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Coordinate invariance of physical laws is central in physics, it grants us the freedom to

express observations in coordinate systems that provide computational convenience.

In the context of medical imaging there are numerous examples where departing from

Cartesian to curvilinear coordinates leads to ease of visualization and simplicity, such

as spherical coordinates in the brain’s cortex, or universal ventricular coordinates in

the heart. In this work we introduce tools that enhance the use of existing diffusion

tractography approaches to utilize arbitrary coordinates. To test our method we

perform simulations that gauge tractography performance by calculating the specificity

and sensitivity of tracts generated from curvilinear coordinates in comparison with

those generated from Cartesian coordinates, and we find that curvilinear coordinates

generally show improved sensitivity and specificity compared to Cartesian. Also, as an

application of our method, we show how harmonic coordinates can be used to enhance

tractography for the hippocampus.
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1. INTRODUCTION

Traditionally, analysis of diffusion MRI (dMRI) images is performed in the Cartesian coordinates
that the data is acquired in. Cartesian coordinates are well-suited for problems in which there is
planar symmetry or in situations where there is no apparent symmetry or preferred direction. For
example, in a MRI scanner the main magnetic field has an approximate planar symmetry, and
usually scanner coordinates are chosen such that the z-direction points in the same direction as
the main magnetic field. The remaining two coordinates are set perpendicular and parallel to the
ground, which is again a preferred choice as patients are oriented horizontally (Brown et al., 2014).
In contrast, a problem with spherical symmetry, for example geospatial weather data, spherical
coordinates would be more suitable, further, these spherical coordinates would be fixed so that the
poles of the coordinates align with the axis of rotation of the Earth so that the rotation of the planet
is a simple coordinate translation.

As we move our focus to specific areas within the body, the preferred directions depart from
those offered by a simple Cartesian coordinate system, because most anatomical structures have
complex and curved geometries for which curvilinear coordinates are more suitable. A typical
example of this is the neocortex, which is a highly complicated structure due to its curved gyri
and sulci. Since the microstructure of the cortex is arranged in laminae there is a preferred radial
direction perpendicular to the surface of the cortex. The use of curved coordinates goes beyond
just the choice of preferred directions. As shown by Bok (1929), cortical segments tend to preserve
volume while the thickness of layers varies in response to the cortical folds. This observation is then
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used to construct an equi-volume three-dimensional coordinate
system for the neocortex whose constant depth surfaces align
much more accurately to observed cortical layering (Waehnert
et al., 2014). Other coordinate systems have also been used
on the cortex, a popular choice is the mapping of the cortex
to a sphere as implemented in Freesurfer (Fischl et al., 1999).
Curvilinear coordinate systems have also been devised for the
heart. Universal Ventricular Coordinates are a system of four
intuitive coordinates found by employing Laplace’s equation
(Bayer et al., 2018).

For an application of the methods developed in this study
we will focus on the hippocampus, a heavily studied structure
of the brain. It plays a central role in learning processes,
memory, and spatial navigation. It is also involved in major
disease states (Hampel et al., 2008; Thom et al., 2010; Coras
et al., 2014; Dinkelacker et al., 2015). The hippocampus can
be partitioned into three distinct sub-regions: the dentate gyrus
(DG), the hippocampus proper, and the subiculum (Sub). The
hippocampus proper consists of three subfields, called CA1, CA2,
and CA3. In cross sections, the CA subfields and the DG form
two interlocked “C” shapes. Macroscopically, the hippocampus
has a complex curved geometry. This complex geometry and
its small size makes studying the hippocampus a challenge with
current in-vivo imaging techniques. Using Laplace’s equation
and appropriate boundary conditions, harmonic coordinates can
be found for the hippocampus (DeKraker et al., 2018). These
coordinates also allow us to virtually unfold the hippocampus,
which is done by resampling data on a grid of the domain of the
coordinate system (DeKraker et al., 2018).

The focus of our work will be dMRI tractography in
curvilinear coordinates. Tractography is the only method for
studying structural connectivity in vivo, and has numerous
applications in neuroscientific and clinical research, including by
neurosurgeons for surgical planning (Essayed et al., 2017). Thus,
it is necessary that tractography be able to accurately predict the
presence or absence of underlying pathways. This translates into
requiring the tractography procedure to have a high sensitivity
and specificity (Schilling et al., 2019). A particular strain on the
accuracy of tractography methods is placed by the geometry and
scale of the underlying true fibres. In typical diffusion scans the
resolution of voxels is on the scale of millimeters whereas the
underlying structures are atmicroscopic scales. In addition, fibres
with crossing, kissing, fanning and fibres with high curvature
have been shown to have low tractography accuracy (Leergaard
et al., 2010; Tournier, 2010; Ning et al., 2015).

The goal of this work is to compare tractography performed
in Cartesian coordinates with tractography performed in
curvilinear coordinates whose tangents point along the direction
of the underlying microscopic fibres. We are particularly
interested in configurations with high curvature as these are
the ones that arise in the hippocampus and the neocortex. To
make this comparison we perform simulations and construct
the diffusion signal generated by a family of fibres that traverse
around a sharp bend (tangential fibres) and are intersected
by orthogonal fibres (radial fibres). To keep our comparison
simple, andmake interpretation of results more straight-forward,
our simulations are restricted to two dimensions and we use

conformal curvilinear coordinates. Next, by seeding only the
tangential region we are able to gauge the performance of
both coordinates by measuring the sensitivity and specificity
of the resulting tracts. We find that in almost all scenarios
curvilinear coordinates show improved performance over
Cartesian coordinates.

As an application of our method we show how tractography
can be performed on the hippocampus with the harmonic
coordinates used inDeKraker et al. (2018). It is worthmentioning
that our approach is general in the following manner: in
the landscape of tractography there are numerous different
mathematical approaches, algorithms and implementations,
however, what is common amongst them is that all these
approaches have their roots in the diffusion signal and the grid
it is sampled on. Hence, we demonstrate how the diffusion
signal itself can be resampled on to curvilinear coordinates which
allows the use of these existing tools for tractography without
constraining ourselves to scanner-given Cartesian coordinates.

2. METHODS

2.1. Resampling dMRI Data and the
Jacobian Matrix
Let ui = (u, v,w) be a new set of coordinates, where each ui

is a scalar function of xj = (x, y, z). A scalar signal S(xj) is
straightforward to transform to new coordinates, we have simply,
S(ui) : = S

(

ui(xj)
)

. However, dMRI data is vector valued, i.e.,

for each b-vector, Eb, we have a corresponding signal S(Eb, xj). The

transformation to new coordinates is now given by, S(Eb′, ui) : =

S
(

JEb, ui(xj)
)

, where Eb′ = JEb and J is the Jacobian matrix,

Jij =
∂ui

∂xj
. (1)

Note that this transformation means that we would, in general,
have different b-vectors for each voxel in an image. This
requirement can be incorporated into existing dMRI analysis
pipelines by composing the Jacobian matrix to the gradient non-
linear distortion corrections. These distortions tend to warp the
image in a spatially dependent way and are corrected using a
Jacobian matrix. Many tools allow the option to include this
Jacobian matrix (usually named grad_dev.nii.gz) and can
also handle the matrix for the new coordinates, making this
approach quite general. If that option is not available there may
still be other ways to employ the Jacobian matrix, as we show
for Q-ball imaging (Tuch, 2004). Central to Q-ball imaging is the

orientation distribution function (ODF), ψ
(

Eb
)

, given by,

ψ

(

Eb
)

=
1

Z

∫ ∞

0
P

(

rEb
)

dr (2)

where, P is the ensemble average diffusion propagator and Z
is a dimensionless constant. If tractography is performed using,
ψ , the key quantity is then the directions of the peaks of ψ .
Let Evpeak be such a peak. To perform tractography using the
new coordinates, we have to simply use the peak transformed
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by the Jacobian matrix, Ev′
peak

= JEvpeak. Since only the peaks are

transformed there is no effect on the angular resolution. Also,
note that any function, not just the peaks, on the tangent space
can be transformed this way, like the Watson distribution from
NODDI (Zhang et al., 2012).

These mathematical considerations that maintain generality
allow one to perform tractography in arbitrary coordinates
with the insertion of a few simple steps to existing pipelines.
Namely, given the existence of new coordinates in terms of
scanner-given Cartesian ones, we have to perform three steps,
(1) resampling the dMRI data on a grid of the new coordinates,
(2) Jacobian matrix transform of the b-vectors (either we use,
grad_dev.nii.gz, or transform peaks as outlined above),
and (3) perform tractography on the grid of new coordinates and
optionally move them back to the original grid with the inverse
coordinate mapping.

2.2. Simulations and Conformal
Coordinates
For simplicity and ease of interpretation we restrict our diffusion
simulations to two dimensions. One straightforward way to
generate conformal coordinates in two dimensions is by the use
of the complex plane, C. Let (u, v) be conformal coordinates,
(x, y) be Cartesian coordinates, and, φ−1

:(u, v) → (x, y), then
the conformal mapping used here is,

φ−1 = zw (3)

where φ−1 ∈ C, z = u + iv and w ∈ R. We have then,
x(u, v) = ℜ(φ−1) and y(u, v) = ℑ(φ−1). The grid generated
from this mapping is shown in Figure 1A, with, u ∈ [0.02, 0.6],
v ∈ [−π/4,π/4] and w = 1.99. The u = constant curves are
shown in blue and the v = constant curves are shown in red. As
demonstrated in Figure 1D the parameter w varies the curvature
of the grid.

Next we simulate a diffusion signal from these coordinates.
Along with two eigenvalues, λu and λv, we use the unit tangent
vectors of these coordinate curves, Eu and Ev, as eigenvectors to

calculate a diffusion tensor, D
ij
s . Then, for a given b-tensor, bij,

we can generate a signal, S ∼ exp(−
∑

ij bijD
ij
s ). Let x1/2 =

(

x(umin, 0)+ x(umax, 0)
)

/2 be the midpoint of the bend at y =
0 and v = 0. We have then the curve u = u1/2 where
u1/2 = ℜ(φ(x1/2, 0)). To have the signal to transition from
dominant tangential eigenvectors for u < u1/2 to dominant
radial eigenvectors for u > u1/2, we use a logistic windowing
function, W(u) = 1/(1 + exp(−k(u − u1/2)). We generate a
tangential signal, ST , by choosing λu ≫ λv and a radial signal,
SR, by choosing λu ≪ λv. Our final signal is then given by,

Stotal = (1−W(u))ST +W(u)SR. (4)

Figure 1B shows a depiction of the fibres used to generate the
signal, the opacity of the fibres is determined with Equation (4).

In our simulations we vary the following parameters, (1)
resolution, (2) curvature of the bend with the w parameter from
Equation (3) and (3) the angle threshold, θ , for tractography,

which is the maximum allowed angle that a tract can turn in one
step. We expect that all these parameters will greatly influence
the performance of the tractography, a lower resolution would
diminish performance and there should be an interplay between
w and θ , for example, very high curvature and moderate θ
would lead to tracts not being able to traverse the bend. We
choose sixteen values for each of these parameters. The resolution
ranges from 0.2 to 1.2 mm, and to give this a reference, the
length of the grid when w = 1.00 is 16 mm. The curvature
for the bend ranges from no bend, w = 1.00, to maximum
bend, w = 1.99. The angle threshold, θ , ranges from, θ = 20◦

to θ = 90◦. To simulate the signal we choose the b-values
(1,000 s/mm2) and b-vectors of the first shell in the HCP dataset
(Van Essen et al., 2012). The baseline signal, S0, is 1,000, the
dominant eigenvalue is 0.01 mm2/s and the second eigenvalue
is 0.0001 mm2/s. The tractography step size is a quarter of
the voxel length as per EuDx recommendation (Garyfallidis,
2013).

For all the tractography performed in this work we use
the Constant Solid Angle ODF Q-ball model (Aganj et al.,
2010) to estimate ODF peaks and the EuDx algorithm to
generate streamlines (Garyfallidis, 2013). EuDx is an Euler’s
method based fast and purely deterministic approach which
can take as inputs model-based or model-free reconstruction
algorithms, and it is robust at crossing fibres. Both of these
algorithms are implemented in the dipy library (Garyfallidis
et al., 2014). Note that for using our approach no modifications
are needed for the EuDx algorithm itself. The seeding region
for the streamlines is, U6 , as in shown Figure 1C. The seeds
are kept the same across different coordinate systems and are
generated from the mask U6 . In addition, when we vary the
resolution of our simulations, the mask for the seeds, U6 , is
kept at the highest resolution, this ensures that the seeding rate
is the same across changes in resolution. For resampling all the
diffusion data onto the new coordinate grid we use radial basis
function interpolation.

2.3. Sensitivity and Specificity of Tracts
To compare the tracts from the simulation obtained from using
Cartesian vs. conformal coordinates we measure the sensitivity
and specificity of the tracts for both approaches. The seeding
region,U6 , is labeled in Figure 1C. In the same figure, the region
occupied by the tangential tracts that span u0 to u1/2, UT , is
also labeled. We also have the radial region, UR, which extends
radially from u3/4, to umax. The reason to choose this sub-region
over the whole region containing radial fibres is to avoid biases in
the specificity caused by the discritization of the underlying grid,
which is used to calculate areas. Also note in Figure 1C that UR

is slightly asymmetric under a reflection across the x-axis because
the region next to U6 is omitted. This region is omitted to keep
the focus of sensitivity and specificity on the bent region; since
we use a windowing function and overlap the two families, there
are tracts that are purely radial that emanate from the seed region
and interfere with the sensitivity and specificity measurements in
the region of high curvature. We use the following formulas to
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FIGURE 1 | This figure summarizes aspects of our simulation strategy. In (A), we have an illustration of the conformal coordinate system grid generated by Equation

(3) with w = 1.99. In (B), we have the fibres, blue for tangential and red for radial, used to generate the diffusion signal. Notice that there is an overlap between the two

tracts to depict the mixing of the signal from the two compartments, the opacity of the line is calculated from Equation (4). The orange dashed line is u1/2. In (C), the

region U6 , is the seeding area, the region UT is the ground truth area occupied by the tangential tracts, and UR is used to detect tracts that falsely traverse into the

radial fibres. Notice that UR is half of the region occupied by the radial tracts, this is done to reduce errors introduced by discretization. Also note that UR is

asymmetric, this choice is to reject false positives caused by purely radial tracts emanating from U6 , the focus is intended to be on the bent area. In (D), we show the

effect of changing the parameter w on the curvature of the geometry.

calculate the sensitivity and specificity,

Sensitivity =
Area (U6 ∩ UT)

Area (UT)

Specificity = 1−
Area (U6 ∩ UR)

Area (UR)
. (5)

We also calculate Youden’s J-statistic, Y = Sensitivity +
Specificity − 1. The area in the numerator is calculated by
counting the voxels that tracts pass through. For example,
Area(U6 ∩ UT) is the number of voxels a tract passes through
such that these voxels exist in bothU6 andUT , and Area(UT), on
the other hand, is the area of the whole tangential region. Since
we vary the resolution in our simulations, we choose a voxel size
of 0.2 mm to calculate the area to reduce biases introduced by
discretization. Occupancy (tract density) of tracts passing a voxel

in a particular region is kept binary regardless of the number of
tracts that pass through.

2.4. Hippocampus
As an application of our methods we perform tractography
with harmonic coordinates on the hippocampus. We choose
two random subjects (four hippocampi) from the Human
Connectome Project (HCP) Young Adult 3T study, WU-Minn
S1200 release (Van Essen et al., 2012). The dMRI scans are multi-
shell with b-values of 0, 1,000, 2,000, and 3,000 s/mm2 with
approximately an equal number of acquisitions on each non-
zero b-shell and an echo spacing of 0.78 ms. The resolution
is 1.25 mm with isotropic voxels. Manual segmentation of all
hippocampi and their subfields is performed, which is followed
by solving for three harmonic coordinates, u, v, and w, by
using Laplace’s equation. In Figure 2A, we see the coordinates

Frontiers in Neuroscience | www.frontiersin.org 4 August 2021 | Volume 15 | Article 716538

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hussain et al. Tractography in Curvilinear Coordinates

and the boundaries chosen for each coordinate (e.g., when
solving for the coordinate u, U0 is the source and U1 is
the sink). The boundaries of these coordinates are motivated
neuroanatomically, and consist of structures which border the
hippocampus at its topological edge. We choose Neumann
boundary conditions on the rest of the hippocampus to ensure
that the tangent vectors of the coordinates are orthogonal to
the surface normals at the boundary of the hippocampus. When
solving for the coordinates v and w, we follow an analogous
procedure (e.g., when solving for v we chose the source and
sink as V0 and V1 respectively), and Neumann boundary
conditions on the rest of the hippocampus. More details about
this procedure can be found in DeKraker et al. (2018). We
upsample the diffusion volumes to 0.625 mm and perform
tractography in both Cartesian and harmonic coordinates.
Upsampling is a standard practice in tractography. As shown
in Dyrby et al. (2014), upsampling diffusion data provides
more accurate geometrical information in complex regions like
tract boundaries and cortical layers by reducing the partial-
volume-effect, in addition, they show that upsampling also aids
in tractography. The hippocampus is a small structure that is
sensitive to partial volume effects, and omitting this upsampling
step worsens tractography performance in both coordinate
systems. The procedure used to perform the tractography is the
same as the simulations, i.e, the Constant Solid Angle ODF Q-
ball model (Aganj et al., 2010) to esitmate ODF peaks and the
EuDx algorithm to generate tracts (Garyfallidis, 2013), the angle
threshold is fixed at 60◦ which is the default value for EuDx in
dipy (Garyfallidis et al., 2014). Using the anterior to posterior
coordinate we split each hippocampus into thirds, corresponding
to the head, body and tail. The tractography is done in the body
of each hippocampus with step size of a quarter voxel. The seeds
are in subfields CA1 and CA3, followed by filtering for tracts
that pass through both subfields. Again, the seeds are kept the
same across the different coordinate systems. We also compute
the normalized distributions for the length and curvature of these
tracts for each hippocampus.

3. RESULTS

3.1. Simulations
In Figures 3A–C, we see the scatter plots of the sensitivity,
specificity and Youden’s J-statistic. The x-axis corresponds
to measurements in Cartesian coordinates and the y-axis
corresponds to measurements in conformal coordinates. The
colors denote the angle threshold, θ and the size of the markers
denote the resolution; the smaller markers represent higher
resolution (smaller voxels) and larger markers represent lower
resolution (larger voxels). Figure 3D shows the relationship
between the sensitivity and the curvature parameter, w, with the
colors representing the angle threshold, θ . Here, to isolate only
the effects of w and θ , we have fixed the resolution to the smallest
voxel size. There are two families of curves labeled, Cartesian
and conformal, depending on which coordinate system was used.
Figure 3E is similar, it shows the relationship between specificity
and w, with colors representing θ , here, we are using Cartesian
coordinates. Note that most of the θ curves overlap, except the

one with θ = 90◦. Figure 3F is analogous to Figure 3E but with
conformal coordinates, again all angle curves overlap except 90◦.
Figure 4 shows resulting tracts for a reduced parameter space,
we have chosen three values, low, medium and high, for the
resolution (0.2, 0.7, and 1.2 mm) and w (1.26,1.66, and 1.99). The
tracts are shaded by the angle threshold, θ . For each resolution
and w there are two images, the left one shows the tracts
generated from using Cartesian coordinates and the right one
shows the tracts generated from using conformal coordinates.
Also overlaid is the outline of the region with tangential tracts
(blue) and the region with radial tracts (red).

3.2. Hippocampus
Figure 2B shows a coronal slice of the left hemisphere
hippocampi tracts, generated from using Cartesian coordinates
(first column) and curvilinear coordinates (second column),
the anterior portion of the hippocampus is visible. Here,
the tracts are colored based on their local orientation, green
represents the anterior to posterior direction, red represents
right to left and blue inferior to superior. Figure 2C is
analogous, but for the right hemisphere. Figure 2D shows the
normalized distribution for the lengths of the tracts overlaid
for each hippocampus, the blue histogram is for Cartesian
coordinates and orange is for harmonic. Figure 2E is a
similar normalized histogram but for the mean curvature of
each tract.

4. DISCUSSION

In this work we explored how changing from Cartesian
coordinates to curvilinear coordinates affects the performance
of tractography. If our data was continuous there would be
no effect of changing coordinates. But since the problem at
hand is discrete we see considerable changes brought about by
a change of coordinates, when the constant coordinate curves
follow underlying anatomical fibres. The effect we see is that
the curvilinear coordinate system indirectly informs existing
tractography methods of the underlying fibres, thereby acting
as an anatomical prior. Other studies have also taken similar
approaches to tractography, Dong et al. (2017) used a Bayesian
approach with atlas-based shape priors, Rheault et al. (2019)
builds a template of streamlines, Smith et al. (2012) used image
segmentation and a decision tree to anatomically constrain
streamlines, and Christiaens et al. (2014) used a prior derived
from 20 subjects, but to the best of our knowledge, we have not
found any that use a curvilinear coordinate system to do so.
Our approach is efficient in that it does not require any training
data to achieve the priors and it is not derived from multiple
subjects. Also, it does not filter streamline membership based
on a prior atlas or a decision tree. Our method does require
a segmentation of the region of interest, and an approach to
find meaningful curvilinear coordinates that are generated
from anatomical priors, for example, the simulations used
coordinates that were generated by the curvature parameter w
and Equation (3), and the hippocampus which used Laplace’s
equation with specific boundary conditions that results in
coordinates that follow fibre pathways like the trisynaptic
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FIGURE 2 | This figure summarizes the sensitivity and specificity measurements from the simulations. In (A–C), the y-axis represents quantities calculated with using

conformal coordinates and the x-axis represents quantities calculated with using Cartesian coordinates. The results from the whole parameter space are shown, the

color of the markers represents the angle threshold, where the orange is low angles and purple is high. The size of the markers depicts the resolution, small markers

(Continued)
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FIGURE 2 | are high resolution (smaller voxels) and larger markers are low resolution (larger voxels). In (A), for e.g., we see that we have high sensitivity for both

Cartesian and conformal coordinates when using high resolution (small markers in the top right). In (D–F) we isolate the effect of the angle threshold and curvature, w,

by fixing the resolution to its maximum value. In (D) we see the sensitivity, for both conformal and Cartesian coordinates (labeled), as a function of the angle threshold

(color) and w (x-axis). In (E), we have analogous curves but for specificity when using Cartesian coordinates, and (F) is specificity when using conformal coordinates.

In (E) the curves for all angles overlap except for 80◦ (minute deviation from angles < 80◦) and for 90◦. In (F) all curves overlap except for the 90◦ one.

FIGURE 3 | This figure shows the tracts generated from the simulations. For brevity we divide the resolution (y-axis) and curvature (x-axis) parameter space into low,

medium and high values giving nine tiles. The values for the resolution are 0.2, 0.7, and 1.2 mm, respectively, and the values for the curvature are 1.24, 1.66, and

1.99, respectively. In each tile the left image is generated from using Cartesian coordinates and right one is from using conformal coordinates. The colors of the tracts

represent the angle threshold used. The blue outline shows the tangential region and the red shows the radial region. Since the high angle threshold (purple) tracts

occupy the most area they are plotted first and the lowest angle threshold tracts (orange) are plotted last.

circuit. However, once these are supplied the method makes
very efficient use of this information and no changes are
made to existing tractography methods. Naturally, if there
is no suitable candidate for a geometric prior, i.e., no strong
relationship of fibres with macro-geometry or no regions
of high curvature then curvilinear coordinates would not

offer substantial enhancements over Cartesian coordinates.
Figures 3A–C summarize the results of the simulations over
the whole parameter space, and we see that using curvilinear
coordinates enhances performance considerably, i.e., we
measure better, sensitivity, specificity and consequently,
Youden’s statistic.
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FIGURE 4 | In (A), we see the boundary conditions and the harmonic coordinates for the hippocampus. For example, to solve for coordinate u, U0 is the source and

U1 is the sink, and Neumann boundary conditions are used for the rest of the hippocampus. An analogous procedure is used to compute the remaining coordinates.

In (B) we see tracts in a coronal slice for the hippocampus of two subjects in the left hemisphere. The first column shows tracts generated from using Cartesian

coordinates and the second column shows tracts generated from using curvilinear coordinates, (C) is analogous but for the right hemisphere. The seeds in both

coordinate systems are identical. In (B,C), green represents the anterior to posterior direction, red represents right to left, and blue represents inferior to superior. In

(D), we see a histogram for the normalized length distribution for the tracts, overlaid for each hippocampus, here blue is for Cartesian coordinates and orange is for

harmonic coordinates, (E) is similar to (D) but for the mean curvature of the tracts.

One of the key shortcomings of tractography done in
Cartesian coordinates is in regions of high curvature (Schilling
et al., 2019). To require tracts to bend in regions of high
curvature the angle threshold, θ , i.e., maximum angle between
two segments of the tract needs to be increased. This helps tracts
turn more and increases sensitivity, but the trade-off is that
now, since there is more freedom, tracts can become erratic and

enter regions which are not occupied by the ground truth which
lowers specificity. The limitation is even more troublesome if
resolution is low in such regions of high curvature. The effect is
clearly evident in our simulations. In Figure 3A, we see that, for
Cartesian coordinates, the orange markers which represent low
angle threshold have a lower sensitivity as opposed to the purple
ones which have a higher angle threshold. The trade-off in the
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specificity is seen in Figure 3B where for most angle thresholds
the specificity is high (overlapping points) but decreases for the
purple markers. We can precisely tease out the effect of curvature
and angle threshold by holding constant the diminishing effects
of low resolution. Figure 3D is the plot for sensitivity vs. w
color coded by the angle threshold, θ , with resolution fixed to its
highest value. The flat family of curves are the ones resulting from
using conformal coordinates. Clearly there is significant overlap
in these curves which implies that the conformal coordinates
tracts are invariant to the curvature, w. Of course, this is by
design, when performing tractography on a grid of the conformal
coordinates the bend does not exist, thereby vastly reducing the
effects of curvature. For the Cartesian coordinates we can see the
trend of diminishing sensitivity with the curvature, w. The drop
is higher for lower angle thresholds, this is because a higher angle
threshold is needed to cross the bend with increasing curvature.
The least drop is caused by using a higher θ , but again the cost is
specificity, as shown in Figure 3E. In Figure 3E all curves overlap
except for 80◦ and 90◦; the 80◦ curve is the one that deviates
minutely from curves for angles < 80◦. Similarly in Figure 3F

all curves overlap except for the 90◦ one. This bifurcation for the
90◦ curve is a direct consequence of the simulation fibres crossing
orthogonally, if the crossing angle of the fibres were smaller
we would observe a drop at lower angle thresholds. Notice in
Figure 3F that the drop in specificity also exists for the conformal
coordinates, albeit a bit less. Although, we are able to alleviate
curvature effects, the radial and tangential fibres still cross at 90◦

when using the conformal coordinates. One aspect of note; we
have not added a noise term in Equation (4), this is done to gain
an understanding of the best case scenario for the two coordinate
systems. We expect noise would simply decrease sensitivity and
specificity for both Cartesian and conformal coordinates and not
change the overall relative trends between the two approaches.

Figure 4 shows explicitly what we observe through the
sensitivity and specificity metrics. We clearly see the diminishing
effects of resolution, as we move down the resolution axis
for a fixed curvature, less area is occupied in the tangential
region (blue outline), this effect is also visible in Figure 3A,
markers with smaller size which represent higher resolution
have a higher corresponding sensitivity value (top right region).
For the Cartesian coordinates we can explicitly see how the
tracts with low angle threshold (orange) are unable to make
it across the bend with the worst performance seen for lowest
resolution and highest curvature (bottom right tile). We can
also see the gradient of angle thresholds (colors transitioning
from orange to purple) with the purple tracts being able to
get around the bend the most. Note that we do not see
this gradient for the conformal coordinates, again pointing
toward the immunity of the conformal coordinates to high
curvature.

As an application of our approach we performed tractography
on four hippocampi with harmonic coordinates (DeKraker
et al., 2018). In the first columns of Figures 2B,C we see the
tracts generated from using the Cartesian coordinates. Notice
how the hippocampus is highly curved and coronal sections
closely represent our simulation scenario. The second columns
of Figures 2B,C show tracts with the same seeds generated

from the harmonic coordinates. We see features that resemble
the outcomes from our simulations. There are regions in the
Cartesian approach that have low streamline density, close to
the dentate gyrus (red tracts) and also around the C-shaped
bend of the hippocampus. As we do not have the ground truth,
using the simulations as a guide, a reasonable assumption is
that these regions have lower density, because tracts cannot
overcome high curvature regions that are encountered enroute
when using Cartesian coordinates. On the other hand, when
using curvilinear coordinates these regions have higher density,
as tracts can now overcome areas of high curvature. Notably,
tracts following this C-shaped bend are expected to be present,
because neuronal projections are known to connect these regions
in the tri-synaptic circuit (Duvernoy, 2005); using curvilinear
coordinates these connections are better represented. From
Figures 2D,E, we can again see a result in line with our
simulations, with harmonic coordinates the tracts are able
to reach higher mean curvature values and are longer. In
our simulations our coordinate tangents were aligned with
the ground truth which, in practice, is difficult to achieve.
Certainly for the hippocampi considered here the underlying
coordinate system is not perfectly aligned with underlying
fibres, yet we see better performance. In general, we expect
enhancements from curvilinear coordinate systems if it has
better, albeit not perfect, alignment with underlying fibres over
Cartesian coordinates. When performing the tractography on
the hippocampi the angle threshold was fixed to 60◦. One
standard way to alleviate the problem of reconstructing high
curvature tracts is to increase the angle threshold, but this
lowers specificity as shown by the simulations and other studies
(Schilling et al., 2019). Since we do not know the ground-truth
for the hippocampus to check for compromised specificity, we
assume that our findings from the simulations also hold true
for the hippocampus, i.e., increasing angle threshold lowers
specificity and accuracy of the tracts which is remedied by using
curvilinear coordinates.

One limitation of our work is that currently we are not able
to mix coordinate systems, we can either perform tractography
in Cartesian coordinates solely or curvilinear coordinates solely.
In future work we will enhance our approach to mix coordinates
systems while maintaining continuity of the tracts (and other
mathematical objects), and thus are not limited to specific regions
in the brain. In addition to simulations, we also demonstrated
our approach in the in vivo hippocampus, where ground truth
connectivity is not known. Here, the curvilinear approach was
able to extract streamlines more consistent with anatomical
expectations of connections in the tri-synaptic circuit (between
subfields CA3 and CA1 of the hippocampus), recapitulating the
advantages seen in the simulations. Further validation could
be performed in the future as higher-resolution or histological
datasets are made available.

5. CONCLUSION

In this work we have presented a novel approach to tractography
that utilizes prior knowledge about fiber pathways in the
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form of curvilinear coordinates to enhance the sensitivity and
specificity of tracts, especially in regions of high curvature and
low resolution. In addition, the procedure by which we have
implemented our method is general, i.e., we can take existing
tractography algorithms and easily integrate our approach into
them. We have shown the enhancements achieved via robust
simulations where, naturally, the ground truth is known, thus
laying down a solid foundation for future work regarding
curvilinear coordinates and dMRI.
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