miRNAs bind their target genes via the RNA-induced silencing complex causing
their degradation or preventing their translation [16].

Figure 1: Overview of the individual steps of the pipeline. total RNA-seq data
processing is shown on top and miRNA-seq processing on the bottom. In the
miRNA sponging step, these results are integrated for network analysis and
biomarker detection.

The possible interplay between circRNAs, miRNAs, messenger RNAs (mRNAs) that
code for proteins and other types of RNA that share miRNA binding sites gives rise
to a large regulatory network. Salmena et al. proposed that any RNA that carries
miRNA binding sites (e.g., mRNAs, circRNAs, pseudogenes, transcripts of 3’
untranslated regions (UTRs), and lncRNAs) can act as a competing endogenous
RNA (ceRNA) [17] that competes for the limited pool of available miRNAs in a cell.
As a result of this competition, an overexpressed RNA can sponge away miRNAs
required for the regulation of other RNAs, which can explain why non-coding RNAs
such as circRNAs can be implicated in a phenotype.
The enhanced stability of circRNAs might allow them to work as buffers for miRNAs,
by binding them until sufficient miRNAs are present to outnumber the circRNA
binding sites [9]. The regulatory function of circRNAs and their alleged association
with diseases are the main reasons why identifying sponging activity between
circRNAs and miRNAs is of particular interest. The presence of an interaction
between miRNAs and circRNAs has been repeatedly proven and several circRNAs
(e.g., CDR1as/CiRS-7, SRY [18], and circNCX1 [19]) have been recognized as
miRNA sponges. Even though individual studies confirmed the existence of circRNA
sponges, further studies are needed to elucidate the role of circRNAs in
miRNA-mediated gene regulation.
From a computational point of view, the detection of circRNAs is difficult due to their
circular shape and the lack of poly(A) tail, which makes it unlikely to observe them in
poly(A)-enriched RNA sequencing (RNA-seq) libraries [7]. Hence, circRNAs can only
be robustly detected in libraries without poly(A) enrichment, such as ribosomal RNA
(rRNA) depleted RNA-seq and total RNA-sequencing (total RNA-seq), which do not
deplete circRNAs [7]. Identification of circRNAs relies on the detection of
back-splicing junctions (BSJ) among the unmapped reads, which allows for the
estimation of circRNA abundance. By focusing on the back-splicing junction alone,
the expression of circRNAs in relation to their linear counterparts is typically
underestimated [20].
Several approaches for circRNA analysis have been proposed. Chen et. al reviewed
100 existing circRNA-related tools for circRNA detection, annotation, downstream
analysis, as well as network analysis [21]. They list a total of 44 circRNA
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identification tools including, but not limited to, CIRCexplorer [22,23], find_circ [24],
CIRI [25], KNIFE [26], and circRNA_finder [27]. They also present a total of 14
circRNA annotation databases collecting circRNA information from the literature,
such as circBase [28] and CIRCpedia [22,29]. Other circRNA-related tools include
databases for feature collection, and storing circRNA information related to disease
and biomarkers. In addition, circRNA network identification tools model the
interactions between circRNAs and miRNAs, lncRNAs, or RNA-binding proteins.
Other tools for downstream analysis of circRNAs cover alternative splicing detection,
circRNA assembly, and structure prediction and visualization [21]. However, to the
best of our knowledge, none of the tools performs a comprehensive and automated
circRNA sponging analysis integrating identification and quantification of methods
both circRNAs and miRNAs, systematic investigation of potential circRNA-miRNA
sponging events, and ceRNA network analysis. We developed “circRNA-sponging”,
a nextflow pipeline integrating state-of-the-art methods to (1) detect circRNAs via
identifying back-splicing junctions from total RNA-seq data, (2) quantify their
expression values relative to linear transcripts, (3) perform differential expression
analysis, (4) identify and quantify miRNA expression from miRNA-sequencing
(miRNA-seq) data, (5) predict miRNA binding sites on circRNAs, (6) systematically
investigate potential circRNA-miRNA sponging events, (7) create a ceRNA network,
and (8) identify potential circRNA biomarkers using the ceRNA network (Fig. 1).
We demonstrate the potential of the circRNA-sponging pipeline on matched
rRNA-depleted RNA-seq and miRNA-seq data from mouse brain tissues.

Figure 2: Workflow of the circRNA-sponging pipeline. The pipeline consists of
three modules: (1) the circRNA module, (2) the miRNA module, and (3) the
sponging module. In (1), we detect circRNAs via identifying back-splicing junctions
from total RNA-seq data, quantify their expression values, perform a differential
expression analysis, and predict miRNA binding sites on circRNAs using a majority
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vote between three state-of-the-art methods. In (2), we either detect and quantify
miRNAs in raw miRNA-seq or directly process miRNA expression data. In (3), we
systematically investigate circRNA-miRNA sponging events, create a ceRNA
network and use it to identify potential circRNA biomarkers.

MATERIALS AND METHODS
Data
Using circRNA-sponging, we processed a total of 23 samples of matched single-end
rRNA-depleted RNA-seq and miRNA-seq data for four brain regions (cerebellum,
cortex, hippocampus, olfactory bulb). Samples include 2-3 replicates for wild-type
(WT) and 3 CDR1 knock-out (KO) mouse replicates (GEO accessions: GSE100265,
GSE93129) [30]. (see Suppl. Table 1). We use the mm10 genome version for
mapping.
Pipeline Architecture
The circRNA-sponging pipeline is implemented in R (v. 4.2.0) and python (v. 3.8.12)
and wrapped with nextflow version 22.04.0.5697. It follows the nf-core guidelines
[31] and encompasses several state-of-the-art techniques organized into three
modules: (1) the circRNA module, (2) the miRNA module, and (3) the sponging
module, the latter of which can only be performed if both other modules have been
executed (Fig. 2). In the following, we provide a deeper insight into each module and
highlight important components of the pipeline.
(1) The circRNA module addresses the identification, quantification, and miRNA
binding site prediction of circRNAs. For read mapping, we employ the STAR [32]
aligner, which provides support for the detection of splice-junction and fusion reads.
The resulting unmapped split-reads are used by CIRCexplorer2, which uses a
combination of methods (i.e., a de novo assembly approach to identify novel
circRNA and a reference-based approach, which uses known exon-exon junctions to
map back-splicing events to known genes) to increase the accuracy of its predictions
[22] to identify back-splicing events. Next, raw read counts are normalized with
DESeq2 [33] and circRNAs with low expression levels are excluded to reduce false
positives. By default, only circRNAs with a normalized read count >5 in at least 20%
of samples are retained. Database annotation is performed using circBase [28],
which covers curated circRNAs with experimental evidence of several model
organisms.
For quantifying expression values, we use psirc [20], which in turn employs kallisto
[34] considering both linear and circular transcripts in the expectation-maximization
step to yield comparable expression values. If the data has been sampled from
different conditions (e.g., case and control), the quantified linear transcripts and
circRNAs can be used to perform a differential expression analysis using DESeq2
[33]. The pipeline generates heatmaps, volcano plots, and principal component
analysis (PCA) of the circRNAs and linear transcripts between conditions. To boost
reliability, we predict circRNA-miRNA binding sites using a majority voting between
miRanda [35], PITA [36], and TarPmiR [37] since each method has a distinct
approach for predicting miRNA binding sites. We consider a circRNA-miRNA binding
site as relevant if it is predicted by at least two out of the three methods. miRanda
considers seed matching, conservation, and free energy and we consider predictions
with a score above the 25% quantile. PITA additionally considers site accessibility
and target-site abundance. TarPmiR further integrates machine learning to improve
results for supported organisms [37]. We further incorporate experimentally validated
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target sites from DIANA-LncBase v3 [38], miRTarBase [39,40], and miRWalk3.0 [41].
(2) The miRNA module covers the quantification and processing of miRNA
expression. miRDeep2 [42] is used to obtain miRNA counts. Alternatively, already
mapped miRNA expression data can be provided. Raw counts are normalized with
DESeq2 [33] followed by a filtering step, where by default miRNAs with a normalized
read count > 5 in at least 20% of samples are retained.
(3) The sponging module is used for the identification of crosstalk between
circRNAs, miRNAs as well as ceRNA interactions of circRNAs with other transcripts.
To identify potential sponging activity, we perform a correlation analysis of
circRNA-miRNA pairs, where a negative correlation coefficient indicates a sponging
relationship. For all circRNA-miRNA pairs with at least one binding site for a shared
miRNA, we compute a Pearson correlation coefficient along with the normalized
residual sum of squares and the adjusted p-value, after the Benjamini-Hochberg
correction. Pairs are filtered (e.g., p-adjusted < 0.05, RMSE < 1.5, and optionally by
the number of binding sites) and are considered potential sponging candidates. We
further construct a ceRNA network using SPONGE [12] on matched gene and
miRNA expression data. Finally, we apply spongEffects [14] to extract ceRNA
modules consisting of circRNAs with a high node centrality score in the ceRNA
network and their direct neighbors. For each module, spongEffects computes a
sample-specific enrichment score allowing for differential analysis.

RESULTS AND DISCUSSION
circRNAs are highly abundant and conserved in the mammalian brain [43,44]. For
demonstrating the capabilities of the circRNA-sponging pipeline, we analyzed a
public RNA-seq data set from the mouse brain. We focused on the sponging
capacity of circRNAs and their potential role as ceRNAs.

Comparing circRNA and host gene expression reveals changes in
circRNA splicing
In total, we detected 46,380 and 27,390 circRNAs before and after filtering,
respectively. This number is in line with the known high abundance of circRNAs in
brain tissue [43,44]. We could annotate only 1,027 (~4%) of the circRNAs that
passed the filter (Suppl. Fig. 2 a), likely as comparably few circRNAs have thus far
been annotated in mice using circBase. psirc-estimated expression levels, which
take reads mapping to parts other than the back-splicing junction of the ceRNA into
account, are up to 6-fold higher compared to counts derived from back-splicing
junctions only (Fig. 3 a, per tissue type: Suppl. Fig. 2 d-g). We observed a generally
higher expression of circRNAs in the cerebellum compared to other brain regions,
which could indicate a higher importance of the circRNAs in this brain region (Suppl.
Fig. 2 b). The number of shared circRNAs across brain regions is comparably high
with only very few circRNAs showing brain region-specific occurrence (Suppl. Fig. 2
c). However, expression levels of the circRNAs differ considerably such that samples
cluster by brain region (Figs. 3 b-c). The difference between KO and WT samples is
negligible, with the exception of the CDR1 region (mmu_hsa_circ_0001878 in
circBase annotation) that was targeted successfully (Suppl. Fig. 3. b). As expected,
we observed a clear separation between the cerebellum and other brain regions,
while the cortex and hippocampus are more similar [45]. Our analysis revealed a
total of 33 circRNAs that show significantly different expression between brain
regions (p-adjusted < 0.01, absolute log2 fold change > 5, Suppl. Table 2).
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Rybak-Wolf et al. reported circRNAs of twelve host genes (TULP4, RIMS2, ELF2,
PHF21A, MYST4, CDR1, STAU2, SV2B, CPSF6, DYM, RMST, and RTN4), nine of
which (all but TULP4, SV2B, and RMST) were detected in our analysis (Suppl. Table
3, Suppl. Fig. 3 c-d). They speculated on the importance of circRNAs originating
from these genes for brain cell identity but we posit that a change in circRNA
expression alone does not necessarily imply a functional role as circRNA expression
is coupled to the expression of the host gene, as we expect the number of reads
mapping to the black-splicing junction to correlate. However, by comparing the
expression level of the circRNAs to the linear transcripts, as facilitated by
psirc-quant, we can identify cases where the expression of circRNAs increases
beyond the level suggested by the overall gene expression. Such cases offer in our
opinion stronger evidence for the functional importance of a circRNA. For example,
mmu_circ_0000595, a circRNA of host gene RIMS2 shows a higher than expected
expression specifically in the cortex, suggesting a possible functional role for this
circRNA in this brain region (Fig. 3 d, see also Suppl. Fig. 4 a-p).

Figure 3: circRNA results of the mouse brain regions data set. a) circRNAs shared
between brain regions. b) expression of circRNAs across tissues and experimental
conditions. c) psirc-quant estimated compared to CIRCexplorer2 counts. d)
comparison between a circRNA originating from RIMS2 and expression of the
linear RIMS2 gene.
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A ceRNA network reveals circRNAs acting as miRNA sponges
If matched total RNA and miRNA sequencing data are provided, circRNA-sponging
infers a ceRNA network using the R package SPONGE [12] and visualizes the result
(Fig. 4). Important players in this regulatory network are characterized by a large
node degree, i.e., they indirectly regulate many of the connected RNAs via
sequestering miRNA copies. Since the network inferred by SPONGE does not offer
insights into individual samples or conditions, we subsequently computed
spongEffects [14] enrichment scores which capture the interaction of individual
circRNAs and their target genes. As these scores are sample-specific, they can offer
insights into condition-specific circRNA sponging activity. spongeEffects scores can
also be used as features for machine learning tasks such as classification [14]. Since
the number of available samples for training is rather small here, the random forest
reported subset accuracy drops considerably on the holdout set in ten-fold
cross-validation. While the cortex and hippocampus are difficult to differentiate, the
cerebellum can be robustly distinguished from other brain regions (Suppl. Fig. 5). In
particular two circRNAs, chr10:9770449-9800068_- and
chr10:79860969-79862010_+ stand out as distinctive features of the cerebellum
(Suppl. Fig. 6-7). While the inferred ceRNA network shows that circRNAs in the
mouse brain are regulatory active through miRNA sponging, a larger number of
samples is likely needed to fully resolve brain region-specific sponging activity.

Figure 4: circRNA-ceRNA-subnetwork with the top 25 ceRNA modules ranked by
the number of significant interactions (node degree in the network). For each
ceRNA module consisting of the circRNA and its target genes, we computed
spongEffects enrichment scores and used them as input for a random forest
model. The bottom-right corner shows the subset accuracy of this model in
distinguishing different brain regions on the training and test set. The results of a
model trained on random modules of the same size show random performance.

Comparing the number of circRNA binding sites with respect to their
length reveals two distinct clusters
miRNA sponging has long been considered a potential function of circRNAs [18]. To
fulfill this function, it would be beneficial for circRNAs to carry a large number of
miRNA binding sites and indeed, some known circRNAs such as CDR1as harboring
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over 70 miRNA binding sites for miR-7
alone [46] fit the hypothesis well. To
investigate if this is a general property of
circRNAs, we systematically compared
the length of a transcript to the number of
binding sites, expecting to observe a
larger ratio for circRNAs compared to the
3’ untranslated regions of linear
transcripts, where miRNA binding sites
are predominantly located (Fig. 5). While
linear transcripts show a very diverse
picture, circRNA length correlates well
with the number of binding sites. We
observed two distinct clusters which can
be explained by the different prediction
methods we used. It appears that
TarPmiR, which is based on machine
learning, predicts binding sites in fewer

Figure 5: miRNA binding site versus transcript length for linear and circular RNA.
For the 3’UTRs of mRNAs, the number of binding sites was inferred from miRWalk
3.0. circRNA-miRNA binding sites were counted if they were reported by two of the
three prediction methods employed, i.e. miRanda, TarPmiR, and PITA. circRNAs
form two clusters that can be explained by the different target site prediction
methods used. Linear regression models were fit to each of the groups to show the
trend of the association.

circRNAs compared to PITA or miRanda but for those, it predicts a considerably
larger number of binding sites. Compared to the prediction in 3’ UTRs (also based on
TarPmiR), circRNAs show a comparably high ratio between the number of binding
sites and the length. An interesting question is hence, if TarPmiR is able to
differentiate between circRNAs that are active miRNA sponges and those that have
other functions. Previous research has defined three types of circular RNAs based
on structural features - exonic circular (ecirc) RNAs, circular intronic RNA (ciRNA),
and exon-intron circRNA (EIciRNA) [47–49]. It has been suggested that ecircRNAs
function predominantly through a miRNA sponging effect in the cytoplasm whereas
other circular RNA forms (e.g. ciRNA and ElciRNA) function in the nucleus to
regulate gene transcription [50–52]. Hence, circRNAs that are functional in the
nucleus could have fewer miRNA binding sites. To test alternative explanations, we
checked if clusters differed by (1) genesis, i.e. the splicing method of the circRNA
(exonic or intronic), (2) biotype of the circRNA host gene (i.e., coding or non-coding
gene, Suppl. Fig. 8. a-b) or (3) circRNA expression level (Suppl. Fig. 8 c). The
observed clusters did not differ in any of these categories and further work is needed
to elucidate if these results are related to structural features. It should also be noted
that TarPmiR was not trained specifically on circRNAs and that a prediction method
tailored towards circRNAs should be developed when suitable experimental data
become available.

CONCLUSION AND OUTLOOK
We developed a new circRNA processing and analysis pipeline consisting of three
modules harboring multiple current state-of-the-art methods: 1) circRNA detection, 2)
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miRNA detection, and 3) detection of sponging events between circRNAs, ceRNAs,
and miRNAs. To the best of our knowledge, it is the first comprehensive circRNA
pipeline to detect, quantify and annotate circRNAs as well as to determine their
sponging activity. The latter allows users to bring circRNAs into a functional context
with other RNAs such as mRNAs and lncRNAs through a joint ceRNA network which
is mediated by miRNA sponging. Wen et al. recently highlighted the need for a
further extensive investigation into circRNAs due to their enormous potential to
explain human diseases like cardiovascular diseases, autoimmune diseases, and
human cancers [53]. circRNAs are also known to be involved in brain development,
brain cell differentiation, and neuronal signaling [30,43]. To demonstrate the
capabilities of the circRNA-sponging pipeline, we hence re-analyzed a public data
set where we investigated circRNAs across different mouse brain regions. Using our
pipeline, we could offer novel insights into circRNA biology across tissues of the
brain. We showed that differences in circRNA splicing can be revealed when
considering the expression of circRNAs relative to the expression of a host gene,
similar to how alternative splicing events are detected by considering exon or intron
inclusion. We further placed our findings into the context of miRNA sponging,
demonstrating that circRNA exerts regulatory control over a vast number of
transcripts. Finally, we showed that the number of binding sites in circRNAs
correlated well with their length and observed that TarPmiR’s machine learning
strategy identifies a subset of circRNAs that could indicate promising candidates for
miRNA sponging. Further work is needed to investigate if these two classes
represent structurally different circRNAs such as ecircRNAs, ciRNAs, or ElciRNAs or
if this observation can be explained by differences in the miRNA prediction methods
with no biological implication at all.
In the future, we plan to extend the circRNA-sponging pipeline with additional
features. As various functions other than miRNA sponging have been attributed to
circRNAs [54], we see room for expanding the features towards e.g. investigating the
protein-coding potential of circRNAs [1]. We further seek to integrate
circRNA-sponging into ongoing community efforts such as nf-core [31] to build up
long-term support for maintaining and expanding this pipeline. In summary, the
circRNA-sponging pipeline is a powerful tool to detect, investigate, and analyze
circRNAs and their sponging effects and thus it helps researchers consider circRNAs
as a routine aspect in RNA-seq and miRNA-seq data analysis.
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