Received: 27 January 2024 Revised: 7 March 2024 Accepted: 21 March 2024

DOI: 10.1002/ctm?2.1652
CLINICAL AND TRANSLATIONAL MEDICINE

OpenAccess'
RESEARCH ARTICLE - WILEY

Early detection and prognosis evaluation for hepatocellular
carcinoma by circulating tumour DNA methylation: A
multicentre cohort study

De-Zhen Guo'® | Ao Huang' | Ying-Chao Wang® | Shuang Zhou® | Hui Wang® |
Xiang-Lei Xing* | Shi-Yu Zhang' | Jian-Wen Cheng' | Ke-Hui Xie® |

Qi-Chang Yang® | Cheng-ChengMa® | QingLi® | Yan Chen® | Zhi-XiSu® |
JiaFan' | RuiLiuv® | Xiao-LongLiu’® | JianZhou' | Xin-Rong Yang'

IDepartment of Liver Surgery and .
Transplantation, Liver Cancer Institute, Graphlcal Abstract
Zhongshan Hospital, Fudan University; . . .
Key Laboratory of Carcinogenesis and Samples Genome-wide profiling HCC-specific
Cancer Invasion (Fudan University), e Hee methylation markers
Ministry of Education, Shanghai, China ' G — -0-0-0-O- o
e -0-0-0-®- Marker
2The United Innovation of Mengchao Tissue DNA - . —&0eO
Hepatobiliary Technology Key Laboratory b ‘ v v
i i R8 -0-0-0-0-
of Fujian Province, Mengchao % §% g Marker 20
Hepatobiliary Hospital of Fujian Medical <fDNA OO
University, Fuzhou, P. R. China
3Singlera Genomics Ltd., Shanghai, China . = .
dni; Multi-center cohorts HepaAiQ model
Biliary Tract Surgery Department IV, J
Eastern Hepatobiliary Surgery Hospital, ( ( ( ( ( ( ( §§<
sy (UL X"
Shanghai, China DNA
SDepartment of Clinical Pharmacology,
Xiangya Hospital, Central South W HepaAiQ assay 5% et
University, Changsha, Hunan, China [ [ [ [ [ [ [ [ \:J> U2 7 — Validation
0.012
®XiangYa Medical Laboratory, Central 0.00.20.4 0.6 0.81.0
L. HCC 1-Specificity
South University, Changsha, Hunan, — —
China T . . )
Independent cohort Comparison analysis  Prognosis evaluation
Correspondence = o § 109 4 HepaiQ positive
Rui Liu, Singlera Genomics (Shanghai) = ﬁzgal AEi)Q 7 2 0.81 HepaAiQ negative
3
Ltd., Shanghai, China. g g gi
Email: rliu@singleragenomics.com @ § < 0‘2
© =0
N ©
. ; ; : S 0.0
Xiao-Long Liu, The .U'mted Innovation of HCC : E 0 6 12 18 24
Mengchao Hepatobiliary Technology Key 3 Months after surgery
Laboratory of Fujian Province, Mengchao
Hel')atotrlhary Hospital of Fujian M.edlcal The HepaAiQ assay integrates the most effective HCC-specific methylation
University, Fuzhou 350025, P.R. China. . ) . L
Email: xiaoloong.liu@gmail.com biomarkers using multilocus quantitative PCR.

Clin. Transl. Med. 2024;14:e1652. wileyonlinelibrary.com/journal/ctm2
https://doi.org/10.1002/ctm2.1652


https://orcid.org/0000-0002-6132-5269
https://orcid.org/0000-0002-3096-4981
https://orcid.org/0000-0002-2716-9338
mailto:rliu@singleragenomics.com
mailto:xiaoloong.liu@gmail.com
https://wileyonlinelibrary.com/journal/ctm2
https://doi.org/10.1002/ctm2.1652

CLINICAL AND TRANSLATIONAL MEDICINE GUO ET AL.

Jian Zhou and Xin-Rong Yang,
Department of Liver Surgery and Trans-
plantation, Liver Cancer Institute, In multicentre studies, the HepaAiQ model accurately distinguishes HCC from
Zhongshan Hospital, Fudan Univer-
sity; Key Laboratory of Carcinogenesis . . L . .
and Cancer Invasion (Fudan University), The HepaAiQ excels in early-stage HCC detection in high-risk patients and post-

Ministry of Education, Shanghai, China. resection assessment, potentially fulfilling clinical needs with high accuracy,

Emaﬂ:,Zhou'Jlan@zs'h?Splml‘Sh'Cn; accessibility and affordability.
yang.xinrong@zs-hospital.sh.cn

other liver diseases, surpassing existing serum tests.



mailto:zhou.jian@zs-hospital.sh.cn
mailto:yang.xinrong@zs-hospital.sh.cn

Received: 27 January 2024

Revised: 7 March 2024

Accepted: 21 March 2024

DOI: 10.1002/ctm2.1652

RESEARCH ARTICLE

CLINICAL AND TRANSLATIONAL MEDICINE

el WILEY

Early detection and prognosis evaluation for hepatocellular
carcinoma by circulating tumour DNA methylation: A
multicentre cohort study

De-Zhen Guo'

JiaFan' | RuiLiu®

| Ao Huang'
Xiang-Lei Xing* | Shi-Yu Zhang'
Qi-Chang Yang® | Cheng-Cheng Ma®
| Xiao-Long Liu’® | Jian Zhou'

| Ying-Chao Wang” | Shuang Zhou® | Hui Wang® |
| Jian-Wen Cheng' | Ke-Hui Xie® |

| QingLi® | Yan Chen® | ZhiXiSu® |

| Xin-Rong Yang'

IDepartment of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis
and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China

2The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian

Medical University, Fuzhou, P. R. China

3Singlera Genomics Ltd., Shanghai, China

4Biliary Tract Surgery Department IV, Eastern Hepatobiliary Surgery Hospital, Shanghai, China

SDepartment of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China

6XiangYa Medical Laboratory, Central South University, Changsha, Hunan, China

Correspondence

Rui Liu, Singlera Genomics (Shanghai)
Ltd., Shanghai, China.

Email: rliu@singleragenomics.com

Xiao-Long Liu, The United Innovation of
Mengchao Hepatobiliary Technology Key
Laboratory of Fujian Province, Mengchao
Hepatobiliary Hospital of Fujian Medical
University, Fuzhou 350025, P.R. China.
Email: xiaoloong.liu@gmail.com

Jian Zhou and Xin-Rong Yang,
Department of Liver Surgery and
Transplantation, Liver Cancer Institute,
Zhongshan Hospital, Fudan University;
Key Laboratory of Carcinogenesis and
Cancer Invasion (Fudan University),
Ministry of Education, Shanghai, China.
Email: zhou.jian@zs-hospital.sh.cn;
yang.xinrong@zs-hospital.sh.cn

Abstract

Background: Early diagnosis of hepatocellular carcinoma (HCC) can signifi-
cantly improve patient survival. We aimed to develop a blood-based assay to aid
in the diagnosis, detection and prognostic evaluation of HCC.

Methods: A three-phase multicentre study was conducted to screen, optimise
and validate HCC-specific differentially methylated regions (DMRs) using next-
generation sequencing and quantitative methylation-specific PCR (qMSP).
Results: Genome-wide methylation profiling was conducted to identify DMRs
distinguishing HCC tumours from peritumoural tissues and healthy plasmas.
The twenty most effective DMRs were verified and incorporated into a multilocus
gMSP assay (HepaAiQ). The HepaAiQ model was trained to separate 293 HCC
patients (Barcelona Clinic Liver Cancer (BCLC) stage 0/A, 224) from 266 controls
including chronic hepatitis B(CHB) or liver cirrhosis (LC) (CHB/LC, 96), benign
hepatic lesions (BHL, 23), and healthy controls (HC, 147). The model achieved
an area under the curve (AUC) of 0.944 with a sensitivity of 86.0% in HCC and
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a specificity of 92.1% in controls. Blind validation of the HepaAiQ model in a
cohort of 523 participants resulted in an AUC of 0.940 with a sensitivity of 84.4%
in 205 HCC cases (BCLC stage 0/A, 167) and a specificity of 90.3% in 318 controls
(CHB/LC, 100; BHL, 102; HC, 116). When evaluated in an independent test set,
the HepaAiQ model exhibited a sensitivity of 70.8% in 65 HCC patients at BCLC
stage 0/A and a specificity of 89.5% in 124 patients with CHB/LC. Moreover, Hep-
aAiQ model was assessed in paired pre- and postoperative plasma samples from
103 HCC patients and correlated with 2-year patient outcomes. Patients with high
postoperative HepaAiQ score showed a higher recurrence risk (Hazard ratio,
3.33, p < .001).

Conclusions: HepaAiQ, a noninvasive qMSP assay, was developed to accu-
rately measure HCC-specific DMRs and shows great potential for the diagnosis,
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1 | INTRODUCTION

Liver cancer is the second deadliest cancer in China and
the third deadliest worldwide.! Among primary liver can-
cers, hepatocellular carcinoma (HCC) accounts for 80% of
cases.” The incidence and mortality of liver cancer con-
tinue to escalate, which constitutes a major global public
health burden.® Detecting HCC at curable stages is cru-
cial for effective treatment and improved survival rates.*”’
Unfortunately, current strategies for HCC diagnosis, either
serum alpha-fetoprotein (AFP) or ultrasound, lack suffi-
cient sensitivity and specificity, especially for early-stage
HCC.30 Thus, there is still an urgent need for the devel-
opment of highly sensitive, cost-effective diagnostic tool to
further improve the prognosis of patients with HCC.

DNA methylation aberrations have become widely
recognised as cancer biomarkers.!'"* Changes in DNA
methylation that lead to the dysregulation of gene expres-
sion have been identified in many tumours, both early in
tumourigenesis and throughout progression.'*!> Specifi-
cally, the presence of elevated DNA methylation in liver
tumours consistently distinguishes patients from healthy
controls.'®'® However, the minute quantities of aberrant
DNA released from tumour cells into the blood (circulating
tumour DNA, ctDNA) compared to those from numer-
ous healthy cells pose technical challenges for cancer
detection, especially at early stages.'” >

detection and prognosis of HCC, benefiting at-risk populations.

circulating tumour DNA methylation, diagnosis, hepatocellular carcinoma, liquid biopsy,

Recent technical developments, specifically designed to
capture methylation aberrations, have facilitated highly
sensitive detection.??>> High-throughput next-generation
sequencing (NGS) techniques have demonstrated the fea-
sibility of using methylation markers for gastrointestinal
and hepatobiliary cancers.’*?® NGS technology is typically
integrated with a sophisticated machine-learning pipeline
to detect aberrant patterns of ctDNA in the plasma of
patients with HCC.?°3! However, the widespread adop-
tion of NGS assays in clinical practice is limited by their
high operating costs and complexity. Therefore, there is an
unmet need for highly accurate, accessible, and pragmatic
HCC tests for clinical implementation.

In this study, we sequentially constructed a blood-based
multilocus quantitative methylation-specific PCR (qMSP)
test, HepaAiQ, designed for HCC diagnosis. Employing
a stepwise marker elimination approach, we identified
highly discriminative methylation markers for HCC and
subsequently verified them in independent tumour tis-
sues and plasma samples. HepaAiQ, featuring the best-
performing markers, exhibited accurate and consistent
diagnosis of early-stage HCC in several rounds of blind
tests across multiple centres. We further conducted a
proof-of-concept study to detect ctDNA presence in post-
hepatectomy HCC patients using HepaAiQ and associat-
ing it with tumour recurrence. HepaAiQ outperformed
existing blood tests, underscoring its potential as an
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In-house RRBS methylation data Training set Enhanced diagnostic benefits
HCC tumours, 37; (559 plasma samples) of HepaAiQ over AFP and DCP
Peritumoural tissues, 26; HCC. 293
Healthy plasma samples, 114; CHBILC. 96:
WBC from healthy participants, 20 BHL. 23 HepaAiQ performance in an
TCGA methylation array data HC ’147’ independent test set
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CHB/LC, 100; patients with preoperative
A multi-locus gMSP test with 20 BHL,102; and postoperative plasma
best-performing markers (HepaAiQ) HC, 116 samples)
FIGURE 1 Schematic representation of the study design. The study was designed in three phases: marker discovery and optimisation,

model building and validation, and clinical application. First, markers were selected based on publicly available and in-house genome-wide

methylation datasets, verified using additional tissue samples, and optimised for the 20 best-performing markers. A blood-based multilocus

gMSP assay, HepaAiQ, was developed using these markers. Second, the HepaAiQ model for early-stage HCC detection was established in 559

patients and validated in an independent cohort of 523 patients. Finally, the HepaAiQ model was applied for comparison to existing serum
assays, HCC detection in an independent test set, and prognostic evaluation in HCC patients. HCC, hepatocellular carcinoma; RRBS, reduced

representation bisulphite sequencing; TCGA, The Cancer Genome Atlas;

WBC, white blood cell; gMSP, quantitative methylation-specific

PCR; CHB, chronic hepatitis B; LC, liver cirrhosis; BHL, benign hepatic lesion; HC, healthy control; AFP, alpha-fetoprotein; DCP,

des-gamma-carboxy prothrombin.

efficient, noninvasive and cost-effective assay for early
diagnosis and prognostic assessment of HCC patients.

2 | METHODS

2.1 | Study design

This study was divided into three chronological phases
(Figure 1). In the marker discovery phase, in-house bisul-
phite sequencing data were generated from 37 HCC
tumours, 26 peritumoural tissues, 114 healthy plasma
samples and 20 white blood cells (WBCs) from healthy par-
ticipants. DNA methylation data of 377 HCC tumours and
50 peritumoural tissues publicly accessible through The
Cancer Genome Atlas (TCGA) were used to identify spe-
cific DNA methylation markers in HCC tumours (TCGA-
LIHC dataset, https://portal.gdc.cancer.gov/). These mark-
ers were further verified and ranked based on their ability
to distinguish patients with HCC from controls. The 20
best-performing markers were integrated into a blood-
based multilocus qMSP test, designated HepaAiQ (Table
S1). The HepaAiQ model for the diagnosis of HCC was
built in 559 patients and blindly validated in 523 patients
(Tables 1 and S2). The HepaAiQ model performance was
also compared with AFP and des-gamma-carboxy pro-
thrombin (DCP), respectively. We further utilised another
independent cohort (n = 189) to validate the locked Hep-
aAiQ model’s ability to distinguish early HCC from the

high-risk group. Finally, the HepaAiQ assay’s clinical
significance for monitoring treatment response and prog-
nostic evaluation was investigated in an additional cohort
of 103 patients with resectable HCC.

2.2 | Patient enrolment and
characteristics

The study was registered at https://register.clinicaltrials.
gov with the unique identifier NCT05431621. Patients were
prospectively enrolled before diagnosis in this multicentre
study at three clinical institutions in China from Septem-
ber 2020 to September 2022 (Zhongshan Hospital, Fudan
University; Mengchao Hepatobiliary Hospital of Fujian
Medical University; and Eastern Hepatobiliary Surgery
Hospital). This study obtained approval from the Ethics
Committees of the leading centre of Zhongshan Hospital
of Fudan University and all participating centres. Writ-
ten informed consent for the archival of biospecimens
and their utilisation in future studies was provided by all
patients at the participating institutions.

Patients with HCC were clinically or pathologically
diagnosed according to the American Association for the
Study of Liver Diseases guidelines.*> The diagnosis of
chronic hepatitis B (CHB) was confirmed by the presence
of hepatitis B surface antigen (HBsAg) for at least 6
months.* The diagnosis of liver cirrhosis (LC) was based
on liver biopsy or clinical imaging evidence.** Benign
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TABLE 1 Clinical characteristics of HCC in the diagnosis cohort.

Variable Training (n = 559) Validation (n = 523) p Value
HCC count 293 205
Age median (Min, Max) 58.0(30.0, 81.0) 59.0 (30.0, 81.0)
Age (years) .018
<50 83 (28.3%) 39 (19.0%)
> 50 210 (71.7%) 166 (81.0%)
Gender .386
Male 246 (84.0%) 166 (81.0%)
Female 47 (16.0%) 39 (19.0%)
Tumour size (cm) .761
<5 179 (61.1%) 128 (62.4%)
>5 114 (38.9%) 77 (37.6%)
Tumour number .030
Single 248 (84.6%) 187 (91.2%)
Multiple 45 (15.4%) 18 (8.8%)
HBsAg 466
Negative 80 (27.3%) 50 (24.4%)
Positive 213 (72.7%) 155 (75.6%)
Child-Pugh class .027
A 264 (90.1%) 171 (83.4%)
B,C 29 (9.9%) 34 (16.6%)
BCLC stage (CNLC stage) 180
0-A (I) 224 (76.5%) 167 (81.5%)
B-D (II-IV) 69 (23.5%) 38 (18.5%)
AFP (ng/mL) .074
<20 119 (40.6%) 101 (49.3%)
> 20 167 (57.0%) 102 (49.8%)
No test 7 (2.4%) 2(1.0%)
DCP (ug/L) .822
<40 34 (11.6%) 29 (14.1%)
> 40 94 (32.1%) 75 (36.6%)
No test 165 (56.3%) 101 (49.3%)
CHB/LC count 96 100
Age median (Min, Max) 56.0 (30.0, 88.0) 53.0(29.0, 84.0)
Age (years) .256
<50 30 (31.3%) 39 (39.0%)
> 50 66 (68.8%) 61 (61.0%)
Gender 328
Male 67 (69.8%) 76 (76.0%)
Female 29 (30.2%) 24 (24.0%)
Child-Pugh class .387
A 68 (70.8%) 72 (72.0%)
B,C 22 (22.9%) 17 (17.0%)
Unknown 6(6.3%) 11 (11.0%)
AFP (ng/mL) .320
<20 57 (59.4%) 65 (65.0%)
> 20 16 (16.7%) 12 (12.0%)
No test 23 (24.0%) 23 (23.0%)

(Continues)
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TABLE 1 (Continued)
Variable Training (n = 559) Validation (n = 523) p Value
DCP (ug/L) .089
<40 44 (45.8%) 54 (54.0%)
> 40 12 (12.5%) 6 (6.0%)
No test 40 (41.7%) 40 (40.0%)
BHL count 23 102
Age median (Min, Max) 50.0 (33.0, 71.0) 43.0 (23.0, 74.0)
Age (years) 191
<50 12 (52.2%) 68 (66.7%)
> 50 11 (47.8%) 34(33.3%)
Gender 125
Male 16 (69.6%) 53 (52.0%)
Female 7(30.4%) 49 (48.0%)
Child-Pugh class 1.000
A 23 (100%) 102 (100%)
B,C 0 (0%) 0 (0%)
AFP (ng/mL) 1.000
<20 10 (43.5%) 87 (85.3%)
>20 0 (0%) 0 (0%)
No test 13 (56.5%) 15 (14.7%)
DCP (ug/L) 1.000
<40 10 (43.5%) 87 (85.3%)
> 40 0 (0%) 1(1.0%)
No test 13 (56.5%) 14 (13.7%)
HC count 147 116
Age median (Min, Max) 47 (22.0, 83.0) 47.0 (25.0, 81.0)
Age (years) .494
<50 89 (60.5%) 75 (64.7%)
> 50 58 (39.5%) 41 (35.3%)
Gender 442
Male 108 (73.5%) 90 (77.6%)
Female 39 (26.5%) 26 (22.4%)

HCC, hepatocellular carcinoma; BCLC, Barcelona Clinic Liver Cancer staging system; CNLC, China Liver Cancer staging system; AFP, alpha-fetoprotein; DCP,
des-gamma-carboxy prothrombin; CHB, chronic hepatitis B; LC, liver cirrhosis; BHL, benign hepatic lesion; HC, healthy control.

hepatic lesion (BHL) was diagnosed using standard
clinical imaging evidence and pathological data. Healthy
controls (HCs) were eligible blood donors with normal
biochemistry, indicating the absence of liver disease,
viral hepatitis or malignancy. Patients with a history of
cancer in other organs or those who failed to yield the
minimum required volume of plasma were excluded.
The Child-Pugh scoring system was used to assess liver
function. Samples were classified and staged following the
Barcelona Clinic Liver Cancer (BCLC) stage® and China
Liver Cancer (CNLC) Stage Guidelines.*®

All samples underwent processing at Singlera Genomics
following plasma separation. Diagnostic information was
included in the training set but omitted from the blinded

validation set. The HepaAiQ model training and cross-
validation were conducted using unblinded samples. Sub-
sequently, the model was locked and validated in the blind
validation set. In the validation set, all patient information
was single blinded to Singlera Genomics, and the Hep-
aAiQ model results were sent back to Zhongshan Hospital,
Mengchao Hepatobiliary Hospital of Fujian Medical Uni-
versity, and Eastern Hepatobiliary Surgery Hospital after
clinical or pathological diagnosis was obtained. Data ana-
lysts would compare the model results with the diagnosis.

An additional cohort of 103 HCC patients was retro-
spectively enrolled from Mengchao Hepatobiliary Hospital
of Fujian Medical University with the following criteria:
(1) patients with HCC who underwent curative resection
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of the tumour*; (2) paired plasma samples from each
patient were collected before and one month after hep-
atectomy; (3) patients received routine follow-up every
three months after operation.* In cases where recurrence
was suspected, patients underwent abdominal computed
tomography (CT), magnetic resonance imaging (MRI)
scans, or bone scans. All qualified plasma samples from
enrolled patients were examined using the HepaAiQ
assay.

2.3 | Identification of HCC-specific
differentially methylated region (DMR)

The sequencing data from reduced representation bisul-
phite sequencing (RRBS) libraries generated from tissues
and plasma samples were analysed. Publicly available
Infinium Human Methylation 450k (HM450) data for
tumours and peritumoural tissues were obtained from
TCGA. Using these data, three sets of differentially methy-
lated region (DMR) candidates were generated: HCC
tumours compared to peritumoural tissue from the RRBS
dataset; HCC tumours compared to healthy plasma from
the RRBS dataset; and HCC tumours compared to peri-
tumoural tissue from the TCGA dataset. The final DMR
candidates were determined as the overlapped set filtered
by the median of white blood cells from the RRBS dataset
(for detailed methods, see the Supplementary Materials).

2.4 | Blood sample collection and
HepaAiQ assay for plasma ctDNA
methylation

Peripheral blood samples (5-10 mL) were individually col-
lected from various centres before the initial diagnosis.
Throughout the entire measurement process, diagnostic
and clinical information, including the disease status of
each sample, was masked until the results were ready for
statistical analysis.

Plasma ctDNA was extracted utilising a Q[Aamp Circu-
lating Nucleic Acid Kit (55114; Qiagen) following the man-
ufacturer’s instructions. Samples of 10—20 ng ctDNA were
bisulphite converted by EZ DNA Methylation-Lightning
Kit (Zymo Research, D5031). Converted DNA was ampli-
fied with a primer pool using the ProFlex™ PCR System
(Thermo Fisher Scientific). The preamplified products
were analysed by quantitative PCR employing a stan-
dard procedure (NovoStart MethyLight qPCR SuperMix,
NovoProtein) on an ABI 7500 Real-Time PCR thermal
cycler.

2.5 | The construction of HepaAiQ model
for HCC diagnosis

The incremental feature selection (IFS) method was
applied to model building using the Support Vector Regres-
sion (SVR) model (Python v3.9.12, scikit-learn v1.1.2).
Markers were individually evaluated using receiver oper-
ating characteristic (ROC) curves. First, the marker with
the highest area under the ROC curve (AUC) was selected
as the anchor marker. Each of the remaining markers
was combined with the anchor marker, and a two-marker
combination with the highest mean AUC of fourfold cross-
validation with 10 repetitions was performed. Thus, the
third, fourth and fifth markers were selected to deter-
mine the best three-marker, four-marker, five-marker, etc.
combinations until all 20 markers were included. The
best marker combination was determined as that with the
highest mean AUC of the cross-validation among all 20
combinations. The final model was trained using the SVR
model with the best marker combination in a training set
of 293 HCC patients and 266 controls. The cycle threshold
values derived from quantitative PCR of the best marker
combination computed a score termed HepaAiQ score that
predicted disease status. The cutoff value of the HepaAiQ
model was determined to be 0.471 when the AUC was 0.944
and the specificity was 90%. A plasma sample was consid-
ered positive when its HepaAiQ score was above the cutoff;
otherwise, it was considered negative. The model was then
locked and further validated.

2.6 | Statistical analysis

The model’s performance was assessed for sensitivity and
specificity. Sensitivity was calculated as true positives
divided by the sum of true positives and false negatives,
while specificity was calculated as true negatives divided
by the sum of true negatives and false positives. The 95%
confidence intervals (CI) were calculated using the pro-
portion test. The Mann-Whitney U test was employed
to identify significant differences between two groups.
Comparisons of the two ratios were performed using the
chi-square test and Fisher’s exact test. Prognostic statisti-
cal analyses were performed using the survival package®’
in R software v4.1.3. Cumulative recurrence and survival
rates were determined utilising the Kaplan-Meier method
and assessed using the log-rank test. Univariate and multi-
variate analyses were performed using a Cox proportional
hazards regression model. All p values were considered
two-sided, with values less than .05 deemed statistically
significant.



GUO ET AL.

3 | RESULTS
3.1 | Study design and patient
characteristics

This study was strategically designed in sequential phases
to establish and validate the noninvasive HepaAiQ assay
to aid in the diagnosis of HCC (see Section 2, Figure 1).
The clinical characteristics of patients enrolled in this
study were summarised in Table 1. Covariate analysis
was performed to examine variables that might impact
the HepaAiQ model. To build a model capable of detect-
ing early-stage cancer, we deliberately enrolled a higher
proportion of HCC patients at early stages (BCLC stage
0/A or CNLC stage I). The proportions of patients with
stage 0/A were 76.5%, 81.5%, and 100% in the train-
ing, validation, and independent test sets, respectively. In
addition, the control cohort encompassed patients with
various chronic liver diseases, such as chronic viral hep-
atitis, liver cirrhosis and benign hepatic lesions, ensuring
a comprehensive representation of clinical conditions for
differential diagnosis.

3.2 | HCC marker discovery and
optimisation

To screen for HCC-specific biomarkers, we conducted
genome-wide methylation profiling of 37 HCC tumours, 26
peritumoural tissues, 114 healthy plasma samples, and 20
white blood cells from healthy individuals using the RRBS
approach (see Section 2). The sequencing data yielded 2.8
million CpG sites per sample with an average depth of
27.7X in tissue and 3.6 million CpG sites with 18.2x depth
in plasma. Additionally, we obtained array-based methy-
lation data from the publicly available TCGA database
as separate independent sources of markers. Through
three independent comparisons of HCC tumours against
peritumoural tissue or healthy plasma (Figure S1), we
ranked DMRs highly represented in HCC tumours based
on the adopted p value, methylation quantiles, and CG
enrichment to filter out markers with higher background
noise. Finally, we identified 183 common hypermethylated
DMRs in cancer samples compared to all other controls,
irrespective of the methodology (Figure 2A and B, see
Supplementary Methods in Supplementary Material). Sev-
eral of these markers have been previously reported to
be relevant in tumourigenesis®®* " (Figure 2C and D),
confirming the efficacy of the marker selection. After
curation of the genomic location, gene annotation and
literature-based evidence, we assessed the analytical accu-
racy of the candidate markers by qMSP in an additional
20 HCC tumours, 20 peritumoural tissues, and 10 WBCs

CLINICAL AND TRANSLATIONAL MEDICINE

from healthy participants. To eliminate DMRs with insuf-
ficient signal amplification, lower distinguishing power, or
lower fold changes, we selected the 20 most effective mark-
ers and incorporated them into a multilocus qMSP assay,
designated as HepaAiQ (Table S1).

3.3 | Formulating and validating
HepaAiQ model

To build the HepaAiQ model for HCC diagnosis, we
enrolled a training cohort comprising 293 HCC patients, 96
patients with CHB/LC, and 23 BHL patients, along with 147
HCs from multiple centres (see Section 2, Figure 1, Table 1).
To enhance the diagnostic model for early-stage HCC, we
intentionally increased the proportion of HCC patients at
BCLC stage 0/A (CNLC stage I) to 76.5%. All 559 plasma
samples were processed using the HepaAiQ assay. A
model-building approach with incremental feature selec-
tion was used to assess all possible marker combinations
and determine the optimal model performance (see Sec-
tion 2). Cross-validation of HepaAiQ performance over 40
iterations of the training set led to an average AUC of
0.926 + 0.022 (Figure 3A). The resultant HepaAiQ clas-
sifier achieved an AUC of 0.944 (95% CI: 0.934-0.955)
(Figure 3B), corresponding to a sensitivity of 86.0% (95%
CI: 82.0%—90.0%) in HCC and a specificity of 90.6%
(95% CI: 84.8%—96.5%), 100% (95% CI: 85.7%—100.0%) and
91.8% (95% CIL: 87.4%—96.3%) in CHB/LC, BHL and HC,
respectively (Table 2).

To evaluate the model’s robustness and stability, we
assembled a validation cohort of 523 patients (HCC, 205;
CHB/LC, 100; BHL, 102; HC, 116) and processed their
samples with HepaAiQ in a single-blind manner (see Sec-
tion 2, Table 1). In this cohort, 81.5% of HCC patients
presented at early stages (BCLC stage 0/A or CNLC
stage I). This cohort also expanded the representation
of patients with benign hepatic lesions (such as hae-
mangiomas, hepatic cysts, and focal nodular hyperplasia)
commonly encountered in clinical settings, necessitating
differential diagnosis. As expected, HepaAiQ performed
consistently in the validation set, achieving an AUC of
0.940 (95% CI: 0.929-0.951) (Figure 3B), with sensitivity
of 84.4% (95% CI: 79.4%—89.4%) and specificities of 83.0%
(95% CI: 81.6%—94.4%), 92.2% (95% CI: 86.9%—97.4%), and
90.5% (95% CI: 85.2%—95.8%) for CHB/LC, BHL and HC,
respectively (Table 2).

Notably, the HepaAiQ model achieved sensitivities of
83.0%/80.8% for early-stage HCC, 75.6%/77.8% for tumours
less than 2 cm, and 83.9%/82.9% for single tumour in the
training/validation sets, respectively (Figures S2 and S3).
Patients with HCC exhibited significantly higher Hep-
aAiQ scores than controls (p < .001) (Figure 3C and D).
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Additionally, we conducted a covariance analysis of patient
characteristics to identify factors that could potentially
affect HepaAiQ performance. No significant correlations
were observed between the HepaAiQ score and age, sex or
Child-Pugh grading in either the training set (Figures S4
and S5) or validation sets (Figures S6 and S7). All of these
findings demonstrate a strong potential of the HepaAiQ
model for HCC early detection and differential diagnosis.

3.4 | Comparison of HepaAiQ model with
the traditional biomarkers AFP and DCP

We further investigated whether the HepaAiQ model
could offer additional clinical advantages over existing
blood tests for HCC diagnosis. In 489 HCC patients
examined with both HepaAiQ and AFP tests, HepaAiQ
significantly outperformed the AFP test (85.3% vs. 55%),
while comparable specificities were shown in 247 controls
(90.3% vs. 88.7%) (Table S2, Figure 4A). Importantly, Hep-
aAiQ achieved a sensitivity of 75.1% in 189 HCC patients
at early stages who tested negative for AFP (Table S3,
Figure 4C). The HepaAiQ score was independent of the
status of the well-known HCC marker, AFP, although

patients with AFP-positive HCC tended to have a higher
HepaAiQ score.

Similarly, a subgroup of 441 patients was examined
using the DCP, another HCC blood test. A superior per-
formance of HepaAiQ over DCP was observed in 232 HCC
samples and 209 controls (Figure 4B, Table S4). Notewor-
thy, HepaAiQ detected 44 (78.6%) of 56 early-stage HCC
patients who tested negative with DCP (Figure 4D, Table
S5). These observations strongly suggest that methylation
markers can accurately capture HCC signals compared
to traditional protein markers, potentially improving the
effectiveness of surveillance care for HCC in clinical
settings.

3.5 | Independent test of HepaAiQ model
to distinguish early HCC in high-risk
populations

Ultrasonography combined with AFP is frequently used
in detecting HCC within high-risk populations. To simu-
late the real-world performance of the HepaAiQ model, we
recruited an independent test cohort of 189 patients with
chronic liver diseases, either with HCC (BCLC stage 0/A
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or CNLC stage I, 65) or without HCC (CHB/LC, 124) (Table
S6). HepaAiQ model resulted in a sensitivity of 70.8% (95%
CIL: 59.7%—81.8%) in early-stage HCC and a specificity of
89.5% (95% CI: 84.1%—94.9%) in CHB/LC (Table 2), com-
pared to a sensitivity of 58.5% (95% CI: 46.5%—70.4%) and
a specificity of 92.7% (95% CI: 87.9%—97.6%) by AFP in the
same set (Table S7). Although with a limited size cohort,
HepaAiQ was suggested to be a promising model for HCC
surveillance in high-risk populations.

3.6 | The prognostic significance of
HepaAiQ model in HCC patients
undergoing resection

Next, the potential utility of the HepaAiQ model in
the prognostic evaluation was investigated in 103 HCC
patients who had undergone resection (see Section 2,
Table S8). Among these patients, 47 were confirmed to
have tumour relapse during postoperative follow-up, while
56 showed no sign of relapse. Paired perioperative plasma
samples had been collected before (mean, 1 day) and after
(mean, 34.9 days) surgical resection. We found that the

level of ctDNA methylation tested by the HepaAiQ assay
significantly decreased in HCC patients one month after
tumour resection (Figure 5, Figure S8), with the positive
rate decreasing from 78.6% (81/103) to 33.0% (34/103)
(Figure 5B). Further analysis revealed that patients with
postoperative recurrence exhibited higher positivity in the
postoperative HepaAiQ results than did the recurrence-
free ones (Figure S9; p < .001). Kaplan-Meier survival
analysis indicated that patients with positive postoperative
ctDNA had unfavourable outcomes compared with those
with negative status (HR, 3.33; 95% CI: 1.87-5.92, p < .001),
especially for the patients with continuous positive results
(Figure 5C and D). Univariate and multivariate analyses
confirmed that the postoperative HepaAiQ status was an
independent indicator of postoperative recurrence (Table
S9).

4 | DISCUSSION

Owing to the lack of specific symptoms, most patients with
HCC reach intermediate and advanced stages at the time
of diagnosis and may not be eligible for curative surgical
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resection.*>*® Thus, effective early screening and diagnosis
play a pivotal role in improving disease prognosis. Cur-
rently, AFP and ultrasound are the primary tools for the
detection of HCC, despite their limited diagnostic sensitiv-
ity and specificity.”'” In the present study, we constructed
a pragmatic qMSP assay, HepaAiQ, incorporating the most
effective methylation biomarkers specific to HCC. Hep-
aAiQ accurately distinguished patients with HCC from
individuals with CHB/LC, indicating its ability to differ-
entiate HCC from populations at risk. More importantly,
HepaAiQ showed favourable diagnostic sensitivity in HCC
patients at BCLC stage 0/A (CNLC stage I). In comparison
to routinely used biomarkers such as AFP and DCP, Hep-
aAiQ presented superior diagnostic accuracy, especially in
discriminating early-stage HCC from high-risk individu-
als. HepaAiQ also holds promise as a surveillance tool
for evaluating the treatment response and prognosis in
patients with HCC.

In recent years, HCC-specific aberrant methylation has
been revealed due to the development of NGS technology,
which lays the foundation for investigating the poten-
tial of ctDNA methylation biomarkers for the detection

of HCC.1941-43 However, most of these models use NGS
assays with high economic and time costs, which hampers
their clinical application and population-level screening.
In this study, the HepaAiQ model was built based on the
gMSP assay and achieved diagnostic performance com-
parable to that of previously reported models using NGS.
This assay has great advantages in testing cost and detec-
tion efficiency, thus facilitating clinical practice at the
population level.

We intended to assess the potential benefits of HepaAiQ
applied as a surveillance approach in high-risk popu-
lation for liver cancer. A Monte-Carlo simulation was
conducted to compare the performances of HepaAiQ with
the recommended surveillance strategy (ultrasonography
combined with AFP test) (for detailed methods, see the
Supplementary Material). With reported surveillance com-
pliance, test performance, and prevalence of cirrhosis and
viral hepatitis in China,'***-*® Monte-Carlo simulation
revealed that HepaAiQ could lead to a 2.5-fold (95% CI:
1.8-3.4) increase in HCC detection compared to ultra-
sonography combined with AFP (Figure S10). Moreover,
PPV would be expected to increase from 15.2% (95% CI:
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9.0%—24.3%) with ultrasonography-AFP to 26.1% (95% CI:
15.8%—41.8%) with HepaAiQ, whereas the false negative
rate decreased from 37.0% (95% CI: 28.1%—46.3%) to 17.8%
(95% CI: 13.9%—22.1%), respectively. Therefore, simulation
analyses further support HepaAiQ could bring potential
benefits to the population at risk of HCC.

Furthermore, most patients showed significantly
decreased ctDNA methylation levels after hepatectomy,
suggesting that HepaAiQ can sensitively detect changes
in tumour load during the course of the disease. Patients
who relapsed after surgery had significantly higher post-
operative ctDNA methylation levels than those without
tumour recurrence, implying the possibility of residual
lesions in HCC patients. The postoperative (1-month
after surgery) HepaAiQ score was able to predict tumour
recurrence after surgery, which is difficult to predict in
clinical settings. These findings provide a glimpse into
the prognostic evaluation of HepaAiQ and highlight
its potential as an alternative indicator for monitoring
treatment response during HCC management.

The HepaAiQ presents several advantages over existing
methylation diagnostic assays. First, its utilisation of the
gMSP assay significantly reduces both economic and time
costs while maintaining comparable diagnostic perfor-
mance to NGS-based assays. This positions HepaAiQ as an
ideal tool for HCC diagnosis in clinical practice and HCC
screening at the community level. Second, the HepaAiQ
model demonstrates favourable performance in diagnos-
ing early-stage HCC and distinguishing patients with HCC
from high-risk populations, suggesting its efficacy as a
biomarker in the surveillance of high-risk populations.
In addition, the HepaAiQ model not only aids in HCC
detection but also recurrence risk stratification for post-
operative patients. As far as we know, HepaAiQ is the
first gqMSP-based methylation model to encompass various
clinical utilities, including detection, differential diagnosis
and prognostic evaluation of HCC.

There are some limitations in this study. All the patients
included in this study were of Chinese origin, with the
predominant etiology being CHB/LC. Sensitivities are
comparable in HCC cases caused by viral hepatitis or
other etiologies (alcoholic and nonalcoholic steatohepati-
tis) across training, validation and test sets (Figure S11).
Further studies with diverse populations and other risk
factors are required to validate these findings. Addition-
ally, the prognostic value of HepaAiQ was investigated in
a cohort with a limited sample size and a short follow-up
period. Therefore, prospective studies with larger sample
sizes and long-term surveillance are required for further
validation.

CLINICAL AND TRANSLATIONAL MEDICINE

5 | CONCLUSION

In conclusion, we have developed and validated a novel
blood-based qMSP assay targeting ctDNA methylation,
designated HepaAiQ, for differential diagnosis and prog-
nostic assessment of HCC patients. HepaAiQ has the
potential to be a cost-effective and simplified tool for HCC
screening at the population level and for improving patient
management.
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