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Abstract: In the present work, we focus onthe experimental screening of selected electrolytes, which
have been reported earlier in different works, as a good choice for high-voltage Li-ion batteries.
Twenty-four solutions were studied by means of their high-voltage stability in lithium half-cells with
idle electrode (C+PVDF) and the LiNi0.5Mn1.5O4-based composite as a positive electrode. Some of
the solutions were based on the standard 1 M LiPF6 in EC:DMC:DEC = 1:1:1 with/without additives,
such as fluoroethylene carbonate, lithium bis(oxalate) borate and lithium difluoro(oxalate)borate.
More concentrated solutions of LiPF6 in EC:DMC:DEC = 1:1:1 were also studied. In addition, the
solutions of LiBF4 and LiPF6 in various solvents, such as sulfolane, adiponitrile and tris(trimethylsilyl)
phosphate, atdifferent concentrations were investigated. A complex study, including cyclic voltamme-
try, galvanostatic cycling, impedance spectroscopy and ex situ PXRD and EDX, was applied for the
first time to such a wide range of electrolytesto provide an objective assessment of the stability of the
systems under study. We observed a better anodic stability, including a slower capacity fading during
the cycling and lower charge transfer resistance, for the concentrated electrolytes and sulfolane-
based solutions. Among the studied electrolytes, the concentrated LiPF6 in EC:DEC:DMC = 1:1:1
performed the best, since it provided both low SEI resistance and stability of the LiNi0.5Mn1.5O4

cathode material.

Keywords: Li-ion batteries; high-voltage electrolyte; electrolyte additives; concentrated electrolytes;
LiNi0.5Mn1.5O4

1. Introduction

Works aimed at increasing the average potential of lithium-ion batteries (LIBs) have
been ongoing over the past few decades. The fundamental possibility for the potential
increasing is based on the existence of a number of cathode materials with an average
lithium extraction/insertion potential of more than 4.5 V vs. Li/Li+, such as LiNi0.5Mn1.5O4,
LiCoPO4 and Li2CoPO4F [1–4]. The former is one of the most studied materials and is
close to being industrially used as cathode material [5]. LiNi0.5Mn1.5O4 is characterized
by a theoretical capacity of 147 mAh g−1 due to reversible Ni2+/Ni4+ redox, a two-stage
voltage-composition plateau, indicating the occurrence of two two-phase transitions at an
average potential of 4.75 V, and high rates of 3D Li+ diffusion within the structure [6–11].
However, the use of a standard Li-ion electrolyte inevitably leads to the rapid degradation of
LiNi0.5Mn1.5O4-based half- and full-cells. The development of the new improved electrolyte
formulations can overcome this problem.
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In general, there are three main directions in the development of liquid electrolytes
that are stable in the high-voltage region: (1) adding a small amount (typically ~1%) of
additives to the standard electrolyte solution, (2) the use of stable solvents combined
with corresponding salts (including works on ionic liquids) and (3) the variation of the
salt concentration. In the first direction, the most well-studied additives are fluoroethy-
lene carbonate (FEC), lithium bis(oxalate) borate (LiBOB), lithium difluoro(oxalate)borate
(LiDFOB), vynylene carbonate (VC), tris(trimethylsilyl) borate (TMSB), tris(trimethylsilyl)
phosphite (TMSP), prop-1-ene-1,3-sultone (PES) and many others [12–23]. It is worth not-
ing that some compounds (such as LiBOB, LiDFOB and FEC, adiponitrile) may be used
both as the additives and the basic component of the salt or solvent. It is believed that
the main contribution of additives to the improvement of the high-voltage stability of
electrolytes is the formation of a stable interface at the cathode. The works conducted
in the second direction were aimed at improving the intrinsic stability of the solvent
and solvents such as sulfones, nitriles and fluorinated alkyl carbonates were chosen as
objects of study [24–33]. Moreover, researchers studied high-concentrated systems (the
third direction) and observed an increase in the ionic association degree and decrease in
the amount of free solvent molecules as the major factors to improve the electrochemical
properties of electrolytes. Since 2016, several papers devoted to the high-voltage oxidative
stability of the concentrated electrolytes were published [34–40]. The usual lithium salts
used in high-concentrated electrolyte research contain large anions providing a high dis-
sociation degree, such as bis(fluorosulfonyl)amide (FSA-), bis(fluorosulfonyl)imide (FSI-)
and bis(trifluoromethanesulfonyl)imide (TFSI-) [34,36,40]. However, these salts are rather
expensive and may cause severe problems to the Al current collector. “Traditional” lithium
salts, such as LiPF6 and LiBF4, are also used in spite of their lower solubility limit, and also
provide an increase in the oxidative stability of the electrolytes [35,37–39]. Inaddition to
better oxidation resistance, the concentrated electrolytes are known to improve the kinetics
of the charge transfer between electrode and electrolyte, as well as the ionic conductivity of
the latter [40–42]. Thus, a Li+ hopping conduction mechanism characterized by high Li+

self-diffusion coefficients has been recently reported for the concentrated LiBF4/sulfolane
system [43,44]. Unfortunately, data on the high-voltage stability of this system have not
been presented in the literature to date.

Despite the impressive number of studies on high-voltage electrolytes, the analysis of
the competitive advantages of one or another development approach, and the choice of
the high priority ones are hampered by the fact that each research work studied a selected
set of materials/methods/protocols, etc. In the present work, we compare the high-
voltage electrochemical performance of electrolytes prepared in accordance with previously
published approaches within the three major directions mentioned above. Therefore, in
this paper, we study the influence of several popular and easily accessible additives on
the stability of the standard Li-ion electrolyte (1 M LiPF6 in EC:DMC:DEC = 1:1:1) and the
stability of the electrolytes based on different solvents and concentrated solutions. The
data obtained help to formulate a promising approach in the development of sustainable,
affordable and efficient electrolytes for next-generation lithium-ion batteries.

2. Results

The preliminary analysis of the anodic stability of the prepared electrolytes at high
potentials was conducted by means of CV with idle electrodes (composed of carbon black
and PVDF). The results are shown in Figures S1–S5 and Figure 1 and Table 1.

The main findings canbe summarized as follows:

(a) Increasing the concentration of LiPF6 in the standard solvent composition (EC:DEC:DMC = 1:1:1)
leads to a decrease inthe anodic current at elevated (>5.0 V vs. Li/Li+) potentials.
However, it also leads to a severe increase in the anodic current at moderate poten-
tials (above 3.5 V vs. Li/Li+) up to several µA. We believe that this response is a
consequence of the formation of surface layers, which, most likely, further protect the
electrolyte from decomposition at high potentials.
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(b) The use of 1% FEC, PES and ADN improves the stability up to 5.3 V vs. Li/Li+. The
additives of VC and LiBOB reduce the oxidative current at 4.5 V and, therefore, may
be useful for any cathode materials with a corresponding voltage limit; however, their
use in the high-voltage systems is questionable. LiDFOB in an amount of 1% causes a
strong oxidation of the electrolyte by 5.3 V vs. Li/Li+. A decrease in the concentration
of LiDFOB by a factor of 20 leads to a decrease in the anode current, but the current
value remains significant.

(c) The most interesting results were demonstrated by the solutions of LiBF4 in SL with a
concentration of 1 M and more concentrated ones. The use of ADN as a solvent also
significantly improved the high-voltage stability of the electrolyte.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 14 
 

 

Based on the results presented above and the literature data, we chose nine 
electrolyte solutions for further investigation with the high-voltage cathode material 
LiNi0.5Mn1.5O4. The CVs of these nine solutions are combined in Figure 1.  

 
Figure 1. CV curves of the selected electrolytes with “idle” electrodes. The mass fraction of all 
additives was 1% with the exception of LiDFOB (0.05%). 

The LiNi0.5Mn1.5O4 cathode material was obtained via the co-precipitation method, 
followed by the hydrothermal treatment of the Ni0.25Mn0.75CO3 intermediate and 
high-temperature annealing with the Li source. PXRD revealed the presence of the single 
cubic spinel phase (sp.gr. Fd3തm, Z = 8, a = 8.1660(1) Å, V = 544.5(1) Å3). The sample 
consisted of spherical aggregates (2~5 µm in size) formed by small crystallites (200~500 
nm in size), as it can be observed in the SEM images (Figure 2b). The Mn/Ni ratio 
determined by EDX amounted to 3.2(1), which corresponds to the LiNi0.48(2)Mn1.52(2)O4 
composition. The sample demonstrates a good electrochemical performance with a 
reversible capacity of ~140 mAh g−1 depending on the electrolyte composition. An 
example of a charge–discharge curve (1 M LiBF4 in SL electrolyte, C/10 rate) is 
presentedin Figure 2c. 

Figure 1. CV curves of the selected electrolytes with “idle” electrodes. The mass fraction of all
additives was 1% with the exception of LiDFOB (0.05%).

Table 1. Specific anodic current at three points (4.5, 5.0 and 5.3 V vs. Li/Li+) during the first cycle of
CV measured for the electrolytes with “idle” (C + PVDF) working electrodes.

Electrolyte Composition
Specific Anodic Current Normalized on the Mass of Carbon Black (mA g−1) at:

4.5 V vs. Li/Li+ 5.0 V vs. Li/Li+ 5.3 V vs. Li/Li+

1 M LiPF6 in EC:DEC:DMC = 1:1:1 2.9 11.9 69.8

2 M LiPF6 in EC:DEC:DMC = 1:1:1 3.1 9.1 39.1

3 M LiPF6 in EC:DEC:DMC = 1:1:1 4.5 10.9 38.2

1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% FEC 4.3 13.7 49.4

1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% VC 2.4 262.2 350.4

1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% LiBOB 2.3 14.9 81.0

1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% LiDFOB 3.1 21.3 167.2

1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 0.05% LiDFOB 4.8 21.8 91.1

1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% PES 2.7 12.0 41.5

1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% ES 3.5 14.2 73.7

1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% ADN 2.3 12.4 45.9

1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% SCN 4.0 14.3 107.6

1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% TMP 4.8 16.2 80.8
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Table 1. Cont.

Electrolyte Composition
Specific Anodic Current Normalized on the Mass of Carbon Black (mA g−1) at:

4.5 V vs. Li/Li+ 5.0 V vs. Li/Li+ 5.3 V vs. Li/Li+

1 M LiPF6 in EC:DEC:DMC = 1:1:1 +1% TMPi 2.9 20.1 114.1

1 M LiBF4 in SL 3.4 17.3 26.8

2 M LiBF4 in SL 4.7 14.3 24.4

3 M LiBF4 in SL 3.9 11.5 17.9

4 M LiBF4 in SL 2.6 8.4 15.0

5 M LiBF4 in SL 3.1 9.3 18.5

1 M LiBF4 in ADN 3.8 13.3 31.8

1 M LiBF4 in EC:ADN 5.6 18.9 48.8

1 M LiBF4 in TMP 4.0 21.5 47.2

1 M LiBF4 in DEC:FEC 5.0 16.0 26.8

0.6 M LiBF4: 0.6 M LiDFOB in EC:DEC:DMC = 1:1:1 6.5 41.3 606.1

Based on the results presented above and the literature data, we chose nine electrolyte
solutions for further investigation with the high-voltage cathode material LiNi0.5Mn1.5O4.
The CVs of these nine solutions are combined in Figure 1.

The LiNi0.5Mn1.5O4 cathode material was obtained via the co-precipitation method,
followed by the hydrothermal treatment of the Ni0.25Mn0.75CO3 intermediate and high-
temperature annealing with the Li source. PXRD revealed the presence of the single cubic
spinel phase (sp.gr. Fd3m, Z = 8, a = 8.1660(1) Å, V = 544.5(1) Å3). The sample consisted
of spherical aggregates (2~5 µm in size) formed by small crystallites (200~500 nm in size),
as it can be observed in the SEM images (Figure 2b). The Mn/Ni ratio determined by
EDX amounted to 3.2(1), which corresponds to the LiNi0.48(2)Mn1.52(2)O4 composition. The
sample demonstrates a good electrochemical performance with a reversible capacity of
~140 mAh g−1 depending on the electrolyte composition. An example of a charge–discharge
curve (1 M LiBF4 in SL electrolyte, C/10 rate) is presentedin Figure 2c.

The galvanostatic cycling of the LiNi0.5Mn1.5O4 cathode material in the selected elec-
trolyte solutions was performed in three successive stages: 10 cycles at C/10 rate, 30 cycles
at C/3 rate and 100 cycles at 1C rate (Figure 3). After each stage, EIS spectra were collected,
as well as for the as-prepared cells (Figure 4). All EIS experiments were performed at the
discharged state of the working electrode.

The following issues were revealed:

(a) The LiNi0.5Mn1.5O4-based working electrodes demonstrate degradation in all the
studied electrolyte solutions. However, in some cases, a clearly improved anodic
stability is observed. A group of leaders at low (C/10 and C/3) cycling rates includes
3 M LiPF6 in EC:DEC:DMC = 1:1:1 (Standard 3 M), 1 M and 3 M LiBF4 in SL, 1 M
LiBF4 in AND:EC = 1:1,standard + PES and—unexpectedly—standard + LiDFOB
electrolytes. The latter, taken in trace amounts, was included in the studied group
based on the literature data in spite of the high oxidation current at CV.

(b) The Coulombic efficiency of all the studied cells falls short of the needs for real
application. The best value at the low charge–discharge rate of C/10 (92%) was
demonstrated by Standard 3 M electrolyte; at 1C, the current density efficiency of the
cell increased up to 98%. It should be noted that the Coulombic efficiency of all the
cells varied from cycle to cycle, probably due to the growth of surface layers from the
degradation products. In most cases, it leads to two mutually directed (positive and
negative) trends: on the one hand, the degree of electrolyte degradation decreases
because of surface passivation, and on the other hand, the charge transfer resistance at
the interface increases, which leads to faster a degradation of the capacity. The latter
trend was studied in detail by means of EIS.



Molecules 2022, 27, 3596 5 of 14

Molecules 2022, 27, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 2. PXRD pattern (a), SEM image (b) and galvanostatic charge–discharge curve (c) obtained 
for the LiNi0.5Mn1.5O4 cathode material. 

Figure 2. PXRD pattern (a), SEM image (b) and galvanostatic charge–discharge curve (c) obtained for
the LiNi0.5Mn1.5O4 cathode material.



Molecules 2022, 27, 3596 6 of 14

Molecules 2022, 27, x FOR PEER REVIEW 6 of 14 
 

 

The galvanostatic cycling of the LiNi0.5Mn1.5O4 cathode material in the selected 
electrolyte solutions was performed in three successive stages: 10 cycles at C/10 rate, 30 
cycles at C/3 rate and 100 cycles at 1C rate (Figure 3). After each stage, EIS spectra were 
collected, as well as for the as-prepared cells (Figure 4). All EIS experiments were 
performed at the discharged state of the working electrode.  

The following issues were revealed: 
(a) The LiNi0.5Mn1.5O4-based working electrodes demonstrate degradation in all the 

studied electrolyte solutions. However, in some cases, a clearly improved anodic 
stability is observed. A group of leaders at low (C/10 and C/3) cycling rates includes 
3 М LiPF6 in EC:DEC:DMC = 1:1:1 (Standard 3 M), 1 M and 3 M LiBF4 in SL, 1 M 
LiBF4 in AND:EC = 1:1,standard + PES and—unexpectedly—standard + LiDFOB 
electrolytes. The latter, taken in trace amounts, was included in the studied group 
based on the literature data in spite of the high oxidation current at CV.  

 
Figure 3. Dependence of the discharge capacity (a) and Coulombic efficiency (b) of 
LiNi0.5Mn1.5O4-based lithium half-cells cycled at C/10, C/3 and 1C rates on the number of cycle. 

(b) The Coulombic efficiency of all the studied cells falls short of the needs for real 
application. The best value at the low charge–discharge rate of C/10 (92%) was 
demonstrated by Standard 3 M electrolyte; at 1C, the current density efficiency of 
the cell increased up to 98%. It should be noted that the Coulombic efficiency of all 
the cells varied from cycle to cycle, probably due to the growth of surface layers 
from the degradation products. In most cases, it leads to two mutually directed 
(positive and negative) trends: on the one hand, the degree of electrolyte 
degradation decreases because of surface passivation, and on the other hand, the 
charge transfer resistance at the interface increases, which leads to faster a 
degradation of the capacity. The latter trend was studied in detail by means of EIS. 
EIS spectra were collected at four different stages of the cell cycling: as-assembled, 

after 10 cycles at C/10 rate, after 30 cycles at C/3 rate and after 100 cycles at 1C rate. All 
experiments were performed at 100% depth-of-discharge (E = 2.8 V vs. Li/Li+). The 
Nyquist plots for the first and the last stages are presented at Figure 4a,b. We focused on 
the analysis of the charge transfer resistance, which is expressed in Nyquist plots as a 

Figure 3. Dependence of the discharge capacity (a) and Coulombic efficiency (b) of LiNi0.5Mn1.5O4-
based lithium half-cells cycled at C/10, C/3 and 1C rates on the number of cycle.

Molecules 2022, 27, x FOR PEER REVIEW 7 of 14 
 

 

characteristic semicircle, having an equivalent in the form of a parallel resistance and 
capacitance (or “constant phase element”, CPE) and being previously described and 
widely used for the characterization of the electrode–electrolyte interface [45]. EIS 
experiments divided the studied electrolytes into two groups. The first group includes 
solutions that are characterized by an increase in charge transfer resistance (Rct) 
throughout the cycling: Standard, Standard + FEC, Standard + LiDFOB. In these cases, the 
resistance increased by 5–7 times, from 100–200 Ohms to 700–1400 Ohms, with the largest 
increase occurring in the first ten charge–discharge cycles. Obviously, an increase in the 
resistance is associated with a steady increase in the amount of electrolyte oxidation 
products on the cathode surface during cycling. Other electrolytes demonstrate an 
interesting feature of decreasing Rct values after cycling at elevated C-rates (C/3 or 1C). 
For example, the cell with 1 M LiBF4 in SL demonstrated growth in the resistance from 20 
to 450 Ohms during the first ten cycles, but after 30 cycles at C/3 rate and 100 cycles at 1C 
rate, this value decreased to 210 and 160 Ohms, correspondingly. This could be a 
consequence of the slightly different mechanism of SEI formation at different current 
densities due to the occurrence of competing processes with distinct rate constants. A 
large number of different species were found on the cathode surface in previous studies, 
including lithium carbonate, semicarbonates, fluoride, organophosphates and polymers 
[46]. The ratio between these components determines the electrochemical properties and 
the stability of the cathodic SEI. It is obvious that the variation in the cycling conditions of 
the cathode material can change the amount of one or another component in the SEI, 
since the mechanisms and rates of their formation differ for each type of reaction 
products. Moreover, as shown earlier, in contrast to the SEI on the anode, the cathode 
interface is not so stable and tends to dissolution/formation on each charge–discharge 
cycle, at least at moderate oxidative potentials [46]. 

 
Figure 4. EIS Nyquist plots for the as-assembled cells (a) and after complete galvanostatic cycling: 
10 cycles at C/10 rate, 30 cycles at C/3 rate and 100 cycles at 1C rate (b). Values of the charge transfer 
resistance (Rct) at different stages of the cell cycling (c). 

Figure 4. EIS Nyquist plots for the as-assembled cells (a) and after complete galvanostatic cycling:
10 cycles at C/10 rate, 30 cycles at C/3 rate and 100 cycles at 1C rate (b). Values of the charge transfer
resistance (Rct) at different stages of the cell cycling (c).

EIS spectra were collected at four different stages of the cell cycling: as-assembled,
after 10 cycles at C/10 rate, after 30 cycles at C/3 rate and after 100 cycles at 1C rate.
All experiments were performed at 100% depth-of-discharge (E = 2.8 V vs. Li/Li+). The
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Nyquist plots for the first and the last stages are presented at Figure 4a,b. We focused
on the analysis of the charge transfer resistance, which is expressed in Nyquist plots as
a characteristic semicircle, having an equivalent in the form of a parallel resistance and
capacitance (or “constant phase element”, CPE) and being previously described and widely
used for the characterization of the electrode–electrolyte interface [45]. EIS experiments
divided the studied electrolytes into two groups. The first group includes solutions that
are characterized by an increase in charge transfer resistance (Rct) throughout the cycling:
Standard, Standard + FEC, Standard + LiDFOB. In these cases, the resistance increased by
5–7 times, from 100–200 Ohms to 700–1400 Ohms, with the largest increase occurring in the
first ten charge–discharge cycles. Obviously, an increase in the resistance is associated with
a steady increase in the amount of electrolyte oxidation products on the cathode surface
during cycling. Other electrolytes demonstrate an interesting feature of decreasing Rct
values after cycling at elevated C-rates (C/3 or 1C). For example, the cell with 1 M LiBF4 in
SL demonstrated growth in the resistance from 20 to 450 Ohms during the first ten cycles,
but after 30 cycles at C/3 rate and 100 cycles at 1C rate, this value decreased to 210 and
160 Ohms, correspondingly. This could be a consequence of the slightly different mech-
anism of SEI formation at different current densities due to the occurrence of competing
processes with distinct rate constants. A large number of different species were found
on the cathode surface in previous studies, including lithium carbonate, semicarbonates,
fluoride, organophosphates and polymers [46]. The ratio between these components deter-
mines the electrochemical properties and the stability of the cathodic SEI. It is obvious that
the variation in the cycling conditions of the cathode material can change the amount of
one or another component in the SEI, since the mechanisms and rates of their formation
differ for each type of reaction products. Moreover, as shown earlier, in contrast to the SEI
on the anode, the cathode interface is not so stable and tends to dissolution/formation on
each charge–discharge cycle, at least at moderate oxidative potentials [46].

The observed trends in charge transfer resistance behavior match perfectly with the
capacity retention at cycling. The 3 M LiPF6 in EC:DEC:DMC = 1:1:1 (Standard 3 M)
electrolyte provides the lowest Rct and the best cyclability of the LiNi0.5Mn1.5O4 half-cell.
The top three is closed by 1 M and 3 M LiBF4 in SL. It is worth noting the positive effect
of PES on the high-voltage stability of a standard electrolyte: it is the only additive that
enabled the decrease in Rct after cycling at the 1C current density.

To analyze the chemical stability of the cathode material in the studied electrolytes, we
performed ex situ PXRD and EDX investigations of the electrodes after cycling. To the best
of our knowledge, such characterization of materials is extremely rare in works devoted to
electrolytes, so we considered this study to be of utmost importance. Surprisingly, there are
no noticeable signs of material degradation on the PXRD patterns (Figure 5a). The values
of the unit cell volume of LiNi0.5Mn1.5O4 combined with Mn/Ni determined by EDX are
presented in Figure 5b.

The examination of the electrodes’ surface after cycling with SEM (Figure 5c) also
revealed no visible signs of degradation. We can only note a more noticeable contribution
of surface films in the case of concentrated electrolytes and a partial pulverization of
surface particles in the PES-containing electrolyte. However, it cannot be ruled out that the
electrolyte decomposition products were dissolved during the washing of the electrodes
after their removal from the cells.

As it can be seen in Figure 5b, the values of the unit cell volume of the LiNi0.5Mn1.5O4 cath-
ode material cycled in the electrolytes based on the standard (LiPF6 in EC:DEC:DMC = 1:1:1)
solution are close to those of the initial material. However, the cycling in the LiBF4-based so-
lutions leads to some increase in the unit cell volume, although this change is not significant.
The maximum (~0.6% volume change) is achieved for the most concentrated electrolyte,
3 M LiBF4 in SL. It is worth noting that this electrolyte is also characterized by the strongest
deviation of the Mn/Ni ratio from the initial value. We may assume that the use of LiBF4
as an electrolyte salt may lead to partial Mn dissolution, although, electrochemically, these
solutions, especially 1 M and 3 M LiBF4 in SL, demonstrate excellent stability.
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3. Discussion

Of interest is the fact that this suggestion differs from the previously published data,
in which the main reason for the dissolution of manganese cations was assumed to be
the decomposition of DEC, accompanied by release of HF [47]. It is also interesting that,
according to our data, the spinel LiNi0.5Mn1.5O4 cathode material itself is quite stable,
even in those electrolytes where the capacity drop during the cycling turned out to be the
strongest, for example, in the standard or “Standard+FEC” solutions.

To summarize the results obtained, we can conclude that the concentrated electrolyte
solutions or solutions stable towards oxidation, such as sulfolane, exhibit a better elec-
trochemical stability than the electrolytes with different types of additives. Lithium cells
with the LiNi0.5Mn1.5O4 cathode material demonstrate the best cycling stability in 3 M
LiPF6 in EC:DEC:DMC = 1:1:1 (Standard 3 M), 1 M and 3 M LiBF4 in SL electrolytes. These
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and some other solutions exhibit an interesting feature of a decrease in the charge transfer
resistance after cycling at elevated current rates. From the other side, the ex situ material
characterization revealed that the degradation of the cell with electrolytes based on the
LiPF6 in EC:DEC:DMC = 1:1:1 solution is not associated with the degradation of the active
material, but solely with an increase in the resistance of the surface layers at the cathode–
electrolyte interface. Therefore, the concentrated solution of LiPF6 in EC:DEC:DMC = 1:1:1
provides both low SEI resistance and stability of the LiNi0.5Mn1.5O4 material and can be
considered as the optimal choice for the development of a new generation of high-voltage
LIBs. The C-rate retention tests conducted for the LiNi0.5Mn1.5O4 cathode in half-cells with
3 M LiPF6 in EC:DEC:DMC = 1:1:1 (Standard 3 M) electrolyte (Figure 6) demonstrate the
possibility of both fast charge and fast discharge up to 5C rates without significant capacity
fading (in both cases, at least 120 mAh·g−1 may be gained at 5C current rate). However,
it is worth noting that the most preferable charge rate is C/3~1C since it does not require
an increase in the anode potential limit above 4.9 V. The relatively low resistance of the
electrolyte and the cathode–electrolyte interface, which makes it possible to achieve stable
cycling at high current densities, distinguishes liquid electrolytes from ceramic and polymer
analogues, which are currently considered as alternative technologies. However, in most
works, the properties of these systems are studied using low currents due to kiloohmic
cell resistances, and an increase in efficiency is possible only at elevated temperatures [48].
In addition, a number of articles reported on the poor stability of solid electrolytes in the
high-voltage potential region due to the growth of highly resistive interfacial layers [49,50].
Thus, it can be concluded that liquid electrolytes are the most preferred candidates for use
in high-voltage lithium-ion systems for the foreseeable future.
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4. Materials and Methods
4.1. Synthesis

The LiNi0.5Mn1.5O4 cathode material was prepared using solvothermal synthesis
under conditions similar to those previously described [51]. NiSO4·6H2O (>98%) and
MnSO4·H2O (>98%) were dissolved in water in a molar ratio of 1:3. A sodium carbonate
(>99.5%) solution was added; the obtained suspension was heated to 140 ◦C and condi-
tioned at this temperature for 12 h. The carbonate precipitate was washed, dried and mixed
with Li2CO3 (>99%) taken with 5% excess. The precursor was annealed at 350 ◦C for 2 h
and at 800 ◦C for 10 h with intermediate grinding.

4.2. Material Characterization

A Panalytical Aeris Research diffractometer (CuKα radiation, Bragg–Brentano ge-
ometry, PiXCel detector, total angular range of 3–1202θ, a step size of ca. 0.005◦ and
variable exposure time, Almelo, The Netherlands) was used for powder X-ray diffraction
(PXRD) measurements. For the ex situ PXRD investigation, the electrodes were preliminary
washed with propylene carbonate (PC) under argon, dried and covered by X-ray amor-
phous Kapton tape. PXRD data refinements were performed using the JANA2006 program
package [52]. The particle size, morphology and cationic composition were investigated by
means of a JEOL JSM-6490LV scanning electron microscope (Tokyo, Japan) equipped with
EDX spectrometer INCA X-Sight (Oxford Instruments, Oxford, UK).

4.3. Electrochemical Studies

All the electrolyte components were purchased from Merck (formerly Sigma Aldrich,
Rahway, NJ, USA) with the highest purity available and, additionally, they were preliminary
dried before use. Li-ion electrolyte solutions were prepared by dissolving the appropriate
amount of the corresponding salt (LiPF6 or LiBF4) in the solvent (EC:DMC:DEC = 1:1:1
or SL (sulfolane) or ADN (adiponitrile)). In some cases, an appropriate amount of the
additives (0.3 or 1 wt.%), including FEC, LiBOB, LiDFOB, VC and PES, was used. LiPF6 or
LiBF4 were kept under dynamic vacuum at 60 ◦C for 24 h. The solvents were dried with
activated 4 Å molecular sieves. The following compositions were prepared:

1 M LiPF6 in EC:DEC:DMC = 1:1:1
2 M LiPF6 in EC:DEC:DMC = 1:1:1
3 M LiPF6 in EC:DEC:DMC = 1:1:1
1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% FEC
1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% VC
1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% LiBOB
1 M LiPF6 in EC:DEC:DMC = 1:1:1+ 1% LiDFOB
1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 0.05% LiDFOB
1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% PES
1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% ES
1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% ADN
1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% SCN
1 M LiPF6 in EC:DEC:DMC = 1:1:1 + 1% TMP
1 M LiPF6 in EC:DEC:DMC = 1:1:1 +1% TMPi
1 M LiBF4 in SL
2 M LiBF4 in SL
3 M LiBF4 in SL
4 M LiBF4 in SL
5 M LiBF4 in SL
1 M LiBF4 in ADN
1 M LiBF4 in EC:DEC
1 M LiBF4 in TMP
1 M LiBF4 in DEC:FEC = 1:1
0.6 M LiBF4: 0.6 M LiDFOB in EC:DEC:DMC = 1:1:1
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where EC is ethylene carbonate (>99%), DEC is diethyl carbonate (>99%), DMC is dimethyl
carbonate (>99%), FEC is fluoroethylene carbonate (>99%), VC is vinylene carbonate
(>99.5%), PES is 1,3-propanesultone (>99%), ES is ethylene sulfite (>98%), ADN is adiponi-
trile (>99%), SCN is succinonitrile (>99%), TMP is tris(trimethylsilyl) phosphate (>99%),
TMPi is tris(trimethylsilyl)phosphite (>95%), SL is sulfolane (>99%), LiPF6 is lithium hex-
afluorophosphate (>99,99%), LiBF4 is lithium tetrafluoroborate (>99.99%), LiBOB is lithium
bisoxalatoborate (n/d) and LiDFOB is lithium difluoroxalatoborate (n/d). The solvent–salt
ratio designated as «nM» was calculated as the ratio of the molar amount of salt and the
volume of solvent.

The LiNi0.5Mn1.5O4-based electrodes were prepared by mixing 85 mass.% of the
active compound, 7.5% of carbon black (Timcal Super C 65) and 7.5% of polyvinylidene
fluoride (PVDF, Solvay Solef 5130) binder in N-methylpyrrolidone and spreading it on an
aluminum foil by the doctor blade technique. The mass loading of the active material was
appr. 6 mg/cm2. Idle electrodes contained 70 mass.% of carbon black and 30 mass.% of
PVDF without any other active material. The dried electrodes were rolled, punched to
round discs and dried at 110 ◦C for 3 h under dynamic vacuum. Two-electrode coin-type
cells were assembled in argon-filled glove box (MBraun). Lithium metal was used as the
counter electrode. Cyclic voltammetry (CV, 2.5–5.3 V vs. Li/Li+, 0.05 mV s−1), impedance
spectroscopy (EIS, 100 kHz—0.05 Hz, 10 mV amplitude) and galvanostatic cycling (GC,
2.8–4.9 V vs. Li/Li+, C/10-1C rate) were performed using Elins P-20X8 and Elins P45X
potentiostat-galvanostats (ES8 software, Chernogolovka, Russia).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27113596/s1, Figure S1. Results of cyclic voltammetry
on "idle" electrodes for LiPF6-based solutions in EC:DEC:DMC = 1:1:1 as a solvent with different
salt concentrations, Figure S2. The results of cyclic voltammetry on "idle" electrodes for solutions
based on 1 M LiPF6 in EC:DEC:DMC = 1:1:1 with various types of additives (blue color indicates
electrolytes with improved anodic stability; black indicates electrolytes where the oxidation current
at 5.3 is higher than in “standard” electrolyte; the latter is shown in red, Figure S3. Results of cyclic
voltammetry on "idle" electrodes for solutions with the addition of LiDFOB, Figure S4. Results
of cyclic voltammetry on “idle” electrodes for solutions based on LiBF4 in SL with different salt
concentrations, Figure S5. Results of cyclic voltammetry on “idle” electrodes for solutions based on
LiBF4 in various solvents, Figure S6. Ex situ PXRD patterns obtained for the pristine LiNi0.5Mn1.5O4
cathode and for the cathodes after 140 charge-discharge cycles in selected electrolytes. The dotted
lines mark Al current collector diffraction maxima, Table S1. EDX data for the initial LiNi0.5Mn1.5O4
electrode, Table S2. EDX data for the LiNi0.5Mn1.5O4 electrode cycled in “Standard” electrolyte,
Table S3. EDX data for the LiNi0.5Mn1.5O4 electrode cycled in “Standard+FEC” electrolyte, Table S4.
EDX data for the LiNi0.5Mn1.5O4 electrode cycled in “Standard+LiDFOB” electrolyte, Table S5.
EDX data for the LiNi0.5Mn1.5O4 electrode cycled in “Standard+PES” electrolyte, Table S6. EDX
data for the LiNi0.5Mn1.5O4 electrode cycled in “Standard 3 M” electrolyte, Table S7. EDX data
for the LiNi0.5Mn1.5O4 electrode cycled in “1 M LiBF4 in SL” electrolyte, Table S8. EDX data for
the LiNi0.5Mn1.5O4 electrode cycled in “3 M LiBF4 in SL” electrolyte, Table S9. EDX data for the
LiNi0.5Mn1.5O4 electrode cycled in “1 M LiBF4 in ADN” electrolyte, Table S10. EDX data for the
LiNi0.5Mn1.5O4 electrode cycled in “1 M LiBF4 in AND/EC” electrolyte.
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