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Abstract: Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine highly expressed by ep-
ithelial cells and several innate and adaptive immune cells. TSLP exerts its biological effects by
binding to a heterodimeric complex composed of TSLP receptor (TSLPR) and IL-7Rα. In humans,
there are two TSLP isoforms: the short form (sfTSLP), constitutively expressed, and the long form
(lfTSLP), which is upregulated in inflammation. TSLP has been implicated in the induction and
progression of several experimental and human cancers. Primary human lung macrophages (HLMs),
monocyte-derived macrophages (MDMs), and peripheral blood monocytes consitutively expressed
sfTSLP mRNA. Incubation of HLMs, MDMs, and monocytes with lipopolysaccharide (LPS) or IL-4,
but not with IL-13, induced TSLP release from HLMs. LPS, but not IL-4 or IL-13, induced CXCL8
release from HLMs. LPS, IL-4 alone or in combination with IL-13, induced the expression of lfTSLP,
but not of sfTSLP from HLMs. Preincubation of HLMs with IL-4, alone or in combination with IL-13,
but not IL-13 alone, synergistically enhanced TSLP release from LPS-activated macrophages. By
contrast, IL-4, alone or in combination with IL-13, inhibited LPS-induced CXCL8 release from HLMs.
Immunoreactive TSLP was detected in lysates of HLMs, MDMs, and monocytes. Incubation of HLMs
with TSLP induced the release of proinflammatory (TNF-α), angiogenic (VEGF-A, angiopoietin 2),
and lymphangiogenic (VEGF-C) factors. TSLP, TSLPR, and IL-7Rα were expressed in intratumoral
and peritumoral areas of human lung cancer. sfTSLP and lfTSLP mRNAs were differentially ex-
pressed in peritumoral and intratumoral lung cancer tissues. The TSLP system, expressed in HLMs,
MDMs, and monocytes, could play a role in chronic inflammatory disorders including lung cancer.

Keywords: angiogenesis; lymphangiogenesis; lung cancer; macrophages; monocytes; monocyte-
derived macrophages; thymic stromal lymphopoietin; TSLP isoforms; tumor microenvironment

1. Introduction

Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine [1,2] highly expressed
by lung [3–8] and intestinal epithelial cells [9–14]. TSLP can be produced also by airway
smooth muscle [15] and several immune cells, such as dendritic cells (DCs) [16], mast
cells [3,17–19], eosinophils [20], and monocytes [16].
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Human TSLP exerts its biological activities by binding to a high-affinity heteromeric
complex composed of thymic stromal lymphopoietin receptor (TSLPR) and interleukin 7
receptor-α (IL-7Rα) [21]. TSLP initiates signaling by establishing a ternary complex with
its specific receptor, TSLPR, and then with IL-7Rα [1,22,23].

Two isoforms (short and long) for TSLP have been identified in different human tis-
sues [9,13]. The short-form TSLP (sfTSLP) is constitutively expressed in normal tissues, includ-
ing bronchial and intestinal epithelial cells, keratinocytes, and lung fibroblasts [9,13,24–26],
whereas the long-form TSLP (lfTSLP) is upregulated in inflammatory conditions [9,13]. De-
spite increasing evidence of a dichotomy for the two isoforms of TSLP in humans, the
pathophysiological roles of sfTSLP and to some extent of lfTSLP are largely unknown [2].
There is also evidence that TSLP can be cleaved by endogenous proteases in inflammatory
conditions [8,14,27].

The plethora of immune cell types that can either produce or respond to TSLP em-
phasizes the importance of this cytokine in multiple biological processes [1,2]. A novel
and unexpected function of TSLP has been demonstrated in experimental and human
cancers [2,28]. In particular, TSLP has been linked to the progression of several experi-
mental [29–33] and human tumors [33–46]. By contrast, few studies have pointed to an
anti-tumor role for TSLP in mouse models [47–51] and in human cancers [48]. It is im-
portant to emphasize that the differential expression and the functions of the two TSLP
isoforms in human and experimental cancers are presently unknown.

Macrophages are important immune cells resident of all tissues [52], where they
play pivotal roles in tissue homeostasis [53–55]. Tissue macrophages and peripheral
blood monocytes represent two branches of the mononuclear phagocyte system, and
they have complementary roles during immunological challenges [52]. Macrophages and
monocytes are sentinels in immunity, combating infections [56], modulating angiogenesis
and lymphangiogenesis [57–59], and surveilling agonist tumors [54,60–62]. Macrophages
arise from different cell lineages emerging during embryonic development [63–66]. In the
lung, tissue-resident macrophages homing during embryogenesis self-renew throughout
life [67,68]. During inflammation, bone marrow-derived monocytes can invade the lung
and differentiate into macrophages [67]. Macrophages are the predominant immune cells in
human lung parenchyma [69–71]. Macrophages and monocytes are fundamental regulators
of various aspects of tumor immunity [72,73]. In particular, human lung macrophages by
producing proinflammatory cytokines (i.e., TNF-α, CXCL8), proangiogenic (i.e., VEGF-A),
and lymphangiogenic (i.e., VEGF-C) factors [57,59,74] play a pivotal role in tumor initiation
and growth [54].

The expression of TSLP receptor and TSLP isoforms by primary human lung macrophages
(HLMs), monocytes and monocyte-derived macrophages (MDMs) has not been characterized.
In this study, we evaluated the constitutive and LPS-induced expression of TSLPR, IL-7Rα
and TSLP isoforms (sfTSLP and lfTSLP) in HLMs, MDMs, and human peripheral blood
monocytes. We also examined the effects of TSLP on the production of angiogenic and
lymphangiogenic factors from HLMs and the expression of intratumoral and peritumoral
TSLP system (i.e., TSLP receptor and TSLP isoforms) in human lung cancer.

2. Materials and Methods
2.1. Reagents and Buffers

The following were purchased: bovine serum albumin, L-glutamine, antibiotic–
antimycotic solution (10,000 IU/mL penicillin, 10 mg/mL streptomycin, and 25 µg/mL
amphotericin B), RPMI 1640, fetal calf serum (FCS) (endotoxin level < 0.1 EU/mL), perox-
idase anti-peroxidase, hydrogen peroxide, diaminobenzidine, paraformaldehyde (PFA),
Percoll®, Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA), detoxified LPS (from E. coli
serotype 0111:B4), M-CSF, TSLP, IL-13 and IL-4 (Miltenyi Biotec, Bologna, Italy), ELISA
kits for TSLP, CXCL8, VEGF-A, VEGF-C, TNF-α (R&D System, Minneapolis, MN, USA),
RNeasy plus Minikit (Qiagen, Milan, Italy), high capacity cDNA RT (Life Technologies,
Monza, Italy), and iTaqtm Universal SYBR® Green Supermix (Bio-Rad, Hercules, CA,
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USA). Flow cytometry was performed by the following Abs: anti-CD68 FITC, anti-CD163
FITC, anti-169 PE, anti-CD206 APC, anti-CD24 HV 450 (Miltenyi Biotec, Bologna, Italy),
anti-CD5 PE, anti-CD123 APC, HLA-DR HV500, anti-CD22 APC (Becton Dickinson, Italy),
anti-CD14 PE-Cy7 (Life-technologies, Monza, Italy), and anti-CD45 APC-Cy7 (BioLegend,
Milan, Italy).

2.2. Isolation and Purification of Human Lung Macrophages (HLMs)

The study protocol was approved by the Ethics Committee of University of Naples
Federico II (Prot. 7/19), and informed consent was obtained from donors. Macrophages
were purified from macroscopically normal lung tissue obtained from 39 patients [hepatitis
C virus (HCV−), hepatitis B surface Ag (HBsAg−), HIV−] (age 62.4 ± 1.7 years) affected
by lung adenocarcinoma undergoing thoracic surgery [59,75]. Freshly resected lung tissue
was obtained intraoperatively and was minced finally with scissors and washed extensively
with PIPES buffer over Nytex cloth (120-µm pore size (Tetko Elmsford, NY, USA). After
Percoll gradient centrifugation, the cells were suspended (106 cells/mL) in RPMI 1640
with 5% FCS, 2 mM L-glutamine, and 1% antibiotic-antimycotic solution and incubated
in 24-well plates (Falcon, Becton Dickinson, Milan, Italy). After 12 h, the medium was
removed and the plates were gently washed with RPMI. More than 98% of adherent cells
were macrophages, as evaluated by flow-cytometric analysis [74].

2.3. Flow Cytometry

Human lung macrophages were suspended in PBS at a concentration of 5 × 106 cells/mL.
Fifty µL of cell suspension were incubated (20 min at 4 ◦C) with antibodies. To quench high
spontaneous antifluorescence of HLMs, pellets were washed twice with PBS, suspended in
0.2 mL of Crystal violet solution (Certistain, Merck, Damstad, Germany) and incubation
of 5 min at 22 ◦C. Adherent lung cells were examined initially by forward scatter (FSC)
area versus side scatter (SSC) area and then by FSC area versus FSC height, with gating on
single cells to eliminate dead cells, debris and clumped cells from the analysis. Single cells
were then examined by CD45 expression, gating on CD45+ cells, which represented total
leukocytes. The majority of the adherent lung cells were CD45+ leukocytes; within these
cells, CD169 (siglec-1), CD206 (mannose receptors), CD68, CD163 and HLA-DR were used
to identify macrophages as previously described [70,74]. The vast majority of CD169+ cells
were human lung macrophages, which were CD206+, CD68+, CD163+, and HLA-DR+. The
remaining CD45+ cells were examined by (1) SSC-A versus CD14 to distinguish CD14high

cells, which represent essentially monocytes (0.3%); (2) SSC-A versus CD22 to identify
CD22high cells that are B lymphocytes (0.4%); (3) SSC-A versus CD5 to identify CD5high cells
which represent T lymphocytes (1.2%). Other minor contaminating cells were granulocytes
and monocytes (0.4%) [74]. The samples were acquired by FACS-Canto II and analysed
by FACS-DiVa software (Becton Dickinson). Values were expressed as the percentage of
positive and negative cells [74].

2.4. Isolation of Monocytes and Differentiation of MDMs

The study protocol involving the use of human blood was approved by the Ethics
Committee of the University of Naples Federico II, and informed consent was obtained
from blood donors (Prot. 301/12). Peripheral blood mononuclear cells were isolated from
buffy coats of 32 healthy donors (HCV−, HBsAg−, and HIV−) (age 47.6 ± 2.3 years)
obtained from a leukapheresis unit. Leukocytes were separated from erythrocytes by
dextran sedimentation [76]. Peripheral blood mononuclear cells (PBMCs) were purified
by Histopaque-1077 (Sigma Aldrich, Milan, Italy) density gradient centrifugation (400× g
for 20 min at 22 ◦C). Monocytes were further purified with CD14 microbeads according to
the manufacturer’s protocol (Miltenyi Biotec, Bologna, Italy). To obtain monocyte-derived
macrophages (MDMs), monocytes (1.5 × 106 cells/cm2) were differentiated with M-CSF
(50 ng/mL) for 7 days in RPMI 1640 supplemented with 10% FCS (Sigma-Aldrich, Milan,
Italy) [59].
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2.5. Cell Incubations

HLMs, monocytes, and MDMs were cultured in 24-well plates in RPMI 1640 supple-
mented with 5% FBS (Sigma-Aldrich, Milan, Italy), 2 mM l-glutamine, and 1% antibiotic-
antimycotic solution.

The cells were treated with IL-13 (10 ng/mL) (Miltenyi Biotec, Bologna, Italy), IL-4
(10 ng/mL) (Miltenyi Biotec, Bologna, Italy), detoxified LPS (100 ng/mL) (from Escherichia
coli serotype 0111:B4; Sigma-Aldrich, Milan, Italy), or TSLP (5 ng/mL) for 16 h or 6 h at
37 ◦C. In selected experiments, the cells were preincubated (30 min, 37 ◦C) with or without
actinomycin D (1 µg/mL) and then stimulated (16 h, 37 ◦C) with LPS or IL-4. At the end of
incubation, the supernatants were collected and stored at −80 ◦C for subsequent ELISA
quantification of cytokines. Lysis of the cells in the plates was carried out by using 0.1%
Triton X-100 for total protein quantification by a Bradford-based assay (Bio-Rad, Segrate,
MI, Italy).

2.6. mRNA Extraction and Quantitative PCR (qPCR) Analysis

Total RNA was isolated with RNeasy plus Minikit (Qiagen, Milan, Italy) following
manufacturer’s instructions. RNA quality and integrity was estimated with 2100 Agilent
Bionalyzer. Total mRNA was reverse-transcribed (high capacity cDNA RT, Life Technolo-
gies, Monza, Italy) and quantitative RT-PCR was carried out in Master Cycler realplex
(Eppendorf, Milan, Italy) using iTaqtm Universal SYBR® Green Supermix (Bio-Rad, Her-
cules, CA, USA). GAPDH was used as housekeeping gene to normalize Ct (cycle threshold)
values using the 2-∆Ct formula. The following primer pairs were used: GAPDH: forward,
5′-GTCCACTGGCGTCTTCAC-3′ and reverse, 5′-CTTGAGGCTGTTGTCATACTTC-3′; sfT-
SLP: 5′-CCGCCTATGAGCAGCCAC-3′ and 5′-CCTGAGTAGCATTTATCTGA-3′; lfTSLP:
5′-CACCGTCTCTTGTAGCAATCG-3′ and 5′-TAGCCTGGGCACCAGATAGC-3′; TSLPR:
5′-AGAGCAGCGAGACGACATTC-3′ and 5′-CCGGTACTGAACCTCATAGAGG-3′, IL-
7Rα: 5′-TCGCAGCACTCACTGACC-3′ and 5′-CGGGAAGGAGCCAATGAC-3′. Target-
specific primers for sfTSLP, lfTSLP, TSLPR, IL-7Rα, and GAPDH were produced and
purified by Custom Primers (Life Technologies, Milan, Italy).

2.7. ELISA Assays

Cytokine concentrations in supernatants and in cellular lysates were measured using
commercially available ELISA kits for TSLP (31.2–2000 pg/mL), CXCL8 (31.2–2000 pg/mL),
VEGF-A (31.3–2000 pg/mL), VEGF-C (109–7000 pg/mL), TNF-α (15.6–1000 pg/mL) (R&D
System, Minneapolis, MN, USA). Since the number of adherent macrophages and MDMs
can vary among the wells and different experiments, the results were normalized for the
total protein content in each well, determined in the cell lysates (0.1% Triton X-100) by
the Bradford assay. Cytokine release was expressed as pg of specific cytokine/mg of total
proteins [77].

2.8. Cytospin

Cytospin of HLMs (3 × 104 cells) was done in PBS containing 0.5% albumin by
centrifugation (800 rpm, 3 min, 22 ◦C) onto microscopic slides using a Shandon Cytospin
3 Cytocentrifuge (Shandon, Astmoor, UK). Slides were allowed to dry and stained with
Diff-Quich (Biomap, Agrate Brianza, MB, Italy).

2.9. Human Lung Tissue and HLM Immunohistochemistry

Immunohistochemistry was performed as previously described (Sorriento, Molecu-
lar Cancer 2019). Peritumoral and intratumoral lung tissues were fixed in 10% buffered
formalin and embedded in paraffin. Paraffin-embedded sections were processed for im-
munohistochemistry by peroxidase anti-peroxidase method using as primary antibody
rabbit polyclonal anti-TSLP antibody (1:100) (PA5-78610), rabbit polyclonal antibody anti-
TSLP Receptor (PA5-203789, or rabbit polyclonal antibody anti-IL-7Rα (1:100) (PA5-97870)
(Invitrogen, Thermo Fisher Scientific, Monza, Italy). The secondary antibody was a goat
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anti-rabbit IgG (GtxRb-003-DHRPX, ImmunoReagents, Milan, Italy). The peroxidase was
revealed in presence of 0.03% hydrogen peroxide and of the electron donor (2.5% di-
aminobenzidine), which becomes visible as a brown precipitate. For negative controls,
the primary antibody was omitted. Sections were then viewed with an Eclipse E1000
Fluorescence Microscope (Nikon) and acquired using Sigma Scan Pro software (Jandel).
For immunocytochemistry analysis in HLMs, cells were cytospinned on microscope slides
and processed as described above.

2.10. Statistical Analysis

The data are expressed as mean values ± SD of the indicated number of experiments.
Statistical analysis was performed in Prism 6 (GraphPad Software). Statistical analysis was
performed by Student’s T-test or one-way analysis of variance followed by Dunnett’s test
(when comparison was made against a control) or Bonferroni’s test (when comparison was
made between each pair of groups) by means of Analyse-it for Microsoft Excel, version
2.16 (Analyse-it Software, Ltd., Leeds, UK). Values of p < 0.05 were considered significant.

3. Results
3.1. TSLP Isoforms and TSLP Receptor in Human Lung Macrophages

In a series of six different experiments, we investigated whether highly purified pri-
mary human lung macrophages (HLMs) constitutively express the TSLP receptor (TSLPR
and IL-7Rα), the short-form TSLP (sfTSLP) and the long-form TSLP (lfTSLP) by different
techniques. HLMs constitutively expressed sfTSLP mRNA (Figure 1A), whereas lfTSLP
mRNA was barely detectable. Immunoreactive TSLP protein was detected in HLMs by
immunohistochemistry (Figure 1C) and in lysed cells by ELISA (2.36 ± 1.29 pg/mg of
protein). We also examined the constitutive expression of TSLPR and IL-7Rα by two dif-
ferent techniques. HLMs expressed low levels of TSLPR and IL-7Rα mRNAs (Figure 1A),
whereas TSLPR (Figure 1D) and IL-7Rα (Figure 1E) were detected by immunohistochem-
istry in HLMs. In particular, IL-7Rα showed higher positive staining compared to TSLPR.
Omission of the primary antibody resulted in negative staining (Figure 1B).

3.2. Effects of IL-4, IL-13, and LPS on TSLP System in HLMs

We have previously shown that LPS can activate HLMs to release several proinflam-
matory and immunomodulatory mediators [59,75]. TH2-like cytokines, IL-4 and IL-13, can
synergize with LPS in several systems [16]. In a series of six different experiments, we
evaluated the effects of incubation (16 h, 37 ◦C) of IL-13 (10 ng/mL) and IL-4 (10 ng/mL),
alone or in combination, and of LPS (100 ng/mL) on the release of total TSLP and of
CXCL8 from HLMs. LPS was a potent stimulus for the release of both TSLP (Figure 2A)
and CXCL8 from HLMs (Figure 2B). IL-4, but not IL-13, induced the release of TSLP
compared to control. Both IL-4 and IL-13 did not increase the release of CXCL8 from
HLMs (Figure 2B). The combination of IL-4 plus IL-13 did not increase the release of TSLP
induced by IL-4 (Figure 2A). IL-4 plus IL-13 had no effect on CXCL8 production from
HLMs (Figure 2B). In selected experiments, preincubation (30 min, 37 ◦C) of HLMs with
actinomycin D (1 µg/mL), a transcription inhibitor [78], completely blocked LPS- and
IL-4-induced TSLP release from HLMs (data not shown), suggesting that these stimuli
caused the de novo synthesis of TSLP.
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Figure 1. Constitutive expression of TSLP system in human lung macrophages (HLMs). The consti-
tutive expression of sfTSLP, lfTSLP, TSLPR and IL-7Rα mRNAs was evaluated by quantitative RT-
PCR in highly purified HLMs (4.5 × 106 cells/well) (A). Data are mean ± SD of 6 independent exper-
iments obtained from different patients. Cytocentrifuge preparations of HLMs were immunohisto-
chemically stained for TSLP (C), TSLPR (D), and IL-7Rα (E) with specific primary antibodies or in 
absence (B) of primary antibody (CTRL) as described in Materials and Methods. Microscope mag-
nification 60×. Results are representative of 6 independent experiments obtained from different pa-
tients. * p < 0.01 when compared to lfTSLP, TSLPR, IL-7Rα. px: pixels. 
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Figure 1. Constitutive expression of TSLP system in human lung macrophages (HLMs). The constitu-
tive expression of sfTSLP, lfTSLP, TSLPR and IL-7Rα mRNAs was evaluated by quantitative RT-PCR
in highly purified HLMs (4.5× 106 cells/well) (A). Data are mean± SD of 6 independent experiments
obtained from different patients. Cytocentrifuge preparations of HLMs were immunohistochemically
stained for TSLP (C), TSLPR (D), and IL-7Rα (E) with specific primary antibodies or in absence (B) of
primary antibody (CTRL) as described in Materials and Methods. Microscope magnification 60×.
Results are representative of 6 independent experiments obtained from different patients. * p < 0.01
when compared to lfTSLP, TSLPR, IL-7Rα. px: pixels.
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Figure 2. Effects of IL-13 and IL-4, alone or in combination, and of LPS on TSLP system in HLMs.
Highly purified HLMs (1.5 × 105 cells/well) were incubated (16 h, 37 ◦C) in the absence (CTRL) or in
the presence of IL-13 (10 ng/mL), IL-4 (10 ng/mL) or their combination, or LPS (100 ng/mL (A,B). At
the end of incubation, TSLP (A) and CXCL8 (B) proteins in supernatants were evaluated by ELISA. In
parallel experiments, HLM (4.5 × 106 cells/well) were incubated (6 h, 37 ◦C) in the absence (CTRL)
or in presence of IL-13 (10 ng/mL), IL-4 (10 ng/mL) or their combination, or LPS (100 ng/mL). At
the end of incubation, sfTSLP (C), lfTSLP (D), TSLPR (E), and IL-7Rα (F) mRNAs were determined
by quantitative RT-PCR. Data are mean ± SD of 6 independent experiments obtained from different
patients. * p < 0.01, ** p < 0.001 and § p < 0.0001 vs. CTRL.

We also evaluated the effects of IL-4, IL-13, alone or in combination, and of LPS on
TSLP isoforms, TSLPR, and IL-7Rα mRNAs in HLMs. LPS markedly increased the proin-
flammatory lfTSLP mRNA (Figure 2D), and to a lesser extent, sfTSLP mRNA (Figure 2C).
IL-13, IL-4, and their combination had no effect of sfTSLP mRNA expression (Figure 2C).
By contrast, IL-4, but not IL-13, upregulated lfTSLP mRNA (Figure 2D). The combination
of IL-4 plus IL-13 also increased lfTSLP mRNA (Figure 2D). In parallel experiments, LPS
upregulated only TSLPR mRNA (Figure 2E) but not IL-7Rα while IL-4 and IL-13, alone or
in combination, had no effects on TSLPR and IL-7Rα (Figure 2E,F).
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3.3. Effects of IL-4 and IL-13, Alone or in Combination, on Cytokine Release from
LPS-Activated HLMs

We next examined whether IL-4 or IL-13, alone or in combination, modified cytokine
production (i.e., TSLP and CXCL8) from LPS-activated HLMs. Figure 3A shows that
preincubation (10 min, 37 ◦C) of HLMs with IL-4 (10 ng/mL), but not IL-13 (10 ng/mL),
before the stimulation with LPS (100 ng/mL) significantly potentiated TSLP release from
HLMs. Although, IL-13 alone had no effect, the combination of IL-4 plus IL-13 further
enhanced the production of TSLP from LPS-activated HLMs (Figure 3A). Surprisingly,
IL-4 and the combination IL-4 plus IL-13 equally inhibited LPS-induced CXCL8 release
from HLMs (Figure 3B). IL-13 alone had no significant effect on the release of CXCL8 from
LPS-activated HLMs (Figure 3B).
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Figure 3. Effects of IL-13 and IL-4, alone or in combination, on TSLP and CXCL8 release from
LPS-activated HLMs. Highly purified HLMs (1.5 × 105 cells/well) were preincubated (10 min, 37 ◦C)
with IL-13 (10 ng/mL) or IL-4 (10 ng/mL), alone or in combination, before the stimulation with LPS
(100 ng/mL). TSLP (A) and CXCL8 (B) proteins in supernatants were evaluated by ELISA. Data are
mean ± SD of 6 independent experiments obtained from different patients. * p < 0.01, ** p < 0.001
and § p < 0.0001 vs. LPS alone.

3.4. TSLP System in Monocytes and Monocyte Macrophage-Derived (MDMs)

We also assessed the expression of TSLP system in another model of human macrophages
such as monocyte-derived macrophages (MDMs) and on their precursors, the peripheral
blood monocytes [59]. MDMs (Figure 4A) and freshly isolated monocytes (Figure 4B) con-
stitutively expressed sfTSLP mRNA. lfTSLP, TSLPR, and IL-7Rα mRNAs were essentially
undetectable in both MDMs and monocytes. Figure 4C shows that peripheral blood
monocytes and MDMs contained immunoreactive total TSLP protein evaluated by ELISA.

We next evaluated the effects of IL-4 (10 ng/mL) and IL-13 (10 ng/mL), alone or in
combination, and of LPS (100 ng/mL), on TSLP system in MDMs and monocytes. Similarly
to HLMs, both LPS and IL-4 induced the release of TSLP from both MDMs (Figure 5A) and
monocytes (Figure 5B), whereas IL-13 had no effect. Preincubation (10 min, 37 ◦C) of MDMs
and monocytes with IL-4, but not IL-13, enhanced TSLP production from LPS-activated
MDMs (Figure 5C) and monocytes (Figure 5D). The combination of two cytokines, IL-4
plus IL-13, did not enhance the activating property of IL-4 on MDMs (Figure 5C) and on
peripheral blood monocytes (Figure 5D).
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3.5. Effects of TSLP on the Release of Angiogenic and Lymphangiogenic Factors from HLMs

Our results show that HLMs constitutively express the TSLP receptors and contain
TSLP, which can be immunologically released. These results prompted us to investigate
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whether HLMs could be a target of TSLP. Therefore, in four independent experiments,
we assessed the effects of TSLP on the release of inflammatory, angiogenic, and lymphan-
giogenic mediators from HLMs. Figure 6 shows that incubation (24 h, 37 ◦C) of HLMs
with TSLP (5 ng/mL) induced the release of proinflammatory TNF-α (Figure 6A), angio-
genic (VEGF-A and ANGPT2) (Figure 6B,C), and lymphangiogenic (VEGF-C) mediators
(Figure 6D). The release of TNF-α, VEGF-C and ANGPT2 induced by TSLP was mediated
by the activation of gene transcription (Figure 6E,G,H). Interestingly, TSLP did not induce
the expression for VEGF-A mRNA (Figure 6H), suggesting that VEGF-A is released from
intracellular stores.
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(5 ng/mL). At the end of the incubation, TNF-α (A), VEGF-A (B), VEGF-C (C) and ANGPT2 (D), and concentrations in the
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3.6. Expression of TSLP System in Peritumoral and Intratumoral Human Lung Cancer

TSLP is a pleiotropic cytokine that has been implicated in a variety of immune dis-
orders, including different solid and hematologic tumors [2]. The role of TSLP in cancer
is rather controversial [2], although in the majority of tumors it plays a protumorigenic
role [33,41,44,45]. We evaluated the expression of TSLP, TSLPR, and IL-7Rα by immunohis-
tochemistry in peritumoral and intratumoral areas of human lung cancer (Figure 7). The
results of a typical experiment showed that the expression of TSLP, TSLPR and IL-7Rα
was higher in the intratumoral area compared to peritumoral area of lung cancer. Similar
results were obtained in five independent experiments.

To confirm and extend the previous observation, we evaluated the expression of
sfTSLP, lfTSLP, TSLPR, and IL-7Rα mRNAs in intratumoral and peritumoral areas of
human lung cancer. In a series of five different experiments, the anti-inflammatory sfT-
SLP mRNA was significantly more expressed in the intratumoral area compared to the
peritumoral region. The proinflammatory lfTSLP mRNA isoform was highly present in
both peritumoral and intratumoral tissues, but significantly more expressed in peritumoral
section (Figure 8A). TSLPR mRNA was equally distributed in peri- and intratumoral areas
(Figure 8A,B), whereas IL-7Rα mRNA was detected only in intratumoral lung tissue (Fig-
ure 8B). The concentration of immunoreative total TSLP protein was higher in intratumoral
lung cancer compared to peritumoral tissue (Figure 8C).
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Figure 8. Expression of sfTSLP, lfTSLP, TSLPR, and IL-7Rα mRNAs in peritumoral and intratumoral
human lung tissues. Peritumoral and intratumoral human lung tissues (2 mg) disrupted by homoge-
nization were lysed and 500 µL of 0.1% Triton X-100. sfTSLP and lfTSLP mRNAs were determined
by quantitative RT-PCR (A,B). Total TSLP was evaluated in lysed peritumoral and intratumoral
lung cancer tissue by ELISA (C). Data are mean ± SD of 5 independent experiments obtained from
different patients. * p < 0.01 and § p < 0.0001 vs. peritumoral lung tissue.
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4. Discussion

In the present study, we have demonstrated that the TSLP system is constitutively ex-
pressed in macrophages purified from lung tissue of patients with lung cancer in monocyte-
derived macrophages (MDMs) and in peripheral blood monocytes obtained from normal
donors. HLMs, MDMs, and monocytes constitutively expressed the anti-inflammatory
sfTSLP mRNA and contained immunoreative total TSLP protein. Incubation of HLMs with
TSLP induced the release of proinflammatory (TNF-α), angiogenic (VEGF-A and ANGPT2),
and lymphangiogenic (VEGF-C) factors. sfTSLP and lfTSLP were differentially expressed
in peritumoral and intratumoral human lung cancer tissues.

LPS was found a potent stimulus for the release of total TSLP protein from HLMs.
TSLP activated the cells by binding to a heterodimeric complex composed of TSLPR and
IL-7Rα. LPS induced an increase of gene expression of TSLPR from HLMs, but had no
effect on IL-7Rα expression. Interestingly, canonical TH2-like cytokines, IL-4 and IL-13,
differently modulated the release of TSLP from HLMs. While IL-4 was a potent stimulus
for the release of TSLP from HLMs, IL-13 alone was essentially ineffective. Moreover,
the combination of IL-4 plus IL-13 did not increase the activating property of IL-4. These
observations are rather interesting for several reasons. First, they suggest that IL-4 plays
a modulatory role on the release of TSLP from primary lung macrophages. These cells
are primarily involved in the pathogenesis of several lung inflammatory disorders [79],
including COPD [80], and lung cancer [81–83]. Therefore, the interaction between IL-4 and
TSLP could contribute to the development of these lung disorders.

IL-4, but not IL-13, synergistically potentiated the release of total TSLP protein induced
by LPS from HLMs. The latter observation extends previous results demonstrating that
IL-4 synergistically enhanced the production of TSLP induced by dsDNA from airway
epithelial cells [4]. Similarly, IL-4 synergized with LPS in the expression and production of
TSLP from dendritic cells (DCs) [16].

It is well established that low-grade inflammation plays a role in the switch between
dormancy and proliferation of metastatic cells [84,85]. LPS nasal instillation in mice bearing
dormant cancer cells caused awakening of tumor cells and cancer progression [86]. On the
other side, tumors displaying a TH2 signature have a worse prognosis than that of tumors
with TH1 predominant response [33,87]. De Monte and collaborators have demonstrated in
human pancreatic cancer that TSLP drives the differentiation of TH2 cells and is associated
with a worse prognosis [33]. Our results showing a synergistic interaction between IL-4
and LPS on the release of TSLP from human lung macrophages might have translational
relevance in the context of lung cancer.

It is presently unclear why IL-13, which shares many [88,89] but not all immunological
and biological effects with IL-4 [90,91], did not induce the release of TSLP from HLMs
and did not potentiate the activating property of LPS. IL-4 and IL-13 are encoded by adja-
cent genes that share many cis-acting and trans-activating regulatory elements, and they
signal through a partially shared receptor and adaptor system [92,93]. In particular, IL-4
activates the type I (IL-4Rα and γc) and type II (IL-4Rα and IL-13Rα1) receptors, whereas
IL-13 binds only to IL-13Rα1 chain of type II receptor and to the single chain receptor IL-
13Rα2 [88,90,91,94]. In addition, epigenetic and functional studies have suggested unique
and non-redundant roles for these cytokines in vivo and in vitro studies [95–97]. Therefore,
it is not surprising that the two cytokines exert distinct effects in certain immune cells [88].
Differences between IL-4 and IL-13 have been reported on the mouse macrophages respon-
siveness to TSLP [98]. Whatever the interpretation of these results, given the relevance of
TSLP [99–104] and TH2 cytokines in the pathogenesis of asthma [105,106], it is likely that
these observations have translational relevance contributing to clinical manifestations of
chronic inflammatory lung disorders.

Another unexpected finding of our study was the specificity of the synergistic in-
teraction between IL-4 and LPS on the production of TSLP from HLMs. To our surprise,
we found that IL-13 inhibited the release of CXCL8 from LPS-activated HLMs. Also in
these experiments the modulating effect of IL-4 diverged from that of IL-13. Moreover,
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the combination of IL-4 plus IL-13 did not enhance the inhibitory effect of IL-4 on CXCL8
release from lung macrophages. The opposing effects of IL-13 and of IL-4 on the release
of TSLP and CXCL8 from LPS-activated HLMs are intriguing but difficult to explain and
deserve further studies.

Peripheral blood monocytes and tissue macrophages represent two distinct branches
of the mononuclear system [52]. MDMs are derived from monocytes differentiated to
macrophages in the presence of G-CSF [59]. We have previously reported some biological
and immunological differences between primary HLMs and MDMs [59]. In this study,
HLMs, MDMs and peripheral blood monocytes contained immunoreactive TSLP and
constitutively expressed sfTSLP mRNA. In addition, in HLMs, MDMs and monocytes IL-4,
but not IL-13, and LPS induced the expression of sfTSLP mRNA and the release of total
TSLP. Peripheral blood monocytes and MDMs show some similarities with HLMs purified
from lung cancer with respect to the TSLP system. However, a better comparison of the
TSLP system should be performed among peripheral blood monocytes, MDMs and HLMs
obtained from the same lung cancer patients. Collectively, these results emphasize the
relevance of TSLP system in the human mononuclear phagocyte system.

The production of TSLP by HLMs suggested to us possible autocrine effects on these
cells which are the most representative immune cells in human lung parenchyma [71,107].
We found that HLMs incubated with TSLP released significant amount of proinflammatory
TNF-α and of several angiogenic (i.e., VEGF-A and ANGPT2) [108,109] and lymphangio-
genic molecules (i.e., VEGF-C) [110,111]. These findings were supported by the observation
that TSLP markedly increased the expression of TNF-α, VEGF-C, ANGPT2 mRNAs. VEGF-
A mRNA was not induced by TSLP, suggesting that this angiogenic factor is contained
in HLMs [75]. It has been previously shown that TSLP derived from human and mouse
tumors induced VEGF-A release from alveolar macrophages and enhanced metastasis
formation [30]. The release of angiogenic and lymphangiogenic mediators from TSLP-
activated macrophages might explain, at least in part, the protumorigenic role in TSLP in
several human cancers [31,33,35,40,41,44,45].

All the previously mentioned mediators play pivotal roles in tumor initiation and
progression, tumor angiogenesis, and the formation of metastasis [109,112]. These results
prompted us to investigate the expression of TSLP system in human lung cancer. Our
results provide evidence, to our knowledge for the first time, that TSLP isoforms, TSLPR,
and IL-7Rα were expressed in both intratumoral and peritumoral lung cancer tissues.
The concentration of total TSLP protein was higher in the intratumoral area compared to
peritumoral tissue. Interestingly, the proinflammatory lfTSLP mRNA isoform was highly
expressed in peritumoral microenvironment of human lung cancer. The latter findings
extend previous observations demonstrating that cancer cells can release TSLP [31,44,45] and
that tumor cells can express TSLPR and IL-7Rα [31]. Interestingly, the anti-inflammatory and
homeostatic sfTSLP was more expressed in intratumoral tissue compared to peritumoral area.

The expression of total TSLP protein has been previously described in human lung
carcinoma [46]. TSLP was overexpressed intratumorally compared to peritumoral lung
cancer tissue and benign lesions. Interestingly, the number of Foxp3+ Tregs in lung cancer
tissue was significantly increased compared to peritumoral lung tissue. Finally, the au-
thors found that TSLP activated dendritic cells favoring the differentiation and migration
of CD4+ CD25+ Treg cells. It is well established that Treg cells are increased in tumor
microenvironment [113,114]. Collectively, these results highlight a novel mechanism by
which TSLP, produced by tumor and immune cells (e.g., macrophages), might amplify an
immunosuppressive microenvironment in lung cancer.

The role of TSLP in cancer is still controversial [2,115]. Although the majority of exper-
imental [29–32] and human studies [33–46] have demonstrated a protumorigenic role for
TSLP, few groups have reported a tumor-suppressing role for TLSP in experimental [47–51]
and human cancer [48]. These apparently contrasting results could be explained by the use
of different experimental models, different types and stages of cancer, and many other
reasons. We would like to suggest that the two isoforms of TSLP (lf and sfTSLP), exerting
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opposing effects on various aspects of inflammation [1,13,14,116], could contribute, at least
in part, to explain some of these contrasting results. Further studies on the roles of TSLP
isoforms and their localization in peritumoral and intratumoral areas of tumors could help
clarify the TSLP role in different cancers.

TSLP is an upstream cytokine primarily released by airway epithelial cells in response
to a variety of environmental stimuli [1,117], initiating a range of downstream inflam-
matory pathways [117]. In patients with asthma, TSLP drives a T2 lung inflammatory
response [18,116], but it is also involved in non-T2 processes [117]. Our results indicate that
the TH2 cytokine IL-4 selectively induced the release of total TSLP from HLMs. In addition,
IL-4 and the combination of IL-4 plus IL-13 enhanced TSLP release from LPS-activated
HLMs. The interaction between a non-IgE-mediated stimulus, such as LPS, TH2 cytokines
and TSLP in human lung macrophages greatly extend the potential proinflammatory
roles of TSLP in inflammatory lung disorders. The relevance of TSLP-dependent TH2
inflammation in allergic disorders and in cancer has been recently emphasized [2,28].

This study has several limitations that should be pointed out. The in vitro experiments
were performed using primary macrophages obtained from lung parenchyma of patients
with lung adenocarcinoma. The possibility that the underlying disease may have affected
some of our results cannot be dismissed. HLMs, obtained from lung tissue, are in close
proximity to cancer cells. The in vivo exposure to tumor microenvironment may have
affected the expression of TSLP system and the functional activity of lung macrophages.
Moreover, recent studies have highlighted the extraordinary heterogeneity of human
lung macrophages [54,70,79]. Our experiments were performed using highly purified
macrophages obtained from mechanically dispersed lung parenchyma. We cannot ex-
clude the possibility that different clusters of human lung macrophages selectively express
TSLP receptor and/or preferentially express sfTSLP and lfTSLP. Similarly, three subsets of
human monocytes (classical, intermediate, and non-classical) have been phenotypically
identified [118]. We have provided preliminary evidence of the differential expression
of TSLPR in functionally discrete subsets of human monocyte [76]. Finally, there is com-
pelling evidence of the dichotomy of two isoforms of TSLP (sf and lfTSLP) in different
pathophysiological conditions [13,14,119]. In this study we measured total TSLP by ELISA
because specific antibodies to identify the two isoforms are not yet available. However, we
identified the two TSLP isoforms in HLMs, MDMs and monocytes, and in human lung
cancer tissue. Future studies should go deeper inside the biochemical and immunological
mechanisms of formation of different TSLP isoforms and their multifaceted roles in cancer
and in chronic inflammatory disorders.

5. Conclusions

In conclusion, primary human lung macrophages, MDMs, and peripheral blood mono-
cytes express the homeostatic sfTSLP, TSLPR, and IL-7Rα and contain immunoreactive
total TSLP protein. LPS and IL-4, alone or in combination, lead to an increase of lfTSLP
mRNA expression and the release of TSLP from HLMs and MDMs. TSLP induces the
release of several angiogenic and lymphangiogenic factors from HLMs. TSLP protein and
TSLP isoforms are found in intratumoral and peritumoral human lung cancer. Collec-
tively, our results indicate that the TSLP system, widely expressed throughout the human
mononuclear system, could be involved in chronic inflammatory disorders and lung cancer.
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CAF cancer-associated fibroblast
DC dendritic cell
FCS fetal calf serum
HBsAg hepatitis B surface Ag
HLM human lung macrophage
IL interleukin
IL-7Rα interleukin-7 receptor α
lfTSLP long form TSLP
LPS lipopolysaccharide
MDM monocyte-derived macrophage
PAP peroxidase anti-peroxidase
PBMC peripheral blood mononuclear cell
RT-PCR quantitative reverse transcriptase PCR
sfTSLP short form TSLP
TH2 T helper 2
TSLP thymic stromal lymphopoietin
TSLPR thymic stromal lymphopoietin receptor
VEGF vascular endothelial growth factor
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79. Braga, F.A.V.; Kar, G.; Berg, M.; Carpaij, O.A.; Polański, K.; Simon, L.M.; Brouwer, S.; Gomes, T.; Hesse, L.; Jiang, J.; et al. A
cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 2019, 25, 1153–1163. [CrossRef]

80. Allard, B.; Panariti, A.; Martin, J.G. Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to
Infection. Front. Immunol. 2018, 9, 1777. [CrossRef]

http://doi.org/10.4049/jimmunol.0902501
http://doi.org/10.15252/embr.201846927
http://www.ncbi.nlm.nih.gov/pubmed/30783017
http://doi.org/10.1189/jlb.3HI1214-584R
http://www.ncbi.nlm.nih.gov/pubmed/26467187
http://doi.org/10.3390/ijms20184413
http://www.ncbi.nlm.nih.gov/pubmed/31500315
http://doi.org/10.1016/j.ccr.2013.02.013
http://doi.org/10.1016/j.it.2011.12.001
http://doi.org/10.1016/j.immuni.2016.02.024
http://doi.org/10.1186/s12915-017-0392-4
http://www.ncbi.nlm.nih.gov/pubmed/28662662
http://doi.org/10.1165/rcmb.2017-0061OC
http://www.ncbi.nlm.nih.gov/pubmed/28421818
http://doi.org/10.1126/science.aau0964
http://www.ncbi.nlm.nih.gov/pubmed/30872492
http://doi.org/10.1038/s41577-019-0124-9
http://doi.org/10.1016/j.immuni.2013.11.019
http://doi.org/10.1038/s41586-020-2922-4
http://doi.org/10.1016/j.cell.2017.04.014
http://doi.org/10.1016/j.immuni.2019.03.009
http://www.ncbi.nlm.nih.gov/pubmed/30979687
http://doi.org/10.3390/ijms20010116
http://doi.org/10.1038/s41577-019-0127-6
http://doi.org/10.3390/biomedicines9050505
http://www.ncbi.nlm.nih.gov/pubmed/34064389
http://doi.org/10.1016/j.cyto.2020.155378
http://doi.org/10.4049/jimmunol.1601497
http://doi.org/10.3389/fimmu.2017.00443
http://www.ncbi.nlm.nih.gov/pubmed/28458672
http://doi.org/10.1002/jcp.1040760202
http://doi.org/10.1038/s41591-019-0468-5
http://doi.org/10.3389/fimmu.2018.01777


Cells 2021, 10, 2012 19 of 20

81. Li, Z.; Maeda, D.; Yoshida, M.; Umakoshi, M.; Nanjo, H.; Shiraishi, K.; Saito, M.; Kohno, T.; Konno, H.; Saito, H.; et al. The
intratumoral distribution influences the prognostic impact of CD68- and CD204-positive macrophages in non-small cell lung
cancer. Lung Cancer 2018, 123, 127–135. [CrossRef]

82. Singhal, S.; Stadanlick, J.; Annunziata, M.J.; Rao, A.S.; Bhojnagarwala, P.S.; O’Brien, S.; Moon, E.K.; Cantu, E.; Danet-Desnoyers,
G.; Ra, H.-J.; et al. Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung
cancer. Sci. Transl. Med. 2019, 11, eaat1500. [CrossRef] [PubMed]

83. Sumitomo, R.; Hirai, T.; Fujita, M.; Murakami, H.; Otake, Y.; Huang, C. M2 tumor-associated macrophages promote tumor
progression in non-small-cell lung cancer. Exp. Ther. Med. 2019. [CrossRef]

84. Pierce, B.L.; Ballard-Barbash, R.; Bernstein, L.; Baumgartner, R.N.; Neuhouser, M.L.; Wener, M.H.; Baumgartner, K.B.; Gilliland,
F.D.; Sorensen, B.E.; McTiernan, A.; et al. Elevated Biomarkers of Inflammation Are Associated With Reduced Survival Among
Breast Cancer Patients. J. Clin. Oncol. 2009, 27, 3437–3444. [CrossRef]

85. Barkan, D.; El Touny, L.H.; Michalowski, A.M.; Smith, J.A.; Chu, I.; Davis, A.; Webster, J.D.; Hoover, S.; Simpson, R.M.; Gauldie, J.;
et al. Metastatic Growth from Dormant Cells Induced by a Col-I–Enriched Fibrotic Environment. Cancer Res. 2010, 70, 5706–5716.
[CrossRef] [PubMed]

86. Albrengues, J.; Shields, M.A.; Ng, D.; Park, C.G.; Ambrico, A.; Poindexter, M.E.; Upadhyay, P.; Uyeminami, D.L.; Pommier, A.;
Küttner, V.; et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science
2018, 361, eaao4227. [CrossRef]

87. Aspord, C.; Pedroza-Gonzalez, A.; Gallegos, M.; Tindle, S.; Burton, E.C.; Su, D.; Marches, F.; Banchereau, J.; Palucka, A.K. Breast
cancer instructs dendritic cells to prime interleukin 13–secreting CD4+ T cells that facilitate tumor development. J. Exp. Med.
2007, 204, 1037–1047. [CrossRef]

88. Marone, G.; Granata, F.; Pucino, V.; Pecoraro, A.; Heffler, E.; Loffredo, S.; Scadding, G.W.; Varricchi, G. The Intriguing Role of
Interleukin 13 in the Pathophysiology of Asthma. Front. Pharmacol. 2019, 10, 1387. [CrossRef]

89. Ferrando, M.; Bagnasco, D.; Varricchi, G.; Bernardi, S.; Bragantini, A.; Passalacqua, G.; Canonica, G.W. Personalized Medicine in
Allergy. Allergy Asthma Immunol. 2017, 9, 15–24. [CrossRef] [PubMed]

90. Cao, H.; Zhang, J.; Liu, H.; Wan, L.; Zhang, H.; Huang, Q.; Xu, E.; Lai, M. Il-13/Stat6 Signaling Plays a Critical Role in the
Epithelial-Mesenchymal Transition of Colorectal Cancer Cells. Oncotarget 2016, 7, 61183–61198. [CrossRef] [PubMed]

91. Gandhi, A.N.; Bennett, B.L.; Graham, N.M.; Pirozzi, G.; Stahl, N.; Yancopoulos, G.D. Targeting Key Proximal Drivers of Type 2
Inflammation in Disease. Nat. Rev. Drug Discov. 2016, 15, 35–50. [CrossRef] [PubMed]

92. Munitz, A.; Brandt, E.; Mingler, M.; Finkelman, F.D.; Rothenberg, M.E. Distinct roles for IL-13 and IL-4 via IL-13 receptor 1 and
the type II IL-4 receptor in asthma pathogenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 7240–7245. [CrossRef]

93. Wilson, C.B.; Rowell, E.; Sekimata, M. Epigenetic Control of T-Helper-Cell Differentiation. Nat. Rev. Immunol. 2009, 9, 91–105.
[CrossRef]

94. Gour, N.; Wills-Karp, M. Il-4 and Il-13 Signaling in Allergic Airway Disease. Cytokine 2015, 75, 68–78. [CrossRef] [PubMed]
95. Finkelman, D.F.; Shea-Donohue, T.; Morris, S.C.; Gildea, L.; Strait, R.; Madden, K.B.; Schopf, L.; Urban, J.F., Jr. Interleukin-4- and

Interleukin-13-Mediated Host Protection against Intestinal Nematode Parasites. Immunol. Rev. 2004, 201, 139–155. [CrossRef]
96. Grünig, G.; Warnock, M.; Wakil, A.E.; Venkayya, R.; Brombacher, F.; Rennick, D.M.; Sheppard, D.; Mohrs, M.; Donaldson,

D.D.; Locksley, R.M.; et al. Requirement for IL-13 Independently of IL-4 in Experimental Asthma. Science 1998, 282, 2261–2263.
[CrossRef] [PubMed]

97. Perkins, C.; Wills-Karp, M.; Finkelman, F.D. Il-4 Induces Il-13-Independent Allergic Airway Inflammation. J. Allergy Clin. Immunol.
2006, 118, 410–419. [CrossRef]

98. Han, H.; Headley, M.B.; Xu, W.; Comeau, M.R.; Zhou, B.; Ziegler, S.F. Thymic Stromal Lymphopoietin Amplifies the Differentiation
of Alternatively Activated Macrophages. J. Immunol. 2013, 190, 904–912. [CrossRef]

99. Moorehead, A.; Hanna, R.; Heroux, D.; Neighbour, H.; Sandford, A.; Gauvreau, G.M.; Sommer, D.D.; Denburg, J.A.; Akhabir, L. A
Thymic Stromal Lymphopoietin Polymorphism May Provide Protection from Asthma by Altering Gene Expression. Clin. Exp.
Allergy 2020, 50, 471–478. [CrossRef]

100. Ying, S.; O’Connor, B.; Ratoff, J.; Meng, Q.; Mallett, K.; Cousins, D.; Robinson, D.; Zhang, G.; Zhao, J.; Lee, T.; et al. Thymic Stromal
Lymphopoietin Expression Is Increased in Asthmatic Airways and Correlates with Expression of Th2-Attracting Chemokines and
Disease Severity. J. Immunol. 2005, 174, 8183–8190. [CrossRef]

101. Ying, S.; O’Connor, B.; Ratoff, J.; Meng, Q.; Fang, C.; Cousins, D.; Zhang, G.; Gu, S.; Gao, Z.; Shamji, B.; et al. Expression and
Cellular Provenance of Thymic Stromal Lymphopoietin and Chemokines in Patients with Severe Asthma and Chronic Obstructive
Pulmonary Disease. J. Immunol. 2008, 181, 2790–2798. [CrossRef]

102. Gauvreau, G.M.; O’Byrne, P.M.; Boulet, L.-P.; Wang, Y.; Cockcroft, D.; Bigler, J.; Fitzgerald, J.M.; Boedigheimer, M.; Davis, B.E.;
Dias, C.; et al. Effects of an Anti-TSLP Antibody on Allergen-Induced Asthmatic Responses. N. Engl. J. Med. 2014, 370, 2102–2110.
[CrossRef]

103. Corren, J.; Parnes, J.R.; Wang, L.; Mo, M.; Roseti, S.L.; Griffiths, J.M.; van der Merwe, R. Tezepelumab in Adults with Uncontrolled
Asthma. N. Engl. J. Med. 2017, 377, 936–946. [CrossRef] [PubMed]

104. Lai, F.J.; Thompson, L.J.; Ziegler, S.F. Tslp Drives Acute Th2-Cell Differentiation in Lungs. J. Allergy Clin. Immunol. 2020, 146,
1406–1418.e7. [CrossRef] [PubMed]

http://doi.org/10.1016/j.lungcan.2018.07.015
http://doi.org/10.1126/scitranslmed.aat1500
http://www.ncbi.nlm.nih.gov/pubmed/30760579
http://doi.org/10.3892/etm.2019.8068
http://doi.org/10.1200/JCO.2008.18.9068
http://doi.org/10.1158/0008-5472.CAN-09-2356
http://www.ncbi.nlm.nih.gov/pubmed/20570886
http://doi.org/10.1126/science.aao4227
http://doi.org/10.1084/jem.20061120
http://doi.org/10.3389/fphar.2019.01387
http://doi.org/10.4168/aair.2017.9.1.15
http://www.ncbi.nlm.nih.gov/pubmed/27826958
http://doi.org/10.18632/oncotarget.11282
http://www.ncbi.nlm.nih.gov/pubmed/27533463
http://doi.org/10.1038/nrd4624
http://www.ncbi.nlm.nih.gov/pubmed/26471366
http://doi.org/10.1073/pnas.0802465105
http://doi.org/10.1038/nri2487
http://doi.org/10.1016/j.cyto.2015.05.014
http://www.ncbi.nlm.nih.gov/pubmed/26070934
http://doi.org/10.1111/j.0105-2896.2004.00192.x
http://doi.org/10.1126/science.282.5397.2261
http://www.ncbi.nlm.nih.gov/pubmed/9856950
http://doi.org/10.1016/j.jaci.2006.06.004
http://doi.org/10.4049/jimmunol.1201808
http://doi.org/10.1111/cea.13568
http://doi.org/10.4049/jimmunol.174.12.8183
http://doi.org/10.4049/jimmunol.181.4.2790
http://doi.org/10.1056/NEJMoa1402895
http://doi.org/10.1056/NEJMoa1704064
http://www.ncbi.nlm.nih.gov/pubmed/28877011
http://doi.org/10.1016/j.jaci.2020.03.032
http://www.ncbi.nlm.nih.gov/pubmed/32304753


Cells 2021, 10, 2012 20 of 20

105. Robinson, D.; Humbert, M.; Buhl, R.; Cruz, A.A.; Inoue, H.; Korom, S.; Hanania, N.A.; Nair, P. Revisiting Type 2-high and Type
2-low airway inflammation in asthma: Current knowledge and therapeutic implications. Clin. Exp. Allergy 2017, 47, 161–175.
[CrossRef]

106. Wenzel, S.E. Asthma Phenotypes: The Evolution from Clinical to Molecular Approaches. Nat. Med. 2012, 18, 716–725. [CrossRef]
107. Reyfman, P.A.; Walter, J.M.; Joshi, N.; Anekalla, K.R.; McQuattie-Pimentel, A.C.; Chiu, S.; Fernandez, R.; Akbarpour, M.; Chen,

C.-I.; Ren, Z.; et al. Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary
Fibrosis. Am. J. Respir. Crit. Care Med. 2019, 199, 1517–1536. [CrossRef]

108. Loffredo, S.; Bova, M.; Suffritti, C.; Borriello, F.; Zanichelli, A.; Petraroli, A.; Varricchi, G.; Triggiani, M.; Cicardi, M.; Marone, G.
Elevated plasma levels of vascular permeability factors in C1 inhibitor-deficient hereditary angioedema. Allergy 2016, 71, 989–996.
[CrossRef] [PubMed]

109. Cristinziano, L.; Poto, R.; Criscuolo, G.; Ferrara, A.L.; Galdiero, M.R.; Modestino, L.; Loffredo, S.; De Paulis, A.; Marone, G.;
Spadaro, G.; et al. IL-33 and Superantigenic Activation of Human Lung Mast Cells Induce the Release of Angiogenic and
Lymphangiogenic Factors. Cells 2021, 10, 145. [CrossRef]

110. Marone, G.; Rossi, F.W.; Pecoraro, A.; Pucino, V.; Criscuolo, G.; De Paulis, A.; Spadaro, G.; Marone, G.; Varricchi, G. HIV gp120
Induces the Release of Proinflammatory, Angiogenic, and Lymphangiogenic Factors from Human Lung Mast Cells. Vaccines 2020,
8, 208. [CrossRef] [PubMed]

111. Varricchi, G.; Loffredo, S.; Borriello, F.; Pecoraro, A.; Rivellese, F.; Genovese, A.; Spadaro, G.; Marone, G. Superantigenic Activation
of Human Cardiac Mast Cells. Int. J. Mol. Sci. 2019, 20, 1828. [CrossRef] [PubMed]

112. Varricchi, G.; Loffredo, S.; Galdiero, M.R.; Marone, G.; Cristinziano, L.; Granata, F.; Marone, G. Innate effector cells in angiogenesis
and lymphangiogenesis. Curr. Opin. Immunol. 2018, 53, 152–160. [CrossRef] [PubMed]

113. Ohara, M.; Yamaguchi, Y.; Matsuura, K.; Murakami, S.; Arihiro, K.; Okada, M. Possible involvement of regulatory T cells in tumor
onset and progression in primary breast cancer. Cancer Immunol. Immunother. 2008, 58, 441–447. [CrossRef]

114. Strauss, L.; Bergmann, C.; Szczepanski, M.J.; Gooding, W.E.; Johnson, J.T.; Whiteside, T.L. A Unique Subset of CD4+CD25highFoxp3+
T Cells Secreting Interleukin-10 and Transforming Growth Factor-β1 Mediates Suppression in the Tumor Microenvironment.
Clin. Cancer Res. 2007, 13, 4345–4354. [CrossRef] [PubMed]

115. Lo Kuan, E.; Ziegler, S.F. Thymic Stromal Lymphopoietin and Cancer. J. Immunol. 2014, 193, 4283–4288. [CrossRef]
116. Marone, G.; Spadaro, G.; Braile, M.; Poto, R.; Criscuolo, G.; Pahima, H.; Loffredo, S.; Levi-Schaffer, F.; Varricchi, G. Tezepelumab:

A novel biological therapy for the treatment of severe uncontrolled asthma. Expert Opin. Investig. Drugs 2019, 28, 931–940.
[CrossRef]

117. Gauvreau, G.M.; Sehmi, R.; Ambrose, C.S.; Griffiths, J.M. Thymic stromal lymphopoietin: Its role and potential as a therapeutic
target in asthma. Expert Opin. Ther. Targets 2020, 24, 777–792. [CrossRef]

118. Shi, C.; Pamer, E.G. Monocyte Recruitment During Infection and Inflammation. Nat. Rev. Immunol. 2011, 11, 762–774. [CrossRef]
119. Bjerkan, L.; Schreurs, O.J.F.; Engen, S.A.; Jahnsen, F.L.; Baekkevold, E.S.; Blix, I.J.S.; Schenck, K. The short form of TSLP is

constitutively translated in human keratinocytes and has characteristics of an antimicrobial peptide. Mucosal Immunol. 2015, 8,
49–56. [CrossRef]

http://doi.org/10.1111/cea.12880
http://doi.org/10.1038/nm.2678
http://doi.org/10.1164/rccm.201712-2410OC
http://doi.org/10.1111/all.12862
http://www.ncbi.nlm.nih.gov/pubmed/26873113
http://doi.org/10.3390/cells10010145
http://doi.org/10.3390/vaccines8020208
http://www.ncbi.nlm.nih.gov/pubmed/32375243
http://doi.org/10.3390/ijms20081828
http://www.ncbi.nlm.nih.gov/pubmed/31013832
http://doi.org/10.1016/j.coi.2018.05.002
http://www.ncbi.nlm.nih.gov/pubmed/29778674
http://doi.org/10.1007/s00262-008-0570-x
http://doi.org/10.1158/1078-0432.CCR-07-0472
http://www.ncbi.nlm.nih.gov/pubmed/17671115
http://doi.org/10.4049/jimmunol.1400864
http://doi.org/10.1080/13543784.2019.1672657
http://doi.org/10.1080/14728222.2020.1783242
http://doi.org/10.1038/nri3070
http://doi.org/10.1038/mi.2014.41

	Introduction 
	Materials and Methods 
	Reagents and Buffers 
	Isolation and Purification of Human Lung Macrophages (HLMs) 
	Flow Cytometry 
	Isolation of Monocytes and Differentiation of MDMs 
	Cell Incubations 
	mRNA Extraction and Quantitative PCR (qPCR) Analysis 
	ELISA Assays 
	Cytospin 
	Human Lung Tissue and HLM Immunohistochemistry 
	Statistical Analysis 

	Results 
	TSLP Isoforms and TSLP Receptor in Human Lung Macrophages 
	Effects of IL-4, IL-13, and LPS on TSLP System in HLMs 
	Effects of IL-4 and IL-13, Alone or in Combination, on Cytokine Release from LPS-Activated HLMs 
	TSLP System in Monocytes and Monocyte Macrophage-Derived (MDMs) 
	Effects of TSLP on the Release of Angiogenic and Lymphangiogenic Factors from HLMs 
	Expression of TSLP System in Peritumoral and Intratumoral Human Lung Cancer 

	Discussion 
	Conclusions 
	References

