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Abstract: Bone tissue in vertebrates is essential to performing movements, to protecting internal
organs and to regulating calcium homeostasis. Moreover, bone has also been suggested to contribute
to whole-body physiology as an endocrine organ, affecting male fertility; brain development and
cognition; and glucose metabolism. A main determinant of bone quality is the constant remodeling
carried out by osteoblasts and osteoclasts, a process consuming vast amounts of energy. In turn,
clinical conditions associated with impaired glucose metabolism, including type I and type II diabetes
and anorexia nervosa, are associated with impaired bone turnover. As osteoblasts are required for
collagen synthesis and matrix mineralization, they represent one of the most important targets for
pharmacological augmentation of bone mass. To fulfill their function, osteoblasts primarily utilize
glucose through aerobic glycolysis, a process which is regulated by various molecular switches
and generates adenosine triphosphate rapidly. In this regard, researchers have been investigating
the complex processes of energy utilization in osteoblasts in recent years, not only to improve
bone turnover in metabolic disease, but also to identify novel treatment options for primary bone
diseases. This review focuses on the metabolism of glucose in osteoblasts in physiological and
pathophysiological conditions.
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1. Introduction

Understanding the interactions of bone and glucose metabolism has strongly been
brought to the fore within the last years. As a matter of fact, both are associated closely and
interact on multiple levels, and recent research has focused on the dynamic processes of
energy and substrate utilization in osteoblasts. In turn, bone tissue was suggested to also
act as an endocrine organ itself, releasing bioactive osteocalcin (OC) and thereby increasing
pancreatic beta-cell proliferation as well as insulin secretion [1]. Furthermore, insulin
levels correlate positively with bone remodeling markers, implicating a feed-forward
mechanism between osteoblast activity and metabolic control [2,3]. Bone underlies ongoing
transformation, and its quality mainly relies on the delicate balance between osteoblast and
osteoclast activity. In this respect, osteoblast dysfunction has been found to be caused by
calorie restriction in anorexia nervosa, and also by hyperglycemic states in diabetes [4,5].
Ongoing research and further investigation of the underlying molecular principles may
provide the basis for improved treatment of diabetes-induced bone fragility. This review
aims to summarize current knowledge on osteoblast and glucose metabolism, as well as
the most recent experimental and clinical data available, focusing on osteoblasts as a main
target for osteoanabolic drugs.
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2. The Osteoblast in Bone Physiology

Osteoblasts are cells of major importance in bone remodeling and glucose home-
ostasis. Together with bone-resorbing osteoclasts and bone matrix-embedded osteocytes,
they represent the main cellular components of skeletal tissue. The leading functions of
mature osteoblasts include the synthesis of collagen type I, the most abundant organic
matrix component in bone ensuring biomechanical stability and tensile strength. Unlike
osteoclasts, osteoblasts are derived from mesenchymal stem cells (MSCs), precursor cells
also giving rise to chondrocytes, adipocytes, myoblasts and fibroblasts [6,7]. Under the
influence of runt-related transcription factor (RUNX2) and osterix, MSCs differentiate into
pre-osteoblasts and eventually into osteoblasts (Figure 1).

Figure 1. Osteoblasts are derived from mesenchymal stem cells (MSCs), precursor cells also giving
rise to chondrocytes, adipocytes, myoblasts and fibroblasts. Osteoblasts aggregate along bone surfaces
to synthesize osteoid. Runt-related transcription factor (RUNX2) is one of the key transcription
factors required for osteoblastic differentiation and is highly expressed at both early and late stages
of differentiation. Osteocalcin (OC) produced by osteoblasts is expressed during bone mineralization.
Alkaline phosphatase (ALPL) represents the key enzyme for driving bone matrix mineral deposition.

RUNX2 is one of the key transcription factors required for osteoblastic differentiation.
It is synonymously known as core binding factor alpha1 (CBFA1) and was first described
in 1997 [8–11]. RUNX2 not only promotes the expression of genes encoding the main
collagen component (alpha-1 type I collagen; COL1A1) and the osteoblast-specific protein
osteocalcin (OC; BGLAP) in the osteoblast lineage, but is also essential for the transition
into an osteoblastic phenotype when expressed in fibroblasts. In a murine model, homozy-
gous deletion of RUNX2 leads to a complete lack of ossification, resulting in embryonic
lethality [10]. As OC expression is barely measurable in those mutant mice, a disruption of
early osteoblastic differentiation has been demonstrated [11]. Mice with a heterozygous
deletion of RUNX2 display impaired intramembranous ossification but lack any other
skeletal abnormalities [12]. Paradoxically, overexpression of RUNX2 leads to osteoblast
dysfunction with diminished quality of cortical bone and indicates a repressive function
on osteoblasts in late stages of differentiation [13]. Overall, good comparability between
human and murine RUNX2 expression exists [14], so that employment of in vivo and
murine primary osteoblasts in vitro represent adequate models for the investigation of
molecular principles underlying human bone diseases.
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Osterix, also known as transcription factor Sp7, drives intramembranous and endochon-
dral ossification through enhanced collagen type 1 and osteocalcin expression [15,16]. It
furthermore acts as a regulator of MSC fate, inhibiting chondrogenesis in favor of osteoge-
nesis [17]. A mouse strain with postnatal global knockout of osterix displays short limbs,
trabecular absence and fragile cortical bone accompanied by an accumulation of calcified car-
tilage [18]. An osteopenic bone phenotype was also found in postnatal conditional knockout
of osterix [19], confirming the strong impact of osterix on osteoblastic differentiation.

Osteoblastic alkaline phosphatase (ALPL) represents the key enzyme to drive mineral
matrix mineralization. The membrane-bound protein is encoded by ALPL, which is also a
direct target of RUNX2 [20]. ALPL hydrolyzes pyrophosphate into phosphate, which is
then incorporated in the bone matrix at the mineral deposition site. In osteoblastic precursor
cells, expression of ALPL correlates with the start of mineralization in a time-dependent
manner [21]. Cultures of calvaria-derived osteoblasts from ALPL-deficient mice form
organized nodules but fail to carry out the process of mineralization [22]. Overall, serum
ALPL levels correlate with osteoblastic differentiation and activity and are used to support
clinical diagnosis, as they are elevated in diseases with higher levels of bone remodeling,
such as Paget’s disease of bone and hyperparathyroidism. Reduced levels of ALPL are
observed not only in children with diabetes, but also in adults with diabetes-induced
osteopenia [23,24]. In hypophosphatasia, a rare hereditary disease caused by different loss-
of-function mutations of ALPL [25], inorganic pyrophosphate accumulates extracellulary.
The histopathological bone phenotype is determined by a reduced mineral density and
emulates the diseases rickets and osteomalacia, which are caused by a lack of vitamin D
and/or calcium and are characterized by bone deformities, reduced mineralization rates
and increased fracture risk [26,27]. Further clinical observations range from benign dental
disorders to lethal forms, depending on the specific mutation and correlating with the age
of onset [28,29]. Accordingly, idiopathically reduced serum ALPL activity is accompanied
by reduced bone turnover in otherwise healthy subjects [30].

Several regulator mechanisms ensure a balanced state of bone resorption and the
synthesis of new bone. For instance, osteoclasts secrete substances in a paracrine manner,
thereby recruiting osteoblast precursors to the site of bone resorption and stimulating
bone-forming osteoblasts [31,32]. Likewise, osteoblasts secrete receptor activator of nuclear
factor kappa b ligand (RANKL), which binds to the receptor activator of nuclear factor
kappa b (RANK) on osteoclast precursor cells and stimulates their differentiation into
osteoclasts. Osteoprotegerin (OPG), another glycoprotein secreted by osteoblasts, acts
as a soluble decoy receptor for RANKL, thereby inhibiting RANKL-induced osteoclast
differentiation and bone resorption to ensure a well-balanced state of bone resorption
and construction. Its expression is enhanced by RUNX2 in a direct manner [33]. In vitro
experiments demonstrate that OPG is further capable of inducing apoptosis of osteoclasts,
even though these effects have not been verified in vivo [34,35]. Once osteoblastic differen-
tiation commences, the RANKL/OPG ratio shifts towards OPG, enabling bone formation
without the counteracting effects of increased bone resorption [36]. After a life span of
around 3 months, osteoblasts either undergo apoptosis or become embedded into the bone
matrix, where they terminally differentiate into osteocytes without the ability to proliferate.
Osteocytes regulate phosphate homeostasis via secretion of fibroblast growth factor 23 in
an endocrine manner [37]. Furthermore, they adjust bone building activity to physical
activity through synthesis of sclerostin, as recently reviewed by Uda et al. [38].

3. Interactions between Glucose Homeostasis and Osteoblasts
3.1. Osteoblastic Glucose Receptors and Glucose Utilization

From an energetic point of view, bone remodeling is a costly process, and osteoblasts
primarily rely on glucose as their main carbon and energy source [39,40]. To facilitate
glucose uptake, osteoblasts express three of the four known members of the family of
glucose transporters (GLUT1-4), namely, GLUT1, GLUT3 and GLUT4. The energetic re-
quirements of osteoblast differentiation are met by a fast-forward mechanism between
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glucose transporter GLUT1 and the osteoblast transcription factor RUNX2. In particular,
higher levels of intracellular glucose inhibit proteasomal degradation of RUNX2. RUNX2
itself enhances GLUT1 expression by binding and activating the Glut1 promotor in a direct
manner, thereby facilitating glucose uptake and enhancing osteoblastic differentiation [41].
While the expression levels of GLUT1 and GLUT3 do not change significantly during
all stages of osteoblast differentiation, GLUT4 expression may increase up to five fold
in an insulin-dependent manner. In contrast, expression of GLUT2 is not detectable in
osteoblasts [42]. A homozygous deletion of GLUT1 in mice leads to embryonic lethality,
whereas mice with an osteoblast-specific deletion of GLUT1 exhibit reduced bone volume
with low levels of OC, as well as impaired glucose tolerance [41,43]. A global GLUT4 knock-
out model results in growth retardation and several other abnormalities most pronounced
in cardiac and adipose tissue [44]. In contrast, mice with osteoblast/osteocyte-specific
deletion of GLUT4 display endocrine anomalies comparable with those observed in mice
with osteoblast-specific GLUT1 inactivation. However, they do not exhibit an apparent
bone phenotype, confirming a direct role of GLUT1 rather than GLUT4 in osteoblasts [42].

After passive diffusion along a concentration gradient through GLUT receptors from
extracellular to intracellular, glucose molecules are subjected to aerobic glycolysis, and to
a lesser extent, subsequently enter the tricarboxylic acid (TCA) cycle, even under aerobic
conditions. In vitro studies and results from measuring metabolites of glycolysis and TCA
cycle in mice via radiolabeled glucose show that osteoblasts primarily rely on energy
generation through glycolysis rather than on the TCA cycle [45,46]. This unusual cellular
glucose utilization, called the Warburg effect, has primarily been observed in cancer cells,
where lactate is produced from glucose under replete oxygen conditions. Local oxygen
tensions in bone depend on the specific location and range between 10 to 60 mmHg, with
the lowest oxygen tension being observed in the bone marrow cavity [47]. In comparison,
brain microvascular environment of mice displays mean pO2 concentrations of around
33 mmHg [48]. Oxygen levels in the bone marrow cavity might therefore be considered as
rather hypoxic but still sufficient to generate ATP through completion of the TCA cycle [40].
During glycolysis, glucose is converted into pyruvate with a net profit of two molecules
of adenosine triphosphate (ATP). To maintain glycolysis, electron donor nicotinamide
adenine dinucleotide (NAD+) needs to be restored. Therefore, the end-product pyruvate is
converted into lactate, which then stabilizes hypoxia induced factor 1alpha (HIF1α) and
indirectly increases glycolysis using altered gene expression as well as a positive feed-
back loop through further induction of osteoblast differentiation via end-product lactate
(Figure 2, [49]). A mouse model with a specific deletion of von-Hippel–Lindau protein
in osteoblasts, resulting in the stabilization of HIF1α and thus hypoxic cell metabolism,
displays a high bone mass phenotype with reduced blood glucose levels, explained by a
massive induction of osteoblastic glycolysis [50]. Interestingly, this phenotype is indepen-
dent of the enhanced blood vessel formation, but susceptible to glycolytic suppression.
Regan et al. furthermore showed that HIF1α enters the nucleus to enhance the expression
of multiple target genes, including pyruvate dehydrogenase kinase 1, which then phospho-
rylates and inactivates pyruvate dehydrogenase, so that the transition from glycolysis into
the TCA cycle is blocked [51]. When cultured under hypoxia, mature osteoblasts display
elevated intra cellular and extracellular lactate levels and are able to uncouple glycolysis
from the TCA cycle, which is consistent with higher resistance and survival at low oxygen
levels and the observations mentioned beforehand [52]. These findings clearly indicate an
enhancing effect of hypoxia on glycolysis, even though therapeutic usage of the underlying
molecular mechanisms has not been established yet.

In accordance with the research carried out by Regan et al. [51], murine conditional
PDK1 knockout strains exhibit decreased bone mass and trabecular number [53,54]. Out of
the four isoenzymes PDK1-4, PDK2 increases predominantly during osteoblastic differenti-
ation but exacerbates the bone phenotype of an osteoporotic mouse model, as inhibition
of PDK2 reduced RANKL-mediated osteoclast activation and improved bone quality [55].
Similar effects have been observed in a different mouse model, where PDK4 deletion
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restored bone loss secondary to immobility [56]. These inconsistent findings may derive
from different functions of PDK isoenzymes in physiological and pathological states and
should be elaborated in future research.

Figure 2. An overview of osteoblastic glucose pathways and secreted products. Intracellular energy metabolism relies on
different feed-forward and negative feedback mechanisms. Abbreviations: LRP5 = low-density lipoprotein receptor-related
protein 5; FZD = frizzled; GLUT1-4 = glucose transporters 1-4; ATP = adenosine triphosphate; AMPK = 5’ AMP-activated
protein kinase; mTORC2 = mammalian target of rapamycin complex 2; TCA = tricarboxylic acid; (u)OC = (uncarboxylated)
osteocalcin; HIF1α = hypoxia induced factor 1alpha; ALPL = alkaline phosphatase; RUNX2 = runt-related transcription factor;
OPG = osteoprotegerin; RANKL = receptor activator of nuclear factor kappa b ligand; RANK = receptor activator of nuclear
factor kappa b; PDK = pyruvate dehydrogenase kinase; PDH = pyruvate dehydrogenase; LDH = lactate dehydrogenase.

The prominence of aerobic glycolysis in osteoblasts is indeed surprising, given the fact
that this pathway yields only two ATP molecules per glucose molecule, while the complete
oxidation of pyruvate through the TCA cycle yields 30–32 ATP molecules [57]. One
possible explanation could be an inhibitory effect of excessive ATP levels on osteoblastic
mineralization, which was observed at least in vitro [58]. Furthermore, aerobic glycolysis
consumes glucose at a faster pace and yields multiple glycolytic intermediates, which can
be used by osteoblasts through alternative pathways. In cancer cells, aerobic glycolysis
has been suggested to enhance cell proliferation through fast ATP production and the
generation of crucial metabolic intermediates required for active lipid and nucleotide
synthesis [59,60]. Similar mechanisms may be relevant in osteoblasts, which do not show
high proliferation rates in vivo, yet synthesize large amounts of matrix proteins requiring
carbon atoms derived from glycolysis. Moreover, aerobic glycolysis was suggested to be
associated with the active release of citrate, which is essential for the formation of apatite
nanocrystals in bone [61,62].

As in many other cells, the main glycolytic enzymes in osteoblasts are induced during
ATP depletion due to energy-consuming processes, such as cell differentiation and bone
formation. In the course of these metabolically challenging states, adenosine monophos-
phate activated protein kinase (AMPK) is phosphorylated and highly active [63]. A unique
characteristic of osteoblasts is the induction of glycolysis by the WNT ligand WNT3A,
which promotes its actions through activation of mammalian target of rapamycin com-
plex 2 (mTORC2). Radiolabeled tracing of glucose-derived CO2 showed that WNT3A
inhibits glucose from entering the TCA cycle and reduces levels of acetyl-CoA in the nu-
cleus through suppression of citrate levels. Consequently, histone acetylation is reduced
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and transcription factors such as RUNX2 can bind to the DNA [64,65]. As these results
were published recently and have yet not been replicated by other investigators, they
should be evaluated carefully. Paradoxically, WNT3A is also responsible for keeping an
undifferentiated MSC population and suppressed osteogenic differentiation in vitro [66].
These varying observations lack a profound explanation, even though different metabolic
phenotypes of the stromal ST2 cell line and multipotent human MSCs, which were used in
the corresponding experiments, might have an influence on the variability of results.

Several other mechanisms also increase aerobic glycolysis in osteoblasts. During early
osteoblast differentiation, insulin-like growth factor 1 (IGF1) enhances glycolysis through
activation of AMPK, whereas downregulation of AMPK with concomitant activation of
mTORC2 is observed in later stages of differentiation [67]. Similarly, transforming growth
factor beta (TGFβ) binds to type I and II transmembrane receptors and increases intracellular
β-catenin, which then translocates into the nucleus and has been proposed to increase the
expression of glycolytic enzymes such as PDK1 and lactate dehydrogenase A [64,68,69].
While endogenous parathyroid hormone (PTH) stimulates bone resorption through increased
expression of RANKL and degradation of RUNX2 [70], clinically employed intermittent
injections of PTH (iPTH) to boost bone formation enhance IGF1 as well as TGFβ signaling
pathways and thus increase osteoblastic glucose uptake and aerobic glycolysis [71–73].

3.2. Osteoblastic Effects on Overall Glucose Homeostasis

In the past few years, accumulating evidence of bone interference with overall glucose
homeostasis has emerged. Osteoblasts secrete the hormone osteocalcin (OC), which is
encoded by BGLAP [2]. In humans, the level of OC secretion depends on age and sex,
as indicated by research carried out in the early nineties [74]. OC has various effects,
depending on the state of carboxylation. When carboxylated, OC acts locally in the bone
and increases the amount of calcium and hydroxyapatite stored, at least in vitro [75]. In
diabetes, serum levels of OC increase during anti-diabetic treatment with good glycemic
control [76]. Levels of uncarboxylated OC (uOC), which has multiple endocrine functions,
are increased in a balanced diet with a caloric deficit of 500 kcal/day and correlate inversely
with body fat [77,78]. Concerning glucose homeostasis, uOC increases pancreatic insulin
secretion and adiponectin liberation from adipocytes, even though the clinical interactions
of both are yet to be determined [79]. It is most likely released in an osteoclast-dependent
manner, as glucose tolerance varies with osteoclast activity and uOC levels were increased
up to 10-fold in mice with an OPG deletion [80]. In vivo experiments demonstrated that
uOC-treatment prevents wild-type mice from developing diabetes when fed a high-fat
diet [81]. Many in vitro studies identified G protein-coupled receptor family C member A
(GPRC6A) as an uOC-receptor on pancreatic beta-cells, adipocytes and Leydig-cells of the
testis [82–84]. In response to endogenous uOC stimulation, the release of adiponectin from
adipocytes and pancreatic insulin secretion is mediated in both cases through activation of
extracellular signal-regulated kinases (ERKs). While pancreatic insulin secretion involves
synergistic activity of the Ras/Raf/MEK signaling pathway [85], adiponectin expression in
adipocytes is enhanced through transcription factor PPARγ, which is activated through
interaction with the cAMP responsive element, which also relates to B-Raf/MEK/ERK
signaling [84]. Stimulation of GPRC6A via exogenous uOC admission leads to a synergistic
increase in glucagon-like peptide-1 and subsequently decreased serum glucose levels in
wild-type mice [86]. Reduced insulin secretion in response to uOC stimulation as well as
overall decreased insulin levels have been observed in a conditional knockout of GPRC6A
in pancreatic β-cells [87]. Inconsistently, mice with a global deletion of GPRC6A have
been found to display normal bone and energy metabolism [88]. Details of the interaction
and perhaps the involvement of different uOC receptors have not been confirmed yet and
should be targeted in future research.
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The uOC signaling pathway is of utmost interest, as it represents the only investigated
effect of osteoblasts on glucose homeostasis. However, recent evidence indicates that other
molecules apart from uOC might contribute to the interplay of bone and glucose [89]. In a
murine model with an osteoblast-specific deletion of β-catenin, exogenous application of
uOC failed to restore a normal energy metabolism, while treatment with OPG normalized
all endocrine abnormalities [90]. In addition, a Bglap knockout strain without endocrine
alterations has been reported [91,92]. Further research is needed to clarify whether an uOC
supplementation could be of therapeutic interest or not.

4. Disruption of Osteoblast Function in Anorexia Nervosa and Diabetes

When global energy supply is nontransiently below average requirements, as seen
in anorexia nervosia (AN), devastating disturbances of hormonal balance and bone loss
occur. Most clinical studies found patients with AN to display lower levels of IGF1
and reduced serum levels of OC [5,93]. Inconsistently, in a separate case-control study,
increased OC was measured in patients with AN [94]. These incoherent results may
be caused through the inclusion of individuals with a binge eating/purging type in the
study of Urano et al. [94], whereas Legroux-Gérot et al. [5] and Galusca et al. [93] only
included individuals with the restricted form of AN in their studies. In vitro, depletion
of glucose in the culture medium of human osteoblasts decreased ALPL activity and OC
levels two-fold, whereas collagen expression was diminished by 20% [3]. Investigating
the impact of energy depletion on bone turnover in mice, levels of OC in wildtype mice
decreased with starvation, while only leptin-deficient mice displayed increased OC [95].
Furthermore, a shift from osteogenesis to adipogenesis in bone marrow was observed in
an energy-deficiency model, similar to what is observed in patients with AN [96]. Overall,
calorie restriction elicits multifactorial and complex processes locally and systemically and
interferes with bone remodeling on multiple levels and requires further study. In summary,
a tendency towards decreased osteoblastic markers under starvation, probably due to lack
of substrates for energy generation, is found in literature. Increasing body weight to restore
bone quality is therefore a crucial component of managing AN.

Diabetes is defined as a lack of insulin action with systemic consequences, including
hyperglycemia, ketonuria and acidosis. The lack of insulin can be either due to an autoim-
mune dysfunction resulting in disruption of pancreatic beta-cells with a complete lack of
insulin in diabetes mellitus type 1 (DM1) or due to insulin insensitivity in diabetes mellitus
type 2 (DM2), most commonly in combination with the metabolic syndrome (obesity, dys-
lipidemia, hypertension and hyperglycemia). DM2 is diagnosed and monitored through
measurement of serum HbA1c, which represents the fraction of glycolyzed hemoglobin
and reflects blood sugar values of the last two to three months [97]. DM2 is widespread
among populations of industrial countries, and its prevalence is increasing. In a matched
cohort study, DM2 treatment with exogenous insulin surprisingly increases overall fracture
risk up to 34% [98]. As diabetic patients display normal to high bone mineral density, the
observed effects do not necessarily result from bone loss per se, but may as well be caused
by hypoglycemic states with reduced alertness and increased risk of falling in addition to
polyneuropathy. In accordance with that, HbA1c values lower than 6.5% were associated
with a higher fracture risk in 650,000 male patients with diabetes [99].

Another crucial approach to understanding diabetes-induced bone fragility is given by
the accumulating evidence on diminished bone quality in DM. Even though renal failure
in advanced diabetic disease impairs hydroxylation of vitamin D into the active form
calcitriol, osteoblast impairment most likely results from hyperglycemic metabolic states,
which start to occur at earlier stages of the disease. Two independent clinical trials showed
that osteoblastic ALPL secretion, OC levels and collagen synthesis are significantly lower
in chronic hyperglycemia, and also after glucose-loading in healthy individuals [100,101].
In vitro and in vivo experiments found these effects to be accompanied by an impairment
of osteoblastic Ca2+ uptake, as mineralized nodules display reduced calcium content, and
femoral calcium levels are decreased by tendency in rodents with diabetes [102,103]. Nev-
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ertheless, human osteoblast cultures display varying responses towards a hyperglycemic
environment in vitro. On the one hand, long-term incubation with a glucose concentration
of 24 mM, as seen in DM, enhanced osteoblastic expression of OC and increased levels of
RANKL, whereas levels of OPG decreased [104]. On the other hand, short-term incubation
under hyperglycemia resulted in reduced ALPL, OC and collagen levels [3]. In rodent
primary osteoblasts, hyperglycemic conditions led to increased proliferation but accounted
for decreased calcium uptake as well, consistent with less matrix mineralization and dimin-
ished bone quality, respectively [105]. In in vitro studies with RUNX2 overexpression in
osteoblasts, restored osteoblast differentiation and enhanced matrix mineralization were ob-
served in a hyperglycemic environment [106]. Without exogenous manipulation, however,
RUNX2 transcriptional activity is inhibited through post-transcriptional O-GlcNAcylation.
Subsequently, osteoblastic differentiation and collagen synthesis are diminished under
hyperglycemic conditions [107].

Osteoblastic responses towards hyperglycemia are so far best researched in the im-
mortal preosteoblastic cell line MC3T3-E1. Here, the expression of RANKL increased up
to 10 fold and OPG up to 30 fold under incubation with high glucose levels, indicating a
suppressive effect on osteoclasts and overall bone remodeling [4]. While Wu et al. [108]
showed that short-term incubation with glucose levels higher than 15 mM increase ALPL
mRNA expression, Pahwa et al. [109] observed decreased ALPL activity. In yet another
study, short-term hyperglycemia resulted in higher levels of collagen type I but reduced
the secretion of OC [110]. Likewise, the results of long-term incubations with high glucose
concentrations vary. Decreased osteoblastic ALPL activity, OC secretion and collagen
synthesis were observed upon exposure to 25.5 mM glucose chronically [111,112]. Inconsis-
tently, increased ALPL activity under incubation with 30 mM glucose was observed in a
different study [113]. Therefore, in vitro studies of osteoblastic gene expression within a
hyperglycemic environment display complex findings with astonishing variations, even if
parameters such as glucose concentration, start and duration of treatment and osteoblastic
cell type are taken into consideration (Figure 3). Interestingly, long-term treatment dis-
played two outliers with highly increased osteoblastic ALPL activity in comparison to
short-term treatment. This observation is consistent with the normal to high bone density
observed clinically in individuals with DM2. Nevertheless, diabetes represents a complex
process involving multiple organ systems, such as pancreatic beta cells, blood vessels,
neurons and bone. Even if in vitro experiments are partially qualified for investigation of
underlying molecular patterns, solid and reliable conclusions on clinically observed effects
cannot be drawn, and future research employing laboratory animals as well as large-scale
clinical trials will be indispensable for investigations of bone phenotype in diabetes.

On a molecular level, chronic hyperglycemia leads to an accumulation of advanced
glycation end-products (AGEs). Subsequently, reactive oxygen species (ROS) are generated
and reinforce oxidative stress [114]. AGEs and ROS are both toxic for osteoblast activity and
have been identified to account for osteoblast disruption in diabetes in various trials [115].
In vitro studies showed that AGEs increase apoptosis of osteoblasts and prevent MSCs
from differentiating into any kind of mature cell [116,117]. Further studies demonstrated
an inhibition of osteoblast activity with reduced levels of ALPL and a reduced mineraliza-
tion rate when incubated with AGE-modified molecules under normoglycemia, similarly
to high-glucose concentrations [118,119]. In a different study, differentiation of murine
stromal ST2 cells into osteoblasts was inhibited when incubated with AGEs, although
hyperglycemic conditions alone had no impact on the process of differentiation [120]. Un-
fortunately, in all studies endogenous levels of AGEs in osteoblasts and osteoblast-like cells
were not included, and values were given as “fold over control” compared to control group
without treatment. This encourages the assumption that osteoblasts display AGEs even
under physiological conditions, although this effect seems to take place at minor levels
and therefore might be neglectable. To exert their effects, AGEs bind to the receptor for
AGE (RAGE), which is expressed on MSCs and osteoblasts. Stimulation of RAGE has been
found to inhibit the process of fracture healing in healthy and diabetic mice, as the area of
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regenerated bone decreased in either instance [121]. In vitro, osteoblastic AGE and RAGE
expression increases under hyperglycemic conditions [122]. In vivo, comparison between
diabetic rats and healthy controls showed a time-dependent increase of osteoblastic AGE,
RAGE and ROS levels in flow cytometric analysis along with a decrease of bone volume
and bone surface density in the diabetes group [123]. Evidence for higher bone resorption
through induction of osteoblastic RANKL, and subsequently enhanced osteoclastogenesis
was found as well [124].

Figure 3. Bar graph displaying relative ALPL fold changes in MC3T3-E1 osteoblastic cells when incubated under hyper-
glycemic conditions (>15 mM Glucose) compared to normoglycemia (=̂ 5.5 mM Glucose). Gray bars display the results of
short-term (1–4 days) incubation; orange bars display the results of long-term (2–4 weeks) incubation. ALPL fold changes
show, in summary, no significant differences, even though a tendency towards higher osteoblastic activity in chronic
hyperglycemia can be observed in vitro.

In a different diabetic mice model, immunochemistry analysis of bone revealed higher
oxidative damage alongside decreased bone formation rate and mineral density in diabetes-
induced osteopenia [125]. Furthermore, diabetic mice displayed increased osteoblast
apoptosis, which was found to be caused not only by AGE-dependent caspase activity, but
also through ROS-dependent p53 activity, which results in the release of proapoptotic factor
CytoC from damaged mitochondria into the cytosol [126]. Osteoblast markers, except for
ALPL, were reduced, and a shift from osteogenesis towards adipogenesis was noticed in the
presence of hyperglycemia-derived ROS in vitro [127]. Thus, pharmacologic approaches
targeting ROS and AGEs might improve overall bone quality.

5. Implications for Anti-Diabetic Drugs

The first-line treatment for DM2, metformin, belongs to the class of biguanides and im-
proves diabetes through inhibition of hepatic gluconeogenesis [128]. Further mechanisms,
including decreased intestinal glucose absorption and increased tissue insulin-sensitivity,
are still subject to research [129–131]. Positive effects on bone metabolism have been de-
scribed in the literature as well. In vitro studies showed that metformin restores normal
osteoblastic activity when cultured under hyperglycemic conditions and with AGEs, proba-
bly through inhibition of RAGE expression and induction of RUNX2 [132,133]. Comparable
results have been observed in clinical trials, where metformin treatment reduced AGE
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levels and diminished ROS [134,135]. Metformin is also capable of restoring bone volume
and stiffness in rodent models with estrogen-deficiency and energy-deficiency, respec-
tively [136,137]. In a study with over 14,000 patients enrolled, osteoporosis and vertebral
fractures are reduced up to 40% under treatment with metformin [138]. Metformin might
contributes to improved fracture healing as well, as the rates of nonunion after femoral
neck fractures are significantly lower in diabetic patients treated with metformin, even
when compared to healthy subjects [139]. Overall, numerus osteoprotective characteristics
of metformin were confirmed in vitro, in vivo and in clinical studies (for a detailed review,
please see Bahrambeigi et al. [140]); however, further mechanistic research is required to
decipher direct and indirect effects of metformin on bone cells.

Incretines, such as glucagon-like peptide 1 (GLP-1), increase the release of insulin in
response to higher blood glucose levels prostprandially and therefore represent another
important target for anti-diabetic treatment. In experimental settings, GLP-1 receptor ago-
nists have been found to increase osteoblastic differentiation of MSCs in a direct manner
and to inhibit osteoclastogenesis via MAPK pathways [141,142]. Furthermore, increased
trabecular volume as well as increased bone mineral density and mechanical strength was
observed in various in vivo studies which employed diabetic and osteoporotic rodent mod-
els treated with GLP-1 receptor agonists exenatide and liraglutide [143–145]. Clinical data
on GLP-1 receptor agonist treatment and bone phenotype is limited but has not shown any
association with increased fracture risk heretofore [146]. A related group of anti-diabetics,
dipeptidyl peptidase-4 (DPP4) inhibitors, were designed to prevent the degradation of
GLP-1 [147]. In vitro, treatment with DPP4 inhibitors increased osteoblastic differentia-
tion via upregulation of RUNX2, while no effects were observed when Wnt/β-catenin
signaling was suppressed [148]. Moreover, treatment of rodents with DPP4 inhibitors
increases trabecular bone mass and osteoblast activity in vivo, which has been suggested
to be conveyed through direct and indirect mechanisms of action [149]. As IGF1 is another
target substrate of DDP4 inhibitors, positive effects on bone quality might result from
a decreased RANKL/OPG ratio [150]. While high serum cholesterol indirectly affects
osteoblasts through oxidative damage and disruption of Wnt signaling [151], restored os-
teoblast function is observed when cholesterol reduced, for instance under treatment with
DDP4 inhibitors. Results of a clinical meta-analysis indicated reduced fracture risk upon
DPP4 inhibitor treatment [152]. In summary, DDP4 inhibitors mimic the pharmacologic
effects of GLP-1 receptor agonists on bone turnover. Bone phenotypical changes secondary
to anti-diabetic treatment with alpha glucosidase inhibitors, which augment levels of GLP-1
through distinct mechanisms, have not been investigated yet. Other recent anti-diabetic
approaches include bile acid sequestrants, which lower glucose through activation of
farnesoid X receptor (FXR). Even though a deletion of FXR decreased bone mineral density
in mice [153], clinical data on bone phenotype changes are missing to date.

In contrast, other anti-diabetic drug classes have shown to have neutral effects on
bone or even to diminish bone quality (Table 1). While sodium glucose co-transporter
(SGLT2) inhibitors neither increase nor decrease fracture risk clinically, as reviewed by
Donnan et al. [154], thiazolidinediones induce osteoclast differentiation via activation of
transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) and in-
crease fracture risk up to 60% in a retrospective study [155,156]. The underlying molecular
mechanisms of osteoclast activation include a PPARγ-dependent increase in expression of
proto-oncogene c-Fos, which is located downstream of RANK and ultimately results in en-
hanced osteoclast differentiation [157]. Furthermore, the dopamine D2 agonist bromocrip-
tine is used as anti-diabetic drug. Even though bromocriptine improved bone mineral
density in patients with prolactinoma [158], these results should be evaluated carefully
regarding the complex hormonal disturbances in pituitary disorders. In vitro, stimulation
of dopamine signaling led to inhibited osteoclastogenisis, implying negative effects on
bone quality [159]. Future research is required to address these findings in more detail and
to adequately evaluate potential adverse or beneficial effects of anti-diabetic medications
in patients with bone diseases.
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Table 1. Effects of antidiabetic drugs on bone: experimental and clinical observations.

Drug Class Effect on Bone Mechanism of Action Model/Study Type References

Biguanides (e.g., metformin)

- reduce osteoblastic cell death and
hyperglycemia-derived AGE and ROS levels

- increase osteoblastic ALPL activity

- inhibition of caspase-3 activity, prevent
overexpression of RAGE

in vitro [130,131]
reviewed by [139]

- reduce serum AGE levels
- clinical [132,133]

- restore bone stiffness and bone mineral
density in estrogen-deficient and
hypoglycemic rodent models

- rat/mouse [134,135]

- reduce fracture risk in diabetic patients
- decrease rates of nonunion in diabetic

individuals

- clinical [136,137]

GLP-1 receptor agonists

- induce MSC differentiation into osteoblasts,
inhibit adipogenesis

- inhibit bone resorption through osteoclast
suppression

- stimulate β-Catenin nuclear translocation
through PKA/β-Catenin and
PKA/PI3K/AKT/GSK3β signaling pathways

- inhibit NF-κB and MAPK signaling pathways

in vitro [140,141]

- restore bone volume ratio and bone mineral
density in diabetes and estrogen-deficiency

- rat/mouse [142–144]

- neutral effect on fracture risk - clinical [145]

DPP4 inhibitors

- induce MSC differentiation into osteoblasts - upregulation of RUNX2 in vitro [147]

- increase trabecular bone volume - target IGF1, lower serum cholesterol hence
oxidative damage and disruption of Wnt
signaling

rat [148]

- tendency towards reduced fracture risk - meta-analysis [151]
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Table 1. Conts.

Drug Class Effect on Bone Mechanism of Action Model/Study Type References

SGLT2 Inhibitors

- decrease in hip bone mineral density,
increased OC serum levels accompanied by
weight loss

- clinical [153]

- neutral effects on fracture risk
- clinical [154,155]

- partial preservation of trabecular bone
volume in diabetes-induced bone disease

- mouse [156]

Thiazolidinediones

- increase fracture risk compared to untreated
individuals and metformin users

- clinical [157]

- increase osteoclastic cathepsin K expression
- inhibit osteoblast differentiation, no changes

in ALPL activity

- PPARγ induced activation of c-Fos in vitro [158,159]
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6. Conclusions

Comparatively intensive research has been carried out in the last few years to define
the role of glucose metabolism in osteoblasts in health and disease. Even though not
all contributing factors and regulatory mechanisms have been discovered yet, there is
accumulating evidence that osteoblasts influence overall glucose homeostasis, and glucose
itself represents the main nutrient for osteoblasts. Remarkably, energy production in
osteoblasts is mainly mediated through the Warburg effect, which generates ATP from
aerobic glycolysis and is also observed in tumor cells. Inconsistent findings regarding the
hyperglycemic influence on osteoblasts remain a challenge, as clinically observed effects
are only partially substantiated by in vitro studies. Nevertheless, different approaches
towards improved osteoanabolic treatment have been found, and the repurposing of
already established anti-diabetic drugs, including metformin, can improve bone quality
in diabetic and perhaps also in healthy individuals. In this regard, further research on
the interactions of glucose metabolism in osteoblasts with whole-body physiology could
provide the basis for new therapeutic agents to improve bone quality and metabolic control.
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