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ABSTRACT

Genome-wide association study data analyses often
face two significant challenges: (i) high dimension-
ality of single-nucleotide polymorphism (SNP) geno-
types and (ii) imputation of missing values. SNPs are
not independent due to physical linkage and natural
selection. The correlation of nearby SNPs is known
as linkage disequilibrium (LD), which can be used for
LD conceptual SNP bin mapping, missing genotype
inferencing and SNP dimension reduction. We used
a stochastic process to describe the SNP signals
and proposed two types of autocorrelations to mea-
sure nearby SNPs’ information redundancy. Based
on the calculated autocorrelation coefficients, we
constructed LD bins. We adopted a k-nearest neigh-
bors algorithm (kNN) to impute the missing geno-
types. We proposed several novel methods to find
the optimal synthetic marker to represent the SNP
bin. We also proposed methods to evaluate the in-
formation loss or information conservation between
using the original genome-wide markers and us-
ing dimension-reduced synthetic markers. Our per-
formance assessments on the real-life SNP data
from a rice recombinant inbred line (RIL) popu-
lation and a rice HapMap project show that the
new methods produce satisfactory results. We im-
plemented these functional modules in C/C++ and
streamlined them into a web-based pipeline named
PIP-SNP (https://bioinfo.noble.org/PIP SNP/) for pro-
cessing SNP data.

INTRODUCTION

Due to the great success in identifying causal genetic mark-
ers conferring complex traits and diseases (1), genome-
wide association studies (GWAS) and quantitative trait lo-

cus (QTL) mapping recently have revolutionized the fields
of quantitative genetics (2). The high abundance of single-
nucleotide polymorphisms (SNPs) along the genome has
made them the most promising markers for linkage and as-
sociation studies for complex traits, including complex dis-
eases (3).

It is well known that increasing marker density and sam-
ple sizes can further increase the resolution of QTL map-
ping (4). Next-generation sequencing (NGS) technology (5)
can provide cheap, reliable and high-throughput sequencing
data (6), which are needed for high GWAS accuracy and
QTL mapping resolution. Current GWAS projects mostly
rely on linear mixed models (LMMs) to evaluate each
marker’s additive effect, which are computationally more
expensive than simple linear regression analyses. Therefore,
GWAS analyses and statistical tests for a large number of
SNPs present a great challenge in terms of computational
load (7).

The K+Q LMM (8) incorporates both the cryptic kin-
ship relatedness and population stratification structure, and
has been widely used in GWAS analysis. However, de-
tected QTLs from GWAS are often account for only a
small fraction of the heritability (9), mainly due to igno-
rance of other effects beyond the additive effects. An im-
portant factor that accounts for the missing heritability may
come from epistatic effects defined as gene-by-gene interac-
tions (G×G) or genotype-by-environment effects denoted
by G×E (10). To account for more heritability and ana-
lyze traits with complex genetic architecture, we developed
a series of novel LMMs (11) and related tools that have
well addressed the two typical interaction effects: G×G and
G×E (12,13). Based on these LMMs and tools, 2D asso-
ciation studies were proposed to detect the interaction ef-
fects. However, the number of total genetic variants has in-
creased in a quadratic scale compared with the number of
genetic variants under the additive model in the conven-
tional GWAS models (14,15). Therefore, calculations of the
interaction kinship matrix and the P values for interaction
genetic marker pairs require much higher computing capac-

*To whom correspondence should be addressed. Tel: +1 580 224 6725; Fax: +1 580 224 6725; Email: pzhao@noble.org
Correspondence may also be addressed to Shizhong Xu. Tel: +1 951 827 5898; Fax: +1 951 827 5898; Email: shizhong.xu@ucr.edu

C© The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-3460-5564
https://bioinfo.noble.org/PIP_SNP/


2 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 3

ity (12). The parallel computing deployed with thousands
of CPU or GPU nodes can only linearly decrease the full
computing time (16), which can easily reach a plateau, mak-
ing it impracticable to handle millions of SNPs for their
epistatic effects in a 2D GWAS analysis. Alternative ap-
proaches must be considered to reduce the dimension of ge-
netic variants to an acceptable level (17).

SNPs are not independent and the correlation of nearby
SNPs is called linkage disequilibrium (LD), which can be
used for SNPs’ dimension reduction. LD exists because of
shared ancestry resulting in haplotype patterns, a particu-
lar combination of alleles along the contemporary chromo-
somes (18). Studies reported in literature suggest that the
whole genome can be mapped into many blocks and within
each block, SNPs are highly correlated, and a ‘tag’ SNP can
represent the whole block. A small number of representative
SNPs are sufficient to provide information about the hap-
lotype block structures of the whole genome (19,20). LD
block mapping and haplotype pattern analysis have been
successfully used to identify DNA variations that are rele-
vant to common and complex diseases (21–23).

NGS technology for a genome sequencing project in-
cludes a top-down digestion and fragmentation of the DNA
genome, base calling and alignment of short reads to a ref-
erence or bottom-up assembly of high-quality short reads
into a genome (24). Therefore, NGS data are subject to high
error rates due to multiple factors, including base-calling
and alignment errors. Moreover, some NGS users preferred
to lower costs and chose low-coverage sequencing, which
consequentially increase the difficulty in alignment and de-
crease the accuracy in the following SNP and genotype call-
ing (6). In the study by Nielsen et al. (6), about 40% of the
genotypes were recorded as non-calls and reported as miss-
ing values to ensure the accuracy of SNP calling at an ac-
ceptable level. However, association mapping requires com-
plete genotypes and phenotypes. As a result, SNP data for
GWAS are subject to a high percentage of the missing val-
ues (25), although genomic SNPs are abundant. Therefore,
imputations are needed to fill the missing genotypes prior
to association analyses. Additionally, imputation can fur-
ther improve the power of testing in the downstream GWAS
analyses (26,27). In summary, GWAS technology faces two
challenges: (i) high dimensionality of SNP data and (ii)
missing genotypes. It is necessary to develop methods and
tools to overcome these two challenges. To the best of our
knowledge, there are no tools available to resolve both chal-
lenges in one-stop processing.

In this study, we developed a web-based pipeline called
PIP-SNP, which has taken into account the redundant in-
formation of nearby SNPs, missing genotypes to be imputed
and high-dimensional SNPs to be reduced and synthesized.
We first borrowed the concepts of LD block and considered
nearby SNP signals as stochastic processes, and then used
the correlation and autocorrelation measurements (28) to
describe the similarity of nearby SNPs. Two types of cor-
relations have been proposed to characterize the specific
haplotype patterns in a rice recombinant inbred line (RIL)
population (29) and a rice HapMap population (30). First,
we proposed the criteria for detecting LD conceptual bins
that could partition the whole genome into LD bins. Sec-
ond, we adopted a k-nearest neighbors method (kNN) (31),

from which missing genotypes were inferred. Finally, we
proposed and discussed several synthesizing methods that
allowed us to find the optimal representative tag SNPs or
integrative markers. Based on these proposed methods, we
used C/C++ to implement each module and seamed these
models as a pipeline PIP-SNP. To be more flexible, we de-
signed the application with two distinct scenarios: to auto-
detect the LD bins and to use existing LD bins, respec-
tively. The PIP-SNP pipeline is now publicly available at
https://bioinfo.noble.org/PIP SNP/.

MATERIALS AND METHODS

Due to linkage disequilibrium, a genome can be mapped
into haplotype blocks. We can select only informative SNPs
or synthetic markers representing the original block struc-
tures in the genome for genome-wide association studies
(3,20). The biological block mapping should be based on ev-
idence for historical recombination events (20), and the re-
combination hot spots can be defined with boundaries (32).
High-density SNP markers are used to infer recombination
breakpoints, which then facilitate the construction of LD
bins (17).

Stochastic processes and autocorrelation to describe nearby
SNP signal

Autocorrelation is a type of serial correlation, which has
been used in stochastic signal processing to measure the
similarity of a signal with a delayed copy of itself as a func-
tion of delay (33). Due to LD, nearby SNPs are correlative
and can be well described by a stochastic process. Let the
genotyped SNPs being ordered by chromosome positions,
which can be represented by an M × N matrix, where M
and N are the SNP number and sample size, respectively.
A specific SNP signal can be represented as SNPi , which is
a genotype vector with length N. The Pearson correlation
coefficient between SNPi and SNPj is expressed by

R (i, j ) = Corr
(
SNPi , SNPj

)

=
∑N

n=1(SNPi (n) − SNPi )(SNPj (n) − SNPj )√∑N
n=1

(
SNPi (n) − SNPi

)2
√∑N

n=1 (SNPj (n) − SNPj )
2

(1)

where i , and j are the ordered SNP indices.
A simple way to measure the relationship between two

neighbor signals SNPi and SNPi+1 is given in Equation
(2), which essentially is a specific autocorrelation and can
be used to detect the boundary of a LD bin. If SNPi and
SNPi+1 are positioned at the same haplotype block, its cor-
relation should be high (determination of coefficient is close
to 1.0); otherwise, it should be low (determination of coef-
ficient is close to 0.0).

NR (i ) = Corr (SNPi , SNPi+1) i = 1, 2, 3, ... (2)

Further, the similarity profile of one fix SNP signal with
its continuous neighbor SNP signals is given in Equation
(3), which essentially is a general autocorrelation measuring
the detail on how the LD decays nearby a fixed SNP.

Ri0 (τ ) = Corr (SNPi0 , SNPi0+τ ) , τ = 1, 2, 3, ... (3)

https://bioinfo.noble.org/PIP_SNP/
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Characterization of the haplotype block pattern and detec-
tion of LD conceptual bins

The correlation between two neighbor SNPs and the auto-
correlation profile measuring the LD decay in a local range
of the genome can be described graphically. Figures 1 and 2
give the snapshots of the above two defined autocorrelations
for the SNP data from a RIL population and a HapMap
population, respectively. We can find that the SNP data
from the two populations show very distinct haplotype pat-
terns and LD decay profiles.

The haplotype block pattern as LD changes is demon-
strated as a right triangle in the 2D Pearson correlation
of SNP pairs (Figure 1A), or a fluctuating rectangle with
relatively high correlation coefficients amid a sudden drop
indicating the boundaries (Figures 1B and 2A,B). To sim-
plify, we can continuously calculate the correlation coeffi-
cient of two neighbor SNPs and compare it with a preset
threshold to detect block pattern boundaries. Ideally, the
boundary should correspond to a SNP at a recombination
point. However, due to limited sample size and low SNP
data quality during genetic variant calling, the boundary
can be blurred (Figure 2A and C). In the worst-case sce-
nario, the LD decay curve is not monotonic but contains
many acute spikes (Figure 2D). As a result, we can only
detect an approximate recombination point as the block
boundary. Considering these, we can continuously apply
the threshold to calculate the NR values (Pearson corre-
lation between two neighboring SNPs) and the options to
detect the boundary can be to consider the most right two
SNPs, the most left and right SNPs and to consider both
or one of the two options. In this study, once the haplo-
type block patterns are mapped and partitioned, we call
them LD bins, which may not accurately reflect the hap-
lotype blocks. Figure 1 is based on a typical case using RIL
SNP data, which show us a monotonic LD decay and there-
fore is comparably easy to detect the LD conceptual bins.
However, Figure 2 is based on SNP data from a diverse
rice HapMap population, which demonstrated a challeng-
ing case as the non-monotonic LD decay (Figure 2C) and
the worst-scenario composed with the smooth and acute
spike region in the line plots of NR auto-correlation (Figure
2A–C). To detect a LD conceptual bin, we can design such
an algorithm by which multiple SNPs can be clustered into
a bin if their neighbor correlations NR(i ) are all above a
preset threshold and/or the LD decay is not obviously de-
creased. Supplementary Note S1 and Supplementary Fig-
ure S1 provide the method details of LD bin detecting and
mapping.

The kNN algorithm and LD bin-based imputation of the
missing genotypes

The NGS technology provides high-dimensional SNP
markers but also suffers from more missing values. How-
ever, the downstream association analysis requires the geno-
type completeness for all SNPs. Therefore, imputation is a
critical step in GWAS analysis, which essentially is to infer
the most optimal substitute to fill the missing values. Of all
the imputing methods and tools, there are two distinct cat-
egories. One is based on a phasing procedure that maps the

ordered SNPs to the high quality reference genome or geno-
type panels, e.g. humans (34) and cattle (35). The other is
a more generic method relying only on the data relatedness
nearby the missing SNP values (25). In most cases, we study
the non-model organisms and, unfortunately, the reference
is lacking. In this case, the generic method to mine the in-
nate correlation for imputing should be the only solution.
Money D. etc. developed a tool called LinkImpute, which
uses the extended kNN method to infer the missing value
in a local regression region defined by the specific k samples
and l SNPs (25). Because it requires the user to specify two
fixed parameters and use the LD relatedness for imputing,
the method was named as LD-kNNi.

In this study, we modified the LD-kNNi method and ap-
plied it to impute the missing values in each detected LD
conceptual bins (Supplementary Note S2). For each miss-
ing genotype, the regression region was confined within its
own bin and the specific k ‘neighbor’ samples. Here, the k
‘neighbor’ samples were selected based on the samples’ dis-
tance. Compared with the LD-kNNi method using the fix
l SNPs rigidly, the LD bins are concatenated with variable
SNP sizes. Therefore, our method only needs to specify one
parameter as k samples.

Generation of synthetic marker to represent each LD concep-
tual bin

A high-dimensional SNP marker can statistically improve
the QTL mapping resolution, but it has reached a plateau
(17) in epistatic GWAS analysis, although large-scale com-
putational infrastructures such as parallelization of thou-
sands of CPUs and GPUs could be deployed (12,13,16).
Since the LD exists, it is reasonable to develop methods for
partitioning the whole genome-wide SNPs into LD concep-
tual bins, and further it is possible to develop some meth-
ods to find an optimal tag SNP or generate an integrative
marker to represent each detected bin.

Supposing one bin containing b SNPs is represented as a
b × N matrix, where the corresponding numerical genotype
value is represented as gi,n, we can use formula 4 or 5 to
calculate the Euclidean norm as the integrative marker or
find the optimal SNP as the tag SNP, respectively.

Gbs =
[√∑b

i=1 g2
i,1

√∑b
i=1 g2

i,2 . . .

√∑b
i=1 g2

i,N

]
(4)

Tag SNP = Arg max
1
b

SNPi

∑b

j=1
Corr

(
SNPi , SNPj

)
(5)

Figure 3 illustrates the procedure to find the optimal SNP
as the representative tag SNP in a detected LD conceptual
bin. Specifically, a LD bin containing 50 SNPs will be de-
tected if we apply 0.7 as a threshold to the calculated NR
values (Figure 3A). Further, we scan all the SNPs in the
bin and calculate all of the average of correlation R for one
selected SNP across all other SNPs. Finally, the SNP with
the maximum R will be selected as the optimal tag SNP
to represent the detected LD conceptual bin (Figure 3B).
Figure 3C highlights three specific correlation R trends of
the left, the right and the optimal tag SNP across the entire
bin.
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Figure 1. The Correlation and auto-correlation analysis of RIL rice data. (A) Image scale color mapping of Pearson correlation for all SNP marker pairs
and LD block showing a right triangular pattern. (B) Line plot of the auto-correlation of neighbor two SNPs. (C) Line plot of auto-correlation of a fixed
SNP with its right shift neighbor SNP.

Regarding the binary genotype coding such as 0, 1, 2, the
integrated marker will become continuous float format not
following the original binary format. In addition, the syn-
thetic marker comprehensively integrates the genetic infor-
mation of the whole bin, but the resolution of the marker’s
position in the chromosome will decrease into a bin. Com-
parably, the tag SNP still follows the same binary format
and conserves the resolution of the marker’s position.

Spike autocorrelation pattern of random SNP data and deep
synthesizing

We investigated two distinct SNP data sets from a rice
RIL population and a diverse rice HapMap population. We
found that the autocorrelation characteristics for the two
types of SNP data are quite different (Figures 1 and 2).
In general, the RIL SNP data show a conservatively stable
profile and modestly decreasing correlation values for the
above-defined method, but the HapMap SNP data show vi-
olent vibrations and many spikes. Therefore, it is more chal-
lenging to process the random SNP data from a Hapmap
population. However, the acute spike autocorrelation pat-
terns indicate that several types of SNPs are closely entan-
gled in a local region. The method to group and synthesize
similar type of SNPs should consider not only the neighbor-
joining SNPs (e.g. SNPi−1 and SNPi ) but also the neighbor-
skipping SNPs (e.g. SNPi−1 and SNPi+1). Here, we devel-
oped a unique two-step method that includes an initial shal-
low synthesizing and an aggressive deep synthesizing (Sup-
plementary Note S3). Supplementary Figure S2a illustrates
the concept of shallow synthesizing as the first step to clump
up only neighbor-joining SNPs, while the deep synthesiz-
ing as a further optional step to merge the non-adjacent
SNPs. Supplementary Figure S2b shows the implementa-
tion flowchart of deep synthesizing. Deep synthesizing dif-
fers the shallow synthesizing as it considers not only the
neighbor-joining SNPs but also neighbor-skipping SNPs.
Compared with shallow synthesizing, the deep synthesiz-
ing can acquire a higher SNP marker reduction ratio, which
can efficiently reduce the high dimensional SNP data from
a HapMap population to an acceptable level and not cause
too much genetic information loss.

DESIGN AND IMPLEMENTATION

Design overview

In general, we aimed to develop a platform to solve
the two great challenges to GWAS technology: high-
dimensional SNP data and the incompleteness of genotype
data. Through the proposed methods rooted in the correla-
tion analysis of SNPs, the biological Haplotype block can
be mapped, the LD conceptual bins can be detected, the
missing genotype values can be imputed, and the high di-
mensional SNP marker can be reduced to an acceptable
number. Figure 4 illustrates the whole concept of the two
challenges, the reasonable solutions and the main process-
ing modules.

Most of the numerical SNP data are coded as the count of
minor alleles. The biallelic SNPs have three combinational
genotypes numerically as 0 (homozygous major allele), 1
(heterozygous) and 2 (homozygous minor allele), respec-
tively. As previously mentioned, there may be many missing
values that need to be imputed before conducting a GWAS
analysis. To simplify, we specifically coded all the missing
genotype as -1 in this study.

Along with the function implementation, ease of use also
is a very important criterion. Users prefer to choose a data
processing tool or platform with a friendly user interface
and painless learning curve. Considering this, we developed
the platform as a web pipeline, which can naturally avoid
the tool’s installation and updating. Additionally, we need
to consider the different scenarios in real application, which
can increase the flexibility.

Implementation of three function modules and seaming them
into a web-based pipeline

Correlation analysis of the neighbor SNPs is the backbone
of this study. Based on the correlation and autocorrelation
analysis of one SNP and its neighbor, LD conceptual bins
can be detected and the whole genome can be mapped. Af-
ter finishing the LD bin mapping, the missing values in each
detected bin will be imputed by the kNN method with the
specific k samples. Finally, one synthetic marker represent-
ing each bin either as the integration of all SNPs or a tag
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Figure 2. The Correlation and auto-correlation analysis of Rice HapMap data. (A) Line plot of the auto-correlation of neighbor two SNPs. (B) Zoom in
the plot for smooth region I. (C) Zoom in the plot for spike region II. (D) Line plot of auto-correlation of a fixed SNP with its right shift neighbor SNP.

SNP will be generated. In general, there are three related
function modules, which can be seamlessly connected and
developed as a whole project. Figure 4B illustrates the dia-
gram containing three connected modules.

Considering the high dimension of SNP variant, the com-
putational efficiency should be seriously considered. There-
fore, we chose C/C++ to implement each function module
in Open-Source IDE Code:Blocks. All the source codes are
compiled into executable command lines in Linux. To run
this command line, users only need to provide the raw SNP
data at the specific format together with the configured pa-
rameters.

Web interfaces usually can provide user-friendly con-
venience by maximally avoiding the mistaken parameter

configuration. This motivated us to develop a web-based
pipeline PIP-SNP. Generally, PIP-SNP includes a server
part for the computation dense analysis and a remote-client
part for a user’s job submission and results downloading.
We realized that the original genotyped SNP data can reach
up to several GBs with millions of SNP markers and up-
loading such a large text file from a remote client side to the
PIP-SNP’s web server can be exceedingly difficult. There-
fore, we technically developed a module that can work in
an HTML5 browser and implement the resumable multi-
threading chunked data uploading. Additionally, the orig-
inal genotyped SNP data can be stored in a remote cloud
server, such as Google Drive. PIP-SNP provides the options
to allow the user to provide the shared URL.
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Figure 3. Correlation and auto-correlation of a detected LD bin and determining representative tag SNP. (A) Correlation analysis of neighboring two
SNPs showing a LD bin boundary. (B) The optimal tag SNP determined by the maximal R̄ across all SNPs in the detected LD bin. (C) Typical R trend of
the left boundary, right boundary and optimal tag SNP across all the SNPs in the bin.

A

B

Figure 4. Biological concepts of pipeline PIP-SNP. (A) The challenges in SNP data processing. (B) The three main processing modules in PIP-SNP.

Two venue interfaces for two specific application scenarios

LD bin mapping is the most crucial part of the process, but
it is also very subtle, which will affect the whole implemen-
tation. Using the existing LD bin mapping information with
higher accuracy usually is the top choice. Therefore, when
we designed PIP-SNP, we considered fully the two practical
application scenarios to directly detect the LD bins from
the raw SNP data and to use the existing LD bin map-
ping information. Supplementary Figure S3 illustrates the
diagram for the two scenarios. During the implementation
in C/C++, we created two separate projects and compiled
them into two executable command lines to handle the two
distinct scenarios.

In the web client part, we populated the two scenarios
separately as PIP SNP Venue1 and PIP SNP Venue2. Sup-
plementary Figures S4–S7 are the snapshots of the web in-
terface for the two application scenarios. PIP SNP Venue1
(Supplementary Figure S4) takes the raw SNP data
as the only input (Supplementary Figure S3), while
PIP SNP Venu2 (Supplementary Figure S6) requires two
inputs, including the raw SNP data and the existing
LD bin mapping information data (Supplementary Fig-
ure S3). After submitting, PIP SNP Venue1 will proceed
with all the three processing procedures, and return two

files, including the LD bin mapping result and the final
SNP data preprocessing result (Supplementary Figure S5).
PIP SNP Venue2 will skip the LD bin mapping step and
proceed with the rest two processing procedures and return
two files, including the updated LD bin mapping result and
the final SNP data processing result (Supplementary Figure
S7).

User option to integrate additional processing as deep synthe-
sizing

We investigated the correlation analysis of SNP data from
the HapMap population and found that there may be more
acute spike autocorrelation patterns. This phenomenon in-
dicates that several types of SNPs may be closely entangled
in a local region. We have developed a two-phase procedure,
including a shallow- and deep-synthesizing step, to clump
the SNPs into groups. Each group corresponds to a con-
ceptual LD bin. However, the groups can overlap each other
to some degree. If using deep synthesizing, we can achieve a
higher SNP marker compression ratio, which will be defined
and discussed in later sections. When we designed the archi-
tecture of PIP-SNP, we left to the user the option whether
to choose one phase or two phases to generate the synthe-
sized marker. When implementing this function module, we
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Table 1. Summary information of the SNP dataset for performance
evaluation

SNP
marker
number

Individual
number Trait

Rice RIL Dataset 1619 210 YIELD
Rice HapMap Dataset 842,474 374 Days to Heading

built and compiled a special project for processing the deep
synthesizing. Supplementary Figure S8 illustrates the data
flow chart among the three execute command lines.

To suit the two application scenarios, we needed to seam
the three executable command lines into an integrative
pipeline. In addition to developing the three executable
command lines, we also developed some python scripts to
seam the three executable command lines and parse the re-
turned configured parameters from a remote client user.

RESULTS

In this study, we have proposed a series of methods and de-
veloped a web-based pipeline PIP-SNP to preprocess the
SNP data, including the LD conceptual bin mapping, miss-
ing value imputing and LD bin markers synthetizing. It
was also important to address how much the genetic infor-
mation has been conserved or lost due to the SNP mark-
ers being processed and greatly reduced. To address this
question, we needed to go to the very nature of statisti-
cal genetic itself. Essentially, the genetic variants and the
phenotypic values of quantitative traits can be connected
through a kind of LMM. Statistically solving the proposed
LMMs mainly include three procedures: kinship matri-
ces calculation, genetic variance component analysis and
statistical testing of P-values. A comprehensive compari-
son of the results of these three aspects can answer this
question.

We developed a more complex LMMs and GWAS tool,
PATOWAS, which can outperform the existing LMM and
GWAS tools by delivering a specific broad-sense heritabil-
ity, the marker’s additive effect results and the marker pairs’
interaction effect results (13). Based on this specific LMM,
we compared the results at the three aspects and evaluated
the difference between using the full SNP data set and us-
ing the dimension-reduced synthetic markers. The data in-
clude a moderate-scale SNP dataset from rice RILs (36)
and a high-dimensional SNP dataset from a rice HapMap
project (30). The first dataset was used to demonstrate the
proposed method and principles, the correlation and the
auto-correlation characteristics of SNP signals, while the
second dataset was used to demonstrate the challenge due
to the high-dimension SNP markers and its solution. Table
1 shows the general information of two datasets, and Sup-
plementary Table S1 shows further information about the
high-dimensional SNP distribution across the 12 chromo-
somes.

A LMM incorporating additive and interaction effects

The LMM that incorporates the markers’ additive effects
and marker pairs’ interaction effects can be simply repre-

Table 2. Summary information of the dimension-reduced markers from
PIP-SNP

Cutoff R th 0.8 0.6 0.4 0.2

Rice RIL No. of shallow
synthesized
markers

196 103 65 43

MCR 8.2602 15.7184 24.9077 37.6512
Rice HapMap No. of deep

synthesized
markers

339,493 254,289 186,174 115,544

MCR 2.4816 3.3131 4.5252 7.2914

sented as

y = Xβ +
∑M

i = 1
Zi ai

+
∑M−1

i = 1

∑M

j = i+1

(
Zi #Zj

)
(aa)i j + e (6)

where y is an N × 1 vector of a quantitative phenotypic trait,
and Z is an M × N marker matrix for M SNP markers and
N individual samples. Xβ is the intercept; Zi is the ith col-
umn of matrix Z, and ai is the ith marker’s additive effect on
the trait; Zi #Zj is element-wise product of vectors Zi and
Zj , and (aa)i j is the interaction effect between marker i and
marker j; e is an N × 1 vector of residual error.

The variance of phenotypic trait y can be represented as

Var (y) = Kaσ
2
a + Kaaσ

2
aa + Iσ 2 (7)

where Ka and Kaa are additive and interaction effect kin-
ship matrix respectively; and σ 2

a , σ 2
aa and σ 2 are the variance

components to be estimated for additive effect, interaction
effect and residual, respectively. More details for the two
kinship matrix calculations and the three variance estima-
tions can be referred to our published pipeline PATOWAS
(13). Based on the three estimated variance components, the
broad-sense heritability representing how much the biolog-
ically explainable genetic components can be calculated by

H = σ 2
a + σ 2

aa

σ 2
a + σ 2

aa + σ 2
(8)

PATOWAS also output the testing results as p values
measuring how likely the putative trait associated with ge-
netic variants as SNP markers or SNP marker pairs is due
to random chance.

Using PIP-SNP, we can configure different parameters to
get a dimension reduced synthetic marker. Compared with
the original high-dimensional SNP markers, the marker
compression ratio (MCR) as an analogy of compression ra-
tio in image processing can be defined as

MCR = No. of the original high dimensional SNP
No. of the synthesized markers

(9)

We submitted the two typical SNP datasets, including
a RIL population and a HapMap population, to PIP-
SNP and generated a series of dimension-reduced synthe-
sized SNPs or markers. Table 2 show a summary of the
dimension-reduced markers by PIP-SNP.
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We then submitted the marker data, together with the
phenotype trait data, to PATOWAS for the genetic per-
formance evaluation. Kinship matrix measures the related-
ness between individuals, and its accuracy will affect the
following p value testing. Epistatic GWAS needs to cal-
culate two kinds of kinship matrices Ka and Kaa , which
have the complexity of O(MN2), O(M2 N2), respectively
(12,13). Therefore, the calculation of kinship matrix will
cost a huge computation burden. In the following sections,
we first used the moderate-scale SNP data from a RIL rice
population and its dimension-reduced SNPs/markers (Ta-
ble 2) to demonstrate the evaluation results of kinship ma-
trix, broad-sense heritability and the 1D Manhattan plot.
All the results are shown in Figures 5 and 6. We also ana-
lyzed the high-dimensional SNP data from a rice HapMap
population but found a challenge to achieve a higher MCR
even at a very low correlation cutoff threshold R th. How-
ever, if we choose the deep-synthesizing method and set the
cutoff threshold R th at 0.2, we could achieve ∼7.0 times
marker compression ratio (Table 2).

Evaluation of the resulted kinship matrix

A kinship matrix essentially measures the relatedness of in-
dividuals. Considering its symmetric feature, a kinship ma-
trix can be represented as a lower triangular matrix. There-
fore, the additive and interaction effect kinship matrix Ka
and Kaacan be represented as formulas 10 and 11, respec-
tively.

Ka =

⎡
⎢⎢⎣

Ka (1, 1)
Ka (2, 1) Ka (2, 2)

...
Ka (N, 1)

. . .
· · ·

. . .
Ka (N, N)

⎤
⎥⎥⎦ (10)

Kaa =

⎡
⎢⎢⎣

Kaa (1, 1)
Kaa (2, 1) Kaa (2, 2)

...
Kaa (N, 1)

. . .
· · ·

. . .
Kaa (N, N)

⎤
⎥⎥⎦ (11)

The two kinship matrices Ka and Kaa can be dumped into
two one-dimensional kinship vectors K̂a , K̂aa as formulae
12 and 13.

K̂a = [Ka (1, 1) , Ka (2, 1) , Ka (2, 2) , . . . ,

Ka (N, 1) , . . . , Ka (N, N)] (12)

K̂aa = [Kaa (1, 1) , Kaa (2, 1) , Kaa (2, 2) , . . . ,

Kaa (N, 1) , . . . , Kaa (N, N)] (13)

If we set a correlation cutoff threshold R th, PIP-SNP
will map all the SNPs into blocks and partition them into
LD conceptual bins, then output dimension-reduced syn-
thetic markers. The two corresponding 1D kinship vectors
are represented as K̂a(R th) and K̂aa(R th), respectively.
Then two correlation coefficients measuring the kinship
matrix similarity between K̂a(R th) and K̂aa(Rth) using the
synthetic markers against K̂a , K̂aa and using the original

high-dimensional SNP markers can be calculated by the for-
mulae 14 and 15.

RKa (R th) = Corr
(
K̂a, K̂a (R th)

)
(14)

RKaa (R th) = Corr
(
K̂aa, K̂aa (R th)

)
(15)

The representative marker for each bin can be the optimal
tag SNP or the integration of all SNPs. Based on the PA-
TOWAS analysis result for the RIL population SNP data,
Figure 5C–F illustrate the correlation measurements of the
two kinship matrices using the original SNP markers and
the synthesized markers at cutoff threshold R th. From Fig-
ure 5, we can see that the kinship matrix similarity mod-
erately decreases with the decreasing cutoff threshold R th
and the synthesized marker number is reduced. On the other
side, we set the cutoff threshold R th as low as 0.2 and the
marker compression ratio MCR can reach 37.7, but the kin-
ship matrix similarity using integrative marker is still as high
as 0.96 (Figure 5A, E and F). These phenomena indicate
that there is, indeed, information redundancy among SNPs.

Comparably, the integration method considers all the
SNP information in one detected LD bin. Therefore, this
method conserves the more genetic information and reports
the higher kinship matrix similarity. The mathematical
bases that prove this characteristic have been detailed and
deduced in Supplementary Note S4. For the HapMap pop-
ulation data, if we choose the deep-synthesizing method, a
high kinship matrix similarity of 0.9 could be achieved in the
case of ∼7.0 times SNP marker compression ratio (Supple-
mentary Table S2).

Evaluation of the resulted broad sense heritability

Based on the PATOWAS result, we can use formula 8 to
calculate the broad-sense heritability. Both the narrow and
broad sense heritability can be used to measure the por-
tion of the phenotypic variation that can be biologically ex-
plained by the considered causal genetic variants. Compa-
rably, the broad-sense heritability delivers more explainable
genetic components because the canonical narrow-sense
heritability considers only the marker’s additive effect.

The two calculated broad-sense heritability using the
original high dimensional SNP data and dimension reduced
synthetic marker are represented as H0 and H(R th) respec-
tively, then we can use formula 16 to define a relative her-
itability (RH) to measure how much the genetic informa-
tion has been conserved during the SNP data dimension-
reduced processing.

RH (R th) = H (R th)
H0

(16)

To a specific trait, the defined RH is can be greatly af-
fected by the dimension reduced SNP markers. Based on
the analysis result for RIL data, we generated Figure 5B to
demonstrate the relationship between the RH and the cor-
relation cutoff threshold R th. With the R th decreasing,
the MCR increase and the RH decrease slowly. Even when
we set the R th as low as 0.2 and MCR at 37.7, the RH
can be 0.75. This means that only 1/37.7 = 2.7% markers
can retain 75% of the original genetic information. Again,
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A

B

C

D

E

F

Figure 5. The perspective of the marker reduction and its effect on the heritability and kinship matrix. At different cutoff thresholds R th, the evaluation
plots are generated. (A) Marker compression ratio (MCR), (B) relative heritability (RH), (C–F) correlation of the kinship matrix Ka, Kaa between that
were generated by full markers and that were generated by reduced markers either as the tag SNPs (C and D) or as the integrative markers (E and F).

A B

Figure 6. The aligned line sub-plots of the negative log10 (P values) resulted at two typical synthesizing modes. (A) The aligned subplots for the P values
generated in the synthesizing mode of ‘Representative tag SNP’. (B) The aligned subplots for the P values generated at the synthesizing mode of ‘Integrating
all SNPs in the Bin’. From top to bottom, the cutoff thresholds R th were set at 0.2, 0.4, 0.6, 0.8 and 1.0, respectively.

this phenomenon indicates the LD block structure of the
genome and the information redundancy among SNPs.

Comparison of the line Manhattan plots of
−l og10(P values)

GWAS analysis needs the genotype and phenotype data
as inputs, and the GWAS analysis usually delivers the
P values as the probability assuming the null hypothesis is

correct. Therefore, the corresponding −log10(P value) can
be used to measure how much the SNP marker is relevant to
the trait to be investigated. For very dense SNP markers, we
usually use a type of scatter plot called Manhattan plot to
display a large number of P-value points. In this study, we
developed pre-processing methods and platforms to group
and synthesize SNP markers, which will cause the marker
number to be reduced and make it easier to be manipu-
lated in the GWAS analysis. However, biologists and breed-
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ers may show more concern regarding whether the signifi-
cant QTL patterns can be conserved.

Based on the PATOWAS analysis result for the moderate-
scale RIL data, we generated a series of aligned line plots
of −log10(P values). Here, the marker numbers are contin-
uously synthesized from 1619 to 43 with a different cor-
relation cutoff threshold R th at two synthesizing modes
(Figure 6). From Figure 6, we can see that most of the
QTL patterns have been well conserved. For the very high-
dimensional SNP data from a HapMap population, we first
performed GWAS analysis using classical LMM in TAS-
SEL and our in-house PATOWAS with the configuration to
bypass scanning the p values for interaction effect. The re-
sulted two separate 1D GWAS results are illustrated in Sup-
plementary Figures S9 and S10. We can see that the QTL
patterns in the two Manhattan plots are very similar.

We then submitted the dimension-reduced tag SNP
markers to both TASSEL and PATWOAS. TASSEL has
the option to accept user-defined kinship matrix. Therefore,
we have two types of TASSEL results corresponding to the
kinship matrix from the full SNP marker set or from di-
mension reduced markers. The 1D GWAS result, including
the aligned Manhattan plots and the Q–Q plots at differ-
ent correlation cutoff threshold R th, are presented in Sup-
plementary Figures S11–S22. From Supplementary Figures
S11–S22, we can see that the decreased synthesized marker
number only slightly deflated the P values but well con-
served nearly all of the major QTL patterns. Comparing
Supplementary Figure S17 vs Supplementary Figure S18,
and Supplementary Figure S20 vs Supplementary Figure
S21, we can conclude that adopting the full marker resulted
kinship matrix do not improve but may degrade the associ-
ation resolution.

This phenomenon can be explained by the theoretical ba-
sis of the Beavis effect describing the relationship between
independent QTL number and the sample size (37).

DISCUSSION

Due to the existence of LD and haplotype block patterns,
the SNPs are not independent and the whole genome can be
mapped into block structures. SNP data face two obvious
challenges: the huge computing burden due to its high di-
mensionality and the more missing values affecting the bio-
logical completeness. SNP data need to be processed before
conducting the downstream GWAS analysis. In this study,
we used stochastic processes to describe the SNP signals and
proposed two kinds of autocorrelation to measure the in-
formation redundancy of nearby SNPs. Based on the auto-
correlation measures, we proposed novel methods to detect
the LD conceptual bins. Further, we treated each detected
bin independently and used the kNN method to infer the
missing values. Finally, one representative marker per LD
conceptual bin can be synthesized either as the optimal tag
SNP or the integrative marker using the Euclidean norm of
all SNPs.

The dimension-reduced synthetic markers will inevitably
cause genetic information loss, yet the marker dimension
reduction is necessary for epistatic GWAS analysis. To ad-
dress how much the genetic information is conserved or lost
due to the preprocessing of SNP markers, we used our in-

house association tool, namely PATOWAS, to evaluate the
resulted relative heritability, kinship matrix and the canon-
ical 1D Manhattan plots. The defined relative broad sense
heritability includes two biological components for additive
effect and interaction effect. Therefore, it is possible that the
relative broad sense heritability does not reduce so much,
but the 1D Manhattan plot becomes noisy, and the QTL
patterns become less evident.

We analyzed two kinds of typical SNP data, including
a moderate-scale SNP dataset from a RIL rice population
and a high-dimensional SNP dataset from a rice HapMap
population. We found that it is more challenging to describe
the random SNP data from a HapMap population. The au-
tocorrelation criteria spreading across the neighboring two
SNPs is very limited to grouping similar SNPs and, there-
fore, it cannot achieve a satisfactory SNP marker compres-
sion ratio. However, the very acute spike autocorrelation
patterns indicate that several kind of SNPs can be closely
entangled together in a local region, which inspire us to
jump out off the neighbor-joining SNPs and consider its
second and even third neighbor SNPs. Based on these think-
ing, we developed a specific function module called deep
synthesizing, which is more aggressive in grouping the more
neighbor SNPs and distinguishes from the shallow synthe-
sizing method by spreading consideration of only the two
neighbor-joining SNPs.

To the detected LD bins, we propose two options to gen-
erate the representative synthetic marker. One is to find an
optimal tag SNP, and the other is to calculate the Euclidean
norm of all SNPs to get an integrative marker. The first
option can keep the same genetic variant format and the
marker resolution but will lose the genetic information from
other SNPs. Comparably, the second option considers the
integrative genetic information of all the SNPs at the same
LD bin. Our performance evaluation results also support
that more genetic information has been retained. However,
the genetic variant data format will be changed into float,
and the marker resolution will be degraded from a single
SNP into a LD conceptual bin.

We realized that LD bin mapping is the most important
part compared with other modules. The actual bin mapping
should match well to the real haplotype block structure and
reflect the genetic recombination. However, the actual ge-
netic recombination event is difficult to know and different
haplotype block partitioning algorithms produce a varied
range in the bin number, size and coverage, which make it
difficult to propose a golden standard to define the haplo-
type block and then conduct a fair performance evaluation
(22). As such, the LD bin mapping is very subtle, which
may affect other processing modules and the downstream
GWAS analysis. To be flexible, we considered two possible
application scenarios and designed two venue interfaces as
PIP SNP Venue1 and PIP SNP Venue2. Users have the op-
tion to use their own confident LD bin mapping results for
the missing genotype imputing and/or the synthesis marker
generating. Further, if the user provides a fixed size (e.g. in-
teger l) LD bin mapping file and also specific an integer k as
the kNN method, the processing module for missing value
imputation will be equal to the LD-kNNi method with the
same parameters used in the tool LinkImpute (Money et
al., 2015).
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Although methods have been developed to perform hap-
lotype block mapping, imputing or tag SNP selection. How-
ever, most of them were independently developed for a
specific aim. It’s difficult to integrate them into a pipeline
for high dimensional SNP data manipulation (Supplemen-
tary Table S3). To the best of our knowledge, there is no
tool/platform that can implement all the three function
modules in a one-stop processing.

DATA AVAILABILITY

The pipeline PIP-SNP, source codes for three project pack-
ages PIP SNP Venue1, PIP SNP Venue2 and Deep Syn-
thesizing, test data, including a RIL rice data, HapMap
rice data and phenotypic traits, are freely available at
https://bioinfo.noble.org/PIP SNP/. We are committed to
maintaining and improving the specific function modules
per user comments and suggestions. Additionally, we have
made the source code open and deposited them in Git-
Hub https://github.com/noble-research-institute/PIP SNP.

The current version of PIP-SNP only accepts biallelic
SNP data in pure text format. The SNP data must be stored
as M × N matrix and the genotype value numerically coded
as 0 for homozygous major allele, 1 for heterozygous al-
lele, 2 for homozygous minor allele, and -1 for the missing
value to be imputed. In the future, we plan to develop ad-
ditional modules for numerical genotype coding that can
directly support the sequence SNP data as format of vcf or
HapMap. We believe that such developments will provide
much convenience to the users.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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