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Abstract

Objectives. Lymphoepithelioma-like carcinoma (LELC) is an
uncommon lung cancer, typically observed in young, non-smoking
Asian populations. LELC is associated with Epstein–Barr virus (EBV)
infection of lung tumor cells of epithelial origin, suggesting a
carcinogenic role of EBV as observed in nasopharyngeal carcinoma
(NPC). Here, we studied the antigen specificity and phenotype of
EBV-specific CD8+ T cells in blood and tumor of one LELC patient
positive for EBV infection in lung tumor cells. Methods. Using
multiplex MHC class I tetramers, mass cytometry and mRNA
sequencing, we studied EBV-specific CD8+ T cells at the
transcriptomic and phenotypic levels in blood and tumor tissues of
the LELC patient. Results. Lymphoepithelioma-like carcinoma lung
tumor cells were positive for EBV infection. In both blood and
tumor tissues, we detected two populations of EBV-specific CD8+ T
cells targeting the EBV lytic cycle proteins: BRLF1 and BMLF1.
Transcriptomic analyses of these two populations in the tumor,
which can be considered as tumor-specific, revealed their distinct
exhausted profile and polyclonal TCR repertoire. High-dimensional
phenotypical analysis revealed the distinct phenotype of these
cells between blood and tumor tissues. In tumor tissue, EBV-
specific CD8+ TILs were phenotypically heterogeneous, but
consistently expressed CD39. Unexpectedly, although the LELC
tumor cells expressed abundant PD-L1, these tumor-specific CD8+

tumor-infiltrating lymphocytes (TILs) mostly did not express PD-1.
Conclusion. Epstein–Barr virus-specific CD8+ TILs in EBV-driven
tumor are heterogeneous and partially lack PD-1 expression,
suggesting that anti-PD1/PD-L1 immunotherapy may not be an
appropriate strategy for disinhibiting EBV-specific cells in the
treatment of LELC patients.
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INTRODUCTION

A better characterisation of tumor-specific T cells
is essential in order to improve efficacy of
immune-based therapies.1 However, because of
the presence of cancer-unrelated ‘bystander’ T
cells in the tumor2,3 and the difficulty to identify
tumor-specific T cells (e.g. neoantigen
prediction),4 the study of these cells remains
challenging in cancer. Human cancers associated
with viral infections represent approximatively
10% of the worldwide cancer incidence.5 Because
tumor cells present well-characterised viral
antigens through MHC class I molecule,
investigating virus-specific T cells in virus-
associated cancers is relevant to study tumor-
specific T cells in the tumors.

Oncogenic viruses such as hepatitis B virus (HBV)
in liver cancer, human papillomavirus (HPV) in
cervical cancer or Epstein–Barr virus (EBV) in B-cell
lymphoma disturb biological pathways to
replicate in tumor-infected cells and escape the
immune surveillance.6,7 Importantly, none of these
viral infections on their own are sufficient to
induce cancer but are closely related to genetic
susceptibility (e.g. single nucleotide variant, driver
mutation) and environmental factors (e.g. viral co-
infection, diets).7-9 Lymphoepithelioma-like
carcinoma (LELC) is a rare cancer, characterised by
a massive infiltration of lymphocytes.10 The term
LELC refers to its histological resemblance with
the lymphoepithelioma tumor observed in
nasopharyngeal carcinoma (NPC). The first case of
LELC in the lung was reported in 198711 and has
been observed in several other tissues12 such as
gastrointestinal tract,13 salivary glands,14 skin,15

breast16 or vagina.17 Because of the absence of
driver mutation (e.g. EGFR, ALK) in the majority
of patients with LELC of the lung,18 effective
treatment options are limited (e.g. TKI drugs). A
strong association between LELC in the lung and
EBV infection has been observed in Asian
populations.19 Based on the observations made
for NPC, the mechanistic model suggests that EBV
virus is not an initiating factor in the oncogenic
process, but a tumor-promoting agent. Loss of
heterozygosity in epithelial cells associated with
genetic (e.g. Asian ethnicity) and environmental
factors (e.g. salt fish) is an early event in the

pathology of the disease. Infection of these DNA-
damaged epithelial cells by EBV, followed by the
expression of EBV latent genes, will provide
growth and survival advantages to these cells (e.g.
BCL2 overexpression) and lead to the
development of carcinoma that may finally result
in metastasis.7,9 Study of EBV-specific T cells in
EBV-associated tumors (i.e. NPC, LELC) represents
an important step in developing more efficient
therapeutic tools to treat these cancers, such as
TCR-engineered T cells targeting EBV epitopes
presented by tumor cells, or improved checkpoint
blockade immunotherapy (e.g. anti-PD-1, anti-PD-
L1).

Here, using MHC class I tetramers to identify
EBV-specific CD8+ TILs in a patient with LELC in
the lung, we report the simultaneous detection of
two EBV-specific populations. Although these two
populations share common characteristics, we
highlight the polyclonality of their T-cell
receptors, their heterogeneous exhausted/
dysfunctional profile and the unexpected partial
absence of PD-1 surface protein expression.

RESULTS

Identification of EBV-specific CD8+ T cells in
EBV-driven LELC cancer

A 69-year-old Asian woman, non-smoker, was
diagnosed with a lung cancer. Histological
examination from resected tumor of this patient
indicated a lymphoepithelioma-like carcinoma
(LELC) structure with an abundant infiltration of
immune cells. Because LELC of the lung is strongly
associated with the presence of Epstein–Barr virus
(EBV) in tumor cells,19 we performed EBV-encoded
RNA in situ hybridisation (EBERish) staining on
tumor tissue sections. We confirmed the presence
of EBV viral RNA in the tumor cells of this patient
(Figure 1a). Based on the HLA-A alleles expressed
by this patient, we screened for EBV-specific CD8+

T cells using HLA-A*24: 02 tetramers loaded with
different EBV epitopes (Supplementary figure 1a).
We also included PBMC from healthy individuals
in our experiment. We detected two EBV-specific
CD8+ T-cell populations recognising BMLF1
(DYNFVKQLF) and BRLF1 (TYPVLEEMF) epitopes in
both blood and tumor of this patient (Figure 1b
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and Supplementary figure 1a). Since EBV proteins
are presented by MHC class I molecules from the
tumor cells, EBV-specific CD8+ TILs can be
considered as tumor-specific. Both epitopes
identified derive from proteins involved in the
early lytic cycle of EBV,7 strongly suggesting that
EBV is producing virions in tumor cells. We did
not detect any CD8+ T cells specific for antigens
associated with EBV latent cycle in this patient
despite the addition of epitopes derived from
three latency-associated gene products (LMP2,
EBNA3A or EBNA3B) (Figure 1b, see Discussion).

EBV-specific CD8+ TILs in EBV-driven LELC
have a polyclonal TCR repertoire and are
exhausted

We sorted by FACS and analysed the transcriptomic
profile of both populations of tumor-infiltrating
EBV-specific CD8+ T cells (TILs) in this patient. Of
note, we could not perform this experiment using
PBMC because of the low number of antigen-
specific T cells obtained after flow sorting. Sorted
cells were analysed without prior expansion that
could alter the TCR repertoire and transcriptomic
profile. We first studied the TCR repertoire and
observed that both populations of EBV-specific
CD8+ TILs were polyclonal for their TCRa with three
and four different TRA clones detected for each
epitope (Figure 1c and d). Interestingly, BMLF1
tetramer+ cells expressed only one TCRb chain B
clone (Figure 1c). In contrast, for BRLF1 tetramer+

cells, seven different TRB clones were detected at a
similar frequency (Figure 1d). This result
highlighted the TCR polyclonality of antigen-
specific CD8+ TILs. Because of this polyclonality,
measuring skewed TCR repertoire in the tumor
would not necessarily reflect an enrichment of
tumor-specific CD8+ TILs.

Gene set enrichment analysis revealed a
significant exhausted profile for both populations
of EBV-specific CD8+ TILs (Figure 1e). Although both
populations similarly expressed genes involved in
dysfunction/exhaustion status (i.e. CTLA4, LAG3,
ENTPD1) or proliferation (i.e. MKI67), we
surprisingly observed a dichotomy for some other
genes (Figure 1f). For example, the inhibitory
receptor PDCD1 (PD-1) was only detected in EBV
(BRLF1)-specific CD8+ TILs at low level (Figure 1f).
Despite being in the same tumor microenvironment
and being specific for the same virus, the two
populations showed a distinct exhaustion profile at
the gene level (see Discussion). To confirm these

differences, we further analysed surface marker
expression by both populations at the single-cell
level using mass cytometry.

EBV-specific CD8+ TILs in EBV-driven LELC
are phenotypically heterogeneous and
express CD39

We developed a mass-cytometry panel of metal-
labelled antibodies to analyse CD8+ T cells from
the LELC-resected lung tumor and paired PBMC.20

This panel included a broad range of phenotypic
markers that allowed to simultaneously measure
the expression of markers associated with T-cell
differentiation, activation, tissue residency and
dysfunction/exhaustion. For high-dimensional
analysis of tetramer+ CD8+ T cells, we used
uniform manifold approximation and projection
(UMAP), which accounts for non-linear
relationships between markers and projects high-
dimensional data into two dimensions (called
UMAP1 and UMAP2) by making a pairwise
comparison of cellular phenotypes to optimally
plot similar cells nearby to each other.21,22 We
observed that CD8+ T cells derived from PBMC or
tumor were localised in different areas of the
UMAP plot, indicating non-overlapping
phenotypes of CD8+ T cells between the two
tissues (Figure 2a). In PBMC, we observed clusters
of CD8+ T cells that were identified with
characteristics of naive (CCR7+ CD45RO–), effector
(CCR7– CD45RO+) or senescent (CD57+) cells
(Figure 2a, b). In the tumor tissue, CD8+ TIL
clusters expressed tissue-resident memory (Trm
markers) (CD69+ CD103+/–) (Figure 2b). When
plotting both populations of EBV-specific CD8+ T
cells on the UMAP plot, we observed the presence
of two different clusters in PBMC (clusters 1 and
2) and four in tumor tissue (clusters 3 to 6),
highlighting their phenotypic heterogeneity
(Figure 2c, d). Nevertheless, both populations of
EBV-specific CD8+ TILs shared several similar
characteristics. For instance, both of them
displayed an effector phenotype (CCR7– CD45RO+)
and expressed Trm markers (CD69, CD49a).
Interestingly, EBV-specific CD8+ TILs expressed
CD39 – a marker reported to be induced after
chronic antigen stimulation – but not PD-1
(Figure 2c, d). The heterogeneity of both EBV-
specific CD8+ TILs was mainly driven by
differential expression of integrin CD103 (cluster
3), the senescence marker CD57 (cluster 4) or the
absence of adhesion molecule CD56 (cluster 5).
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Altogether, these observations showed the
heterogeneity of the two EBV-specific CD8+ TIL
populations at the protein level in the same
tumor microenvironment.

Expression of PD-1 is partially absent on
EBV-specific CD8+ TILs from the LELC patient

Expression of the inhibitory receptor PD-1 is
known to inhibit tumor-specific CD8+ T-cell
activation.23,24 Treatment of cancer patients with
anti-PD-1 or anti-PD-L1 has successfully induced
tumor regression in some cases. However, anti-PD-
1 treatment efficacy varies across patients and
cancer types.25 Recently, we showed that PD-1 can
also be expressed by bystander T cells in the
tumors,2 indicating that this receptor is not
exclusively expressed by tumor-specific cells, and
raising questions about the effects of anti-PD-1
treatment on these cells. Surprisingly, the two
populations of EBV-specific CD8+ TILs infiltrating
this EBV-driven LELC tumor only partially
expressed PD-1, 13.8% and 52.6% of tetramer+

cells, respectively, for BMLF1 and BRLF1 epitopes
(Figure 2e). Furthermore, the intensity of PD-1
expression on these cells was lower than that of
PD-1 expression on tumor-associated antigen or
neoantigen-specific CD8+ TILs (Supplementary
figure 1b). Nonetheless, we noted that the tumor
cells expressed high level of PD-L1 in this tumor
(Figure 2f). Because of the low and partial PD-1
expression on EBV-specific CD8+ TILs infiltrating
EBV-driven LELC, our data suggested that anti-PD-
1 treatment for EBV-driven LELC may not be able
to disinhibit these EBV- and tumor-specific cells.

DISCUSSION

In this study, we report the identification of two
EBV-specific CD8+ T-cell populations infiltrating an
EBV-driven LELC of the lung. Tumor-specific CD8+

cells have been characterised by an exhausted/
dysfunctional signature, which can be reverted by
immunotherapy.26 However, CD8+ TILs are highly
heterogeneous across tumors, patients and cancer
types.2,26 This heterogeneity across patients can be
explained by tumor cell-intrinsic factors shaping the
tumor immune microenvironment and finally
influencing the outcome of immunotherapy.27

Recently, we demonstrated that intra-tumor
heterogeneity can be in part explained by the
presence of both tumor-specific (exhausted
phenotype, CD39+) and bystander CD8+ TILs.2 Here,

within the same tumor microenvironment, we
report distinct exhaustion signatures between two
tumor-specific CD8+ TIL populations. Furthermore,
each of these two tumor-specific populations is
phenotypically distinct. We previously reported
similar observations in a mouse tumor model.28 This
heterogeneity within the same tumor environment
suggests that unidentified factors (e.g. tumor-
epitope availability, spatial localisation or TCR
repertoire diversity/uniformity) could influence the
acquisition of different exhausted/dysfunctional
profiles. As reported previously, LELC tumor cells
express high level of PD-L1,29 making LELC cancer a
potential good candidate for anti-PD-1 or anti-PD-L1
immunotherapy. However, case report showed
variable effects of these treatments in LELC, with
partial30 or no response.31 Surprisingly, we observed
in our LELC patient that both tumor-specific CD8+

TILs only partially expressed PD-1 (13.8% and
52.6%). This observation could explain the partial
absence of response of LELC patients to anti-PD-1
treatment. This observation strongly suggests that
targeting PD-1–PD-L1 pathway by immunotherapy
in LELC might not be the most appropriate strategy.
Of note, relatively low rates of response to anti-PD1
immunotherapy have been observed for NPC as
well, which is also an EBV-associated carcinoma.32,33

It is interesting that EBV-related tumors do not show
high response rates to checkpoint blockade
immunotherapy despite the strong T-cell
immunogenicity of EBV. Our data showing that
tumor-infiltrating EBV-specific cells can display
hallmarks of chronic antigen stimulation and
exhaustion even without PD-1 expression may help
to explain this. Additional studies will be needed to
investigate the benefits of immunotherapy in EBV-
driven malignancies based on other epitopes or HLA
responses. Knowing that the expression of PD-1 on
EBV-specific T cells can be highly heterogeneous
across patients and depends on the state of
differentiation,34 personalised immunotherapy
could be a more suitable strategy.

Effective treatment options for LELC are limited.
The oncogenic role of EBV has been attributed to
the expression of latent genes providing growth
and survival benefit to DNA-damaged epithelial
cells. Several therapeutic strategies have been
developed to induce a cytotoxic CD8+ T-cell (CTL)
response targeting specifically the latent protein,
such as autologous CTL infusion,35 vaccination
with EBV latent vector36 or pulsed-dendritic
cells.37,38 However, these strategies show
moderate efficacy, with toxicity in some cases.39 In
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our study, we only detected EBV-specific CD8+ TILs
for lytic proteins (BMLF1 and BRLF1). The
oncogenic role of EBV has been attributed to the
expression of latent genes providing growth and
survival benefit to DNA-damaged epithelial cells.40

However, recent data highlighted that EBV lytic
genes are detected in EBV-associated malignancies
as well.41-43 Moreover, recent works suggest that
EBV lytic cycle can contribute to carcinogenesis
through the induction of oncogenic cytokine
secretion and genome instability.44,45 In NPC,
recurrent induction of EBV lytic cycle contributes
more profoundly to NPC carcinogenesis.46 Taken
together, our observations suggest that targeting
lytic proteins combined with latent proteins could
be more efficient for autologous CTL infusion or
vaccination strategies. In the last few years,
chimeric antigen receptor (CAR) T-cell therapy has
shown promising efficacy in the treatment of B
lymphoma.47,48 Similarly, TCR-engineered T cells
targeting tumor epitopes have been developed
and are used in phase I trials (i.e. MAGE3, NY-
ESO).49 Engineered T cells expressing a TCR
targeting the latent EBV protein LMP1 presented
by HLA-A*02: 01 have been generated in a
preclinical model.50 Based on our observations,
targeting lytic EBV epitopes presented by tumor
cells could present an interesting alternative
strategy in EBV-driven cancer, because of the
presence of the same EBV epitopes in different
patients and their absence in non-infected normal
cells. However, our data highlight the polyclonal
TCR repertoire of EBV-specific CD8+ TILs as well.
Of note, because of the low frequency of the TCR
transcript, our approach could lead to a bias in
clonotype hierarchy. Thus, more studies are
needed to (1) evaluate the efficiency of
engineered T cells targeting lytic vs. latency-
associated EBV proteins and (2) evaluate the
efficiency of monoclonal versus polyclonal TCR-
engineered T cells. Overall, our investigation of
TIL specificities in the context of a virus-associated
cancer should help improve and design new
targets for future immunotherapeutic modalities.

METHODS

Human samples, Immunohistochemistry and
cell isolation

PBMC and tumor samples were obtained from a 69-year-old
Asian woman, non-smoker, with a lung cancer.

Immunohistochemistry for H&E, PD-L1 and EBERish was
performed on PFA-fixed tissue sections.51 Tumor single-cell
suspensions were prepared as previously described.52

Briefly, tissues were mechanically dissociated in small pieces
and incubated at 37�C for 15 min in DMEM + collagenase
IV (1 mg mL�1) + DNase (15 µg mL�1). Digestion was
stopped by the addition of RPMI + 5% FBS. Dissociated
tissues were filtered and washed in RPMI + 5% FBS + DNase
(15 µg mL�1). Single-cell suspensions were cryopreserved in
90% FBS + 10% DMSO and stored in liquid nitrogen. The
use of human tissues was approved by the appropriate IRBs,
A*STAR, the Singapore Immunology Network.

HLA typing and MHC class I tetramer
staining

HLA typing was performed by sequence-specific primer PCR
as previously described.53 HLA-A*24: 02 monomer with a UV
cleavable peptide was produced as described previously.54

Peptide exchange was performed using the following
peptides specific for EBV: LMP2 (HLA-A*24: 02 –
IYVLVMLVL), EBNA3 (HLA-A*24: 02 – RYSIFFDYM), BRLF1
(HLA-A*24: 02 – TYPVLEEMF), BMLF1 (HLA-A*24: 02 –
DYNFVKQLF) and EBNA3B (HLA-A*24: 02 – TYSAGIVQI).
Each MHC class I monomer was tetramerised using
streptavidin at the ratio 4: 1 as described previously.55

Frozen samples were thawed and washed. Cells were
incubated for 1 h at room temperature with the tetramer.
Cells were then incubated with an antibody cocktail for
15 min and acquired on flow cytometry.

Mass-cytometry experiment

Purified antibodies lacking carrier proteins were conjugated to
a heavy metal according to the protocol provided by Fluidigm
Inc. (San Diego, CA, USA) Streptavidins were heavy metal-
labelled as previously described.54 Frozen samples were thawed
and washed in RPMI + 10% FBS + DNase (15 µg mL�1). Cells
were incubated for 1 h at room temperature with the tetramer
cocktail. Then, cells were stained with cisplatin (viability
marker) at 5 µM in PBS for 5 min at 4°C. Cells were then
incubated with an antibody cocktail for 15 min and fixed in
PFA 2% prior to CyTOF acquisition.

mRNA sequencing data analysis

The paired-end RNA-seq reads from HiSeq 4000 were
mapped to Human GRCh38/HG19 reference genome using
STAR software tool. The mapped paired-end reads were
summarised to gene level using featureCounts v1.5.0-p1
software tool and with GENCODE v26 gene annotation.
Genes with read count less than 5 in less than 2 samples in
all cell populations were filtered out from further analysis.
Limma-voom pipeline was used for differentially expressed
gene (DEG) analysis. DEGs from comparisons between
different cell populations were selected with the
Benjamini–Hochberg adjusted P-value of < 0.05. All analyses
were done in R-3.1.2. We used the HTSanalyzeR package (v
2.26.0) to run GSEA on gene collections from the T-cell
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exhaustion gene set56,57 filtered for gene sets with at least
20 genes present in our data set. For GSEA, we used 1000
permutations to estimate P-values and applied corrections
for multiple tests using the Benjamini–Hochberg procedure.
To measure TCR diversity, we converted the measured
counts for each TCRa and TCRb to frequencies.

Data analysis and UMAP

After CyTOF acquisition, which was performed as previously
described,58 any zero values were randomised using a
uniform distribution of values between zero and minus one
using a R script. Note also that all other integer values
measured by the mass cytometer are randomised in a
similar fashion by default. The signal of each parameter
was then normalised based on the EQ beads (Fluidigm).
Samples were then used for UMAP analysis similar to that
previously described.21 In R, all data were transformed
using the ’logicleTransform’ function (’flowCore’ package)
using the parameters w = 0.25, t = 16409, m = 4.5 and a = 0
to roughly match scaling historically used in FlowJo.
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