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ABSTRACT

Motivation: Investigating the relation between the structure and
behavior of complex biological networks often involves posing the
question if the hypothesized structure of a regulatory network is
consistent with the observed behavior, or if a proposed structure
can generate a desired behavior.
Results: The above questions can be cast into a parameter search
problem for qualitative models of regulatory networks. We develop a
method based on symbolic model checking that avoids enumerating
all possible parametrizations, and show that this method performs
well on real biological problems, using the IRMA synthetic network
and benchmark datasets. We test the consistency between IRMA
and time-series expression profiles, and search for parameter
modifications that would make the external control of the system
behavior more robust.
Availability: GNA and the IRMA model are available at
http://ibis.inrialpes.fr/
Contact: gregory.batt@inria.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
A central problem in the analysis of biological regulatory networks
concerns the relation between their structure and dynamics. This
problem can be narrowed down to the following two questions:
(a) Is a hypothesized structure of the network consistent with the
observed behavior? (b) Can a proposed structure generate a desired
behavior?

Qualitative models of regulatory networks, such as (synchronous
or asynchronous) Boolean models and piecewise-affine differential
equation (PADE) models, have been proven useful for addressing
the above questions. The models are coarse-grained, in the sense
that they do not explicitly specify the biochemical mechanisms.
However, they include the logic of gene regulation and allow
different expression levels of the genes to be distinguished. They are
interesting in their own right, as a way to capture in a simple manner
the complex dynamics of a large regulatory network (Chaves et al.,
2009; Fauré et al., 2006; Monteiro et al., 2008; Saez-Rodriguez
et al., 2009). They can also be used as a first step to orient the
development of more detailed quantitative ODE models.

Qualitative models bring specific advantages when studying
the relation between structure and dynamics. In order to answer
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questions (a) and (b), one has to search the parameter space to check
if for some parameter values the network is consistent with the data
or can attain a desired control objective. In qualitative models, the
number of different parametrizations is finite and the number of
possible values for each parameter is usually rather low. This makes
parameter search easier to handle than in quantitative models, where
exhaustive search of the continuous parameter space is in general
not feasible. Moreover, qualitative models are concerned with trends
rather than with precise quantitative values, which corresponds to
the nature of much of the available biological data (Cantone et al.,
2009).

Nevertheless, the parametrization of qualitative models remains
a complex problem. For most models of networks of biological
interest the state and parameter spaces are too large to exhaustively
test all combinations of parameter values. The aim of this article is
to address this search problem for PADE models by treating it in the
context of formal verification and symbolic model checking (Clarke
et al., 1999; Fisher and Henzinger, 2007).

Our contributions are twofold. On the methodological side, we
develop a method that in comparison with our previous work
(Batt et al., 2005) makes it possible to efficiently analyze large
and possibly incompletely parametrized PADE models. This is
achieved by a symbolic encoding of the model structure, constraints
on parameter values and transition rules describing the qualitative
dynamics of the system. We can thus take full advantage of symbolic
model checkers for testing the consistency of the network structure
with dynamic properties expressed in temporal logics. The computer
tool GNA has been extended to export the symbolic encoding of
PADE models in the NuSMV language (Cimatti et al., 2002). In
comparison with related work (Barnat et al., 2009; Bernot et al.,
2004; Corblin et al., 2009; Fromentin et al., 2007), our method
applies to incompletely instead of fully parametrized models,
provides more precise results and the encoding is efficient without
(strongly) simplifying the PADE dynamics.

On the application side, we show that the method performs
well on real problems, by means of the IRMA synthetic network
and benchmark experimental datasets (Cantone et al., 2009). More
precisely, we are able to find parameter values for which the network
satisfies temporal-logic properties describing observed expression
profiles, both on the level of individual and averaged time series.
The method is selective in the sense that only a small part of the
parameter space is found to be compatible with the observations.
Analysis of these parameter values reveals that biologically relevant
constraints have been identified. Moreover, we make suggestions to
improve the robustness of the external control of the IRMA behavior
by proposing a rewiring of the network.
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Fig. 1. Synthetic IRMA network in yeast. (a) Schematic representation of the network constructed in Cantone et al. (2009). The green and blue boxes are
promoter and genes, and the yellow and red ovals are proteins and metabolites. (b) PADE model of IRMA, with state variables x, protein synthesis constants
κ, decay constants γ and thresholds θ. The input variable ugal refers to the presence of galactose (u̇gal =0). The subscripts Gal4, Swi5 , Ash1, Cbf1, Gal80 refer to
the proteins.

2 QUALITATIVE MODEL OF IRMA NETWORK

2.1 IRMA network
IRMA is a synthetic network constructed in yeast and proposed as
a benchmark for modeling and identification approaches (Cantone
et al., 2009). The network consists of five well-characterized genes
that have been chosen such that different kinds of interactions
are included, notably transcription regulation and protein–protein
interactions. The endogenous copies of the genes were deleted to
reduce crosstalk of IRMA with the regulatory networks of the host
cell. In order to further isolate the synthetic network from its cellular
environment, the genes belong to distinct, non-redundant pathways.

The structure of the IRMA network is shown in Figure 1a. The
expression of the CBF1 gene is under the control of the HO promoter,
which is positively regulated by Swi5 and negatively regulated by
Ash1. CBF1 encodes the transcription factor Cbf1 that activates
expression of the GAL4 gene. The GAL10 promoter is activated by
Gal4, but only in the absence of Gal80 or in the presence of galactose.
Gal80 binds to the Gal4 activation domain, but galactose releases
this inhibition of transcription. The GAL10 promoter controls the
expression of SWI5, whose product not only activates the above-
mentioned HO promoter, but also the ASH1 promoter controlling
the expression of the GAL80 and ASH1 genes.

The network contains one positive (Swi5/Cbf1/Gal4/Swi5)
and two negative (Swi5/Gal80/Swi5; Swi5/Ash1/Cbf1/Gal4/Swi5)
feedback loops. Negative feedback loops are a necessary condition
for the occurrence of oscillations (Thomas and d’Ari, 1990),
while the addition of positive feedback is believed to increase the
robustness of the oscillations (Tsai et al., 2008). Consequently,
for suitable parameter values IRMA might function as a synthetic
oscillator.

2.2 Measurements of IRMA dynamics
The behavior of the network has been monitored in response to
two different perturbations (Cantone et al., 2009): shifting cells
from glucose to galactose medium (switch-on experiments), and
from galactose to glucose medium (switch-off experiments). The
terms ‘switch-on’ (‘switch-off’) refer to the activation (inhibition)
of SWI5 expression during growth on galactose (glucose). For these
two perturbations, the temporal evolution of the expression of all the
genes in the network was monitored by qRT-PCR with good time
resolution.

Figure 2a represents the expression of all genes, averaged over
five (switch-on) or four (switch-off) independent experiments. In
the switch-off experiments (galactose to glucose), the transcription
of all genes is shut off. In the switch-on experiments, a seemingly
oscillatory behavior is present with Swi5 peaks at 40 and 180 min,
and Swi5, Cbf1 and Ash1 expressed at moderate to high levels
(Cantone et al., 2009).

The analysis of the individual time series reveals that in some
cases the gene expression profiles are indeed similar, at least
qualitatively, whereas in other cases notable differences exist (e.g.
the oscillatory behavior is not present in all switch-on time series,
see Fig. 2c). In the latter case, averaged expression levels may be a
misleading representation of the network behavior.

2.3 PADE model of IRMA network
We built a qualitative model of the IRMA dynamics using PADE
models of genetic regulatory networks. PADE models, originally
introduced in Glass and Kauffman (1973), provide a coarse-grained
picture of the network dynamics. They have the following general
form:

ẋi = fi(x)�
∑
l∈Li

κl
i bl

i(x)−γi xi, i∈[1,n] (1)

where x∈�⊂R
n≥0 represents a vector of n protein (or RNA)

concentrations. The synthesis rate is composed of a sum of synthesis
constants κl

i , each modulated by a regulation function bl
i(x)∈{0,1},

with l in an index set Li. A regulation function is an algebraic
expression of step functions s+(xj,θj) or s−(xj,θj) which formalizes
the regulatory logic of gene expression. θj is a so-called threshold
for the concentration xj . The step function s+(xj,θj) evaluates to 1
if xj >θj , and to 0 if xj <θj , thus capturing the switch-like character
of gene regulation (s−(xj,θj)=1−s+(xj,θj)). The degradation of a
gene product is a first-order term, with a degradation constant γi.

In the case of IRMA, we define five variables, each corresponding
to the total concentration of a protein, and an input variable denoting
the concentration of galactose. Notice that the measurements of the
network dynamics concern mRNAand not protein levels. We assume
that the variations in mRNA and protein levels are the same, even
though this may not always be the case. A similar approximation is
made in Cantone et al. (2009), where protein and mRNA levels are
assumed to be proportional.
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Fig. 2. Dynamic behavior of the IRMA network in response to medium shift perturbations. (a) Temporal profiles of averaged gene expression measured
with qRT-PCR during switch-off (left) and switch-on (right) experiments (data from Cantone et al., 2009). (b) Temporal logic encoding of the switch-off and
switch-on behaviors. The operator EFφ expresses the possibility to reach a future state satisfying φ, whereas the operator EXφ is used to require the existence
of an initial state satisfying φ. ugal low and ugal high denote the absence and presence of galactose, respectively. See Clarke et al. (1999) for more details on
the temporal logic CTL. Only changes greater than 5×10−3 units are considered significant. (c) Temporal gene expression profile in an individual switch-on
experiment showing a switch-off-like behavior.

The PADE model of the IRMA network is shown in Figure 1b.
Consider the equation for the protein Gal4. κ0

Gal4 is its basal

synthesis rate, and κ0
Gal4 +κGal4 its maximal synthesis rate when the

GAL4 activator Cbf1 is present (i.e. xCbf1 >θCbf1). Swi5 is regulated
in a more complex way. The expression of its gene is activated by
Gal4, but only when not both Gal80 is present and galactose absent
(which would lead to Gal4 inactivation by Gal80). The step-function
expression in Figure 1b mathematically describes this condition. The
IRMA PADE model is described in more detail in Section 1 of the
Supplementary Material.

The model resembles the ODE model in Cantone et al. (2009),
but notably approximates the Hill-type kinetic rate laws by step
functions. It thus makes the implicit assumption that important
qualitative dynamical properties of the network are intimately
connected with the network structure and the regulatory logic,
independently from the details of the kinetic mechanisms and precise
parameter values. Several studies have shown this assumption to be
valid in a number of model systems (Chaves et al., 2009; Davidich
and Bornholdt, 2008), although care should be exercised in deciding
exactly when modeling approximations are valid (Polynikis et al.,
2009).

To investigate for the possible existence of unknown interactions
between the synthetic network and the host, we would like to test by
means of the PADE model if the network structure and the regulatory
logic alone can fully account for the trends in the gene expression
profiles observed in Cantone et al. (2009). Because the addition of
galactose does not always lead to an effective activation of the IRMA
genes, we also search for parameter modifications that would render
the network response to galactose more robust.

3 SEARCH OF PARAMETER SPACE USING
SYMBOLIC MODEL CHECKING

3.1 Qualitative analysis of PADE models
The advantage of PADE models is that the qualitative dynamics
of high-dimensional systems are relatively easy to analyze, using

only the total order on parameter values rather than exact numerical
values (Batt et al., 2008; Edwards and Glass, 2006). The main
difficulty lies in treating the discontinuities in the right-hand side
of the differential equations, at the threshold values of the step
functions. Following Gouzé and Sari (2002), the use of differential
inclusions based on Filippov solutions has been proposed in Batt
et al. (2008) and implemented in the computer tool GNA (Batt et al.,
2005). Here, we recast this analysis in a form that underlies the
symbolic encoding of the dynamics below.

The key to our reformulation of the qualitative analysis of the
PADE dynamics is the extension of step functions s+ to interval-
valued functions S+, where

S+(xj,θj)=
⎧⎨
⎩

[0,0] if xj <θj
[0,1] if xj =θj
[1,1] if xj >θj

(2)

Because the step functions are not defined at their thresholds, we
conservatively assume that they can take any value between 0 and 1
[see Chaves et al. (2009) for a similar idea]. When replacing the
step functions by their extensions, the regulation functions bl

i(x)

become interval-valued functions Bl
i : Rn≥0 →{[0,0],[0,1],[1,1]},

and Equation (1) generalizes to the following differential inclusion
using interval arithmetic (Moore, 1979):

ẋi ∈Fi(x)�
∑
l∈Li

κl
i Bl

i(x)−γi xi, i∈[1,n] (3)

The solutions of (3) are for practical purposes the same as the
solutions of the differential inclusions defined in Batt et al. (2008)
(see Section 2 of the Supplementary Material).

The starting point for our qualitative analysis is the introduction
of a rectangular partition D of the state space �. This partition is

a rectangular grid defined by the threshold parameters �i ={θj
i | j∈

Ji}, where Ji is an index set, and the so-called focal parameters
�i ={∑l∈Bκl

i/γi |B⊆Li}, i∈[1,n]. Focal parameters are steady-
state concentrations towards which the system locally converges
in a monotonic way (Glass and Kauffman, 1973). For Gal4,
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we have �Gal4 ={θGal4} and �Gal4 ={0,κ0
Gal4/γGal4,(κ0

Gal4 +
κGal4)/γGal4}.

Interestingly, the partition has the property that in each domain
D∈D, the protein production rates are identical: for all x,y∈D, it
holds that Bl

i(x)=Bl
i(y)�Bl

i(D). As a consequence, the derivatives
of the concentration variables have a unique sign pattern: for all
x,y∈D, it holds that sign(Fi(x))=sign(Fi(y))⊆{−1,0,1}, where
sign(A)� {sign(a) |a∈A} denotes the signs of the elements in A (Batt
et al., 2008). Notice that this property is not obtained for less fine-
grained partitions used in related work (Barnat et al., 2009; Bernot
et al., 2004; Chaves et al., 2009; Corblin et al., 2009; Fauré et al.,
2006; Fromentin et al., 2007). It will be found critical for the search
of parametrized models of IRMA that satisfy the time-series data.

The above considerations motivate a discrete abstraction,
resulting in a state transition graph. In this graph, the states are the
domains D∈D, and there is a transition from a domain D to another
domain D′, if there exists a solution of the differential inclusion (3)
that starts in D and reaches D′, without leaving D∪D′. The state
transition graph defines the qualitative dynamics of the system, in
the sense that paths in this graph describe how the qualitative state
of the system evolves over time (Batt et al., 2008).

In Batt et al. (2008), three different types of transitions are
defined: internal, from a domain D to itself; dimension-increasing,
from a domain D to another, higher dimensional domain D′
(D⊆∂D′); and dimension-decreasing, from a domain D to a
lower dimensional domain D′ (D′ ⊆∂D), where ∂D denotes the
boundary of D in its supporting hyperplane. We reformulate
here the transition rules using the interval extensions of the
regulation functions. We introduce an interval-valued function Fi :
D×D→2R, where Fi(D,D′)=∑

l∈Li
κl

i Bl
i(D)−γi D

′
i, for D,D′ ∈

D. Fi(D,D′) represents the flow in D infinitely close to D′. In
order to evaluate Fi(D,D′), we use interval arithmetic (Moore,
1979). For instance, in a domain in which xSwi5 >θc

Swi5 and xAsh1 =
θAsh1, we have S+(xSwi5,θc

Swi5)=[1,1] and S−(xAsh1,θAsh1)=
[0,1], so that the differential inclusion for xCbf1 becomes [κ1

Cbf1 −
γCbf1 xCbf1, κ1

Cbf1 +κ2
Cbf1 −γCbf1 xCbf1]. We obtain the following

transition rule:

Proposition 1 (Dimension-increasing transition). Let D,D′ ∈D and
D⊆∂D′, that is, D lies in the boundary of D′. D→D′ is a dimension-
increasing transition iff

(1) ∀i∈[1,n], such that Di and D′
i coincide with a value in �i ∪

�i, it holds that 0∈Fi(D′,D), and

(2) ∀i∈[1,n], such that Di 
=D′
i, it holds that ∃α>0 such that

α∈Fi(D′,D)(D′
i −Di)

Condition 1 guarantees that solutions can remain in domains
located in threshold and focal planes, while Condition 2 expresses
that the direction of the flow in the domains (Fi(D′,D)) agrees
with their relative position (D′

i −Di). The proof of the rule and the
rules for other types of transition can be found in Section 3 of the
Supplementary Material.

It can be shown that exact parameter values are not needed for the
analysis of the qualitative dynamics of a PADE model: it is sufficient
to know the ordering of the threshold and focal parameters (Batt
et al., 2008). This comes from the fact that the sign of Fi, and hence
the transitions and the state transition graph, are invariant for regions

of the parameter space defined by a total order on �i ∪�i. We call
each such total order a parametrization of the PADE model.

3.2 A model-checking approach for parameter search
For large graphs like that obtained for IRMA (which has about
50 000 states), verifying the compatibility of the network structure
with an observed or desired behavioral property is impossible to
do by hand. This has motivated the use of model-checking tools
(e.g. Barnat et al., 2009; Batt et al., 2005; Bernot et al., 2004;
Fisher and Henzinger, 2007). For PADE models, each state in
the graph is described by atomic propositions whose truth values
are preserved under the discrete abstraction, such as the above-
mentioned derivative sign patterns. The atomic propositions are used
to formulate properties in a temporal-logic formula φ and model
checkers automatically test if the state transition graph T satisfies
the formula (T |=φ).

Because the number of possible parametrizations and the size of
state transition graphs rapidly grow with the number of genes, the
naive approach consisting in enumerating all parametrizations of a
PADE model, and for each of these generating the state transition
graph and testing T |=φ, is only feasible for the simplest networks.
We therefore propose an alternative approach, based on the
symbolic encoding of the above search problem, without explicitly
generating the possible parametrizations of the PADE models and
the corresponding state transition graphs. This enables one to exploit
the capability of symbolic model checkers to efficiently manipulate
implicit descriptions of the state and parameter space.

3.3 Symbolic encoding of PADE model and dynamics
We summarize the main features of the encoding. We particularly
focus on the discretization of the state space, which connects the
symbolic encoding to the mathematical analysis of PADE models,
and the use of the discretization for the computation of Fi(D′,D),
which is essential for determining state transitions.

We call C a discretization function that maps D∈D to a
set of unique integer coordinates, and C(D)=C(D1)×···×C(Dn).
Let mi be the number of non-zero parameters in �i ∪�i, i∈
[1,n]. Then C(Di)∈{0,1,...,2mi +1}, and more specifically, C(Di)∈
{0,2,...,2mi} if Di coincides with a threshold or focal plane, and
C(Di)∈{1,3,...,2mi +1} otherwise. More generally, C(S)={C(D) |
D⊆S}, for any set of domains S. Obviously, C can also be used
for the discretization of parameter values. Given the following
total order on the threshold and focal parameters of variable xGal4,
0<κ0

Gal4/γGal4 <θGal4 < (κ0
Gal4 +κGal4)/γGal4, we find C(0)=0

(by definition), C(κ0
Gal4/γGal4)=2, C(θGal4)=4 and C(κ0

Gal4 +
κGal4)/γGal4)=6.

The above discretization motivates the introduction of symbolic

variables D̂i, D̂′
i, θ̂

j
i , λ̂

j
i encoding C(Di), C(D′

i), C(θj
i ), C(λj

i),

respectively, with θ
j
i ∈�i and λ

j
i ∈�i. The different conditions

in Proposition 1 can be expressed in terms of these variables.
For instance, sign(D′

i −Di) becomes sign(D̂′
i −D̂i). In the case of

Fi(D′,D), multiplication by 1/γi does not change the sign, but gives
the more convenient expression

Fi(D,D′)/γi =
∑
l∈Li

(κl
i/γi)Bl

i(D)−D′
i (4)
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The first term in the right-hand side is simply an interval whose
upper and lower bounds are focal parameters, determined by the
regulation functions Bl

i(D). By redefining the step functions in terms
of the symbolic variables:

S+(Dj,θj)=
⎧⎨
⎩

[0,0] iff D̂j <θ̂j
[0,1] iff D̂j = θ̂j
[1,1] iff D̂j >θ̂j

(5)

each Bl
i(D) can be simply computed using interval arithmetic. This

allows the interval bounds of
∑

l∈Li
(κl

i/γi)Bl
i(D) to be computed,

which are simply given by variables λ̂
j
i . Subtracting D̂′

i allows the
sign of Fi(D′,D) and thus the conditions for a transition D→D′ to
be evaluated.

The specification of transitions in a symbolic way is the main
stumble block for the efficient encoding of the PADE dynamics,
especially when D is located on a threshold plane. In our previous
work (Batt et al., 2008), the computation of transitions required the
enumeration of an exponential number of domains surrounding D
(Barnat et al., 2009). The interval-based formulation proposed here
allows (the sign of) Fi(D,D′) to be computed in one stroke.

The implementation in a model checker such as NuSMV (Cimatti
et al., 2002) is straightforward with the above encoding. We
apply invariant constraints on the symbolic variables to exclude

all valuations of D̂i, D̂′
i, θ̂

j
i , λ̂

j
i that do not correspond to a valid

transition from D to D′. We apply three types of invariants. The
first ones constrain parameters to remain constant. The second ones
constrain D and D′ to be neighbors in the state space (e.g. D⊆∂D′
for dimension-increasing transitions). The last ones constrain the
relative position of Di and D′

i and the parameter order as stated
in the transitions conditions. For comparison with experimental
data, we also need to know the variations of concentrations of
gene products in each state. These correspond to the derivative sign
pattern, sign(Fi(D,D′)).

The initial states of our symbolic description include each possible

parametrization, that is, all possible values for θ̂
j
i and λ̂

j
i , and

transition towards all states D. In CTL, a temporal logic property
φ holds if all initial states satisfy φ. Therefore, by testing whether
¬φ holds, we verify the absence of a parametrization satisfying φ. A
counterexample to ¬φ thus directly returns a valid parametrization.
The current version 8 of GNA has been extended with export
functionalities to generate the symbolic encoding of PADE models
in the NuSMV language.

4 VALIDATION: CONSISTENCY OF IRMA
NETWORK WITH EXPERIMENTAL DATA

4.1 Temporal-logic encoding of observations
Even when genetic constructs are tested separately and assembled
with care, it is not obvious that a synthetic network will function in
its cellular context as initially planned. Here, we test the consistency
between the IRMA network and the experimental data by expressing
that for each condition, switch-on and switch-off, there must exist
an initial state of the system and a path starting from this state
along which the gene expression changes correspond to the observed
time-series data. For example, for the switch-off time-series we
encode that there exists an initial state where in absence of galactose
the expression of SWI5, CBF1, GAL4 and ASH1 decreases (in

the interval [0,10] min), and from which a state can be reached
where the expression of SWI5 decreases and the expression of
CBF1 increases (in the interval [10,20] min), etc. The generation of
this property φ1 from the experimental data leads to the temporal-
logic formula shown in Figure 2b. To disregard small fluctuations
due to biological and experimental noise, we considered changes
of magnitude less than 5×10−3 units not significant. Moreover,
we ignore in our specification the very first measurements (in the
interval [−10,0]), just before shifting cells to a new medium, as
they probably reflect network-independent effects (Cantone et al.,
2009).

The data presented in Cantone et al. (2009) for switch-on
and switch-off conditions are the average of 5 and 4 individual
experiments, respectively. As noticed in Section 2.2, considering
the averaged gene expression profile may be misleading. Asking for
consistency between our model and the result of each individual
experiment might therefore be more appropriate. This leads us to
define a second property φ2 similar to φ1 but requiring the existence
of nine paths in the graph, one for each of the observed behaviors
in the nine individual experiments. Although the information we
extract from the experimental data only concerns trends in gene
product levels, the accumulation of these simple observations leads
to fairly complex constraints. Property φ2 involves nearly 160
constraints on derivative signs.

4.2 Testing consistency of network with observations
We use our symbolic encoding of the PADE dynamics to test ¬φ1.
NuSMV returns false, meaning that a parametrization satisfying
the averaged time-series data exists (Section 3.3). The result was
obtained in 49 s on a laptop (PC, 2.2 GHz, 1 core, 2 GB RAM),
with an additional 100 s to provide the counterexample (Table 1).
When analyzing the corresponding parametrization, the thresholds
are mostly greater than the focal parameter for basal expression and
smaller than the focal parameter for upregulated expression, e.g.
κ0

Ash1/γAsh1 <θAsh1 < (κ0
Ash1 +κAsh1)/γAsh1. This is not surprising

as the focal parameters correspond to the lowest and highest possible
expression levels. The threshold at which Ash1 controls CBF1
expression is expected to lie between the two extremes. The only
exception is Gal80, for which it holds (κ0

Gal80 +κGal80)/γGal80 <

θGal80 . According to this constraint, Gal80 plays no role in the
system, since it cannot exceed the threshold concentration above
which it inhibits Swi5. This is interesting because it suggests that
the switch-off behavior may occur even without any inhibition by
Gal80, and consequently, in a galactose-independent manner.

The dynamic properties of the PADE model can be analyzed
in more detail by means of GNA. This shows the existence of
an asymptotically stable steady state corresponding to switch-
off conditions, with low Swi5, Gal4, Cbf1, Ash1 and Gal80
concentrations. In addition, GNA finds strongly connected
components (SCCs) consistent with the observed damped
oscillations in galactose media. However, the attractors co-exist
irrespectively of the presence or absence of galactose, revealing that
galactose does not necessarily drive the system to a single attractor
for this particular parametrization.

We also tested whether the above parametrization is consistent
with time-series data from the individual experiments. The model
checker shows that it does not satisfy the more constraining property
φ2. However, we do find another parametrization for which φ2 holds.
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Table 1. Summary of parametrizations found by checking the consistency of the IRMA structure with the observed and desired behaviors, expressed as
temporal-logic properties φ1, φ2 and φ3. The table shows the parametrization returned when testing the truth value of the property on the symbolically
encoded PADE model and gene expression profiles (left) and summarizes all parametrizations satisfying the properties (right).

Symbolic state space and symbolic parameter space Symbolic state space and fully parametrized models

Property Existence of Parametrizationa Number of Parametrizationa

parametrization parametrizations

φ1: averaged Yes
κ0

Swi5
γSwi5

<θ
g
Swi5 <θc

Swi5 <θa
Swi5 <

κ0
Swi5+κSwi5

γSwi5
64 See Section 4 of Supplementary Material

time-series (49 s) ∧ κ0
Gal80

γGal80
<

κ0
Gal80+κGal80

γGal80
<θGal80 (885 s)

φ2: individual Yes
κ0

Swi5
γSwi5

<θc
Swi5 <θa

Swi5 <θ
g
Swi5 <

κ0
Swi5+κSwi5

γSwi5
4

κ0
Swi5

γSwi5
<θc

Swi5 < (θa
Swi5,θ

g
Swi5)<

κ0
Swi5+κSwi5

γSwi5

time-series (131 s) ∧ κ0
Gal80

γGal80
<θGal80 <

κ0
Gal80+κGal80

γGal80
(2021 s) ∧ (

κ0
Gal80

γGal80
,θGal80)<

κ0
Gal80+κGal80

γGal80

φ3: single Yes θc
Swi5 <

κ0
Swi5

γSwi5
<θ

g
Swi5 <θa

Swi5 <
κ0

Swi5+κSwi5
γSwi5

7 θc
Swi5 <

κ0
Swi5

γSwi5
<θa

Swi5 <
κ0

Swi5+κSwi5
γSwi5

attractor (126 s) ∧ θGal80 <
κ0

Gal80
γGal80

<
κ0

Gal80+κGal80
γGal80

(1300 s) ∧ θGal80 <
κ0

Gal80+κGal80
γGal80

∧ (θg
Swi5 <

κ0
Swi5

γSwi5
∨θGal80 <

κ0
Gal80

γGal80
)

aAll parametrizations shown additionally include [κ1
Cbf1/γCbf1 < θCbf1 < (κ1

Cbf1 +κ2
Cbf1)/γCbf1] ∧ [κ0

Gal4/γGal4 < θGal4 < (κ0
Gal4 +κGal4)/γGal4] ∧ [κ0

Ash1/γAsh1 < θAsh1 <

(κ0
Ash1 +κAsh1)/γAsh1].

In this case, all thresholds are situated between the basal and
upregulated focal parameters.

4.3 Detailed analysis of valid parameter set
Our consistency tests only confirm that a parametrization exists for
which the structure of the network is consistent with the observed
behavior. However, it does not say if this is trivially the case (for
most parametrizations) or if the properties are selective (for only a
few parametrizations). To investigate this we exhaustively generated
all parametrizations, and tested for each of them properties φ1 and
φ2. Although the total number of parameter orderings is fairly large,
the exhaustive analysis is still manageable for networks of this size.

Out of the 4860 completely parametrized PADE models, we
found that only a surprisingly small subset is consistent with the
observations. For the averaged time series, only 64 parametrizations
are consistent, while for the individual time series this subset is
further reduced to 4 (Table 1). The properties extracted from the
data are thus quite selective.

The results for individual time series indicate that to be consistent
with the experimental data, the activation threshold of CBF1 by
Swi5 (θc

Swi5), must be smaller than the activation thresholds of ASH1

and GAL80 by Swi5 (θa
Swi5 and θ

g
Swi5). Interestingly, this result is

corroborated by independent measurements of promoter activities,
which show that the activation threshold for the ASH1 promoter,
controlling ASH1 and GAL80 expression, is nearly twice as high as
the one for the HO promoter controlling CBF1 expression (Table S1
of Cantone et al., 2009).

A second finding is that the dynamics of the system is consistent
with the experimental data even if θGal80 <κ0

Gal80/γGal80 , that
is when GAL80 is constitutively expressed above its inhibition
threshold. This indicates that an effective regulation of GAL80
expression by Swi5 is of little importance for the functioning of the
network. Indeed, it was found that GAL80 is not much responsive to

changes in Swi5 availability: Cantone et al. observed that a 6-fold
increase of SWI5 expression leads to only a negligible (1.08-fold)
increase in GAL80 expression levels (Fig. 4A in Cantone et al.,
2009).

5 RE-ENGINEERING: IMPROVING EXTERNAL
CONTROL BY GALACTOSE

In one experiment at least, the addition of galactose does
not significantly change the system’s behavior: a switch-off-like
response is observed in switch-on conditions. To obtain a more
robust external control of the system, we would like to ensure that
the addition of galactose drives the system out of the low-Swi5 state.

5.1 Temporal-logic specification of design objective
We start by specifying that in switch-off conditions the Swi5
concentration must eventually remain low, that is, equal to its
basal expression level κ0

Swi5/γSwi5. This is expressed in CTL as
AFAG xSwi5 low. In switch-on conditions, an oscillatory behavior
in the concentration of Swi5 is expected. It can be formulated by
means of the formula AGAF(xSwi5 inc ∧AF xSwi5 dec), requiring
that an increase in xSwi5 is observed infinitely often and necessarily
followed by a decrease in xSwi5. In addition to these two
basic requirements, we impose that in presence of galactose,
the Swi5 concentration cannot indefinitely stay low: ugal high→
AF¬xSwi5 low. We prefix these specifications so as to express the
possibility (EX) to reach the appropriate attractor from at least one
initial state, and the necessity (AX) to leave the switch-off steady
state for all initial states in switch-on conditions:

φ3 � EX(ugal high ∧AGAF(xSwi5 inc∧AF xSwi5 dec))
∧EX(ugal low∧AFAG xSwi5 low)
∧AX(ugal high→AF¬xSwi5 low)
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5.2 Parametrizations consistent with design objective
Using symbolic model checking, we test the feasibility of φ3. In
about 2 min, we find a valid parametrization (Table 1). For this
parametrization, in the presence of galactose GNAfinds two terminal
SCCs attracting the major part of the state space, and notably the
switch-off state. In the absence of galactose, although SCCs are
present, they are non-terminal and one can show that a unique
stable steady state with all genes off (i.e. corresponding to switch-off
conditions) is eventually always reached.

Recall that one of the time series in the switch-on conditions
contradicts our specification. It is consequently not surprising that
none of the parametrizations consistent with the experimental data
satisfies φ3. We searched for all valid parametrizations and found
that only 7 out of 4860 are consistent with our specification (Table 1).

A first surprising feature is that θc
Swi5 <κ0

Swi5/γSwi5: Swi5 must
always activate CBF1. Stated differently, this constraint simply
suggests to remove the regulation of CBF1 by Swi5. This can be
explained by a qualitative analysis of the system dynamics. In the
presence of galactose, we expect oscillations for Swi5. However, the
presence of Swi5 is required for the expression of CBF1 since the
HO promoter functions like an AND gate: HO is on if and only if
Swi5 is present and Ash1 is absent. So, if Swi5 is not permanently
present, Cbf1 and then Gal4 might disappear, causing the system to
converge to the switch-off state.

A second surprising feature is that the regulation of GAL80
by Swi5 should not be effective. Indeed θ

g
Swi5 <κ0

Swi5/γSwi5 or

θGal80 <κ0
Gal80/γGal80 means that either the GAL80 promoter

is always activated, or that the Gal80 concentration is always
sufficient to repress SWI5. As above, this suggests to remove an
interaction, namely the regulation of GAL80 by Swi5. Interestingly,
the demand for increased external control of the system leads us to
a simplified design in which two out of the three feedback loops
(Swi5/Cbf1/Gal4/Swi5 and Swi5/Gal80/Swi5) are removed.

6 DISCUSSION
We propose a method for efficient search of the parameter space of
qualitative models of regulatory networks, to investigate the relation
between structural and behavioral properties of these systems.

On the methodological side, the main novelty is that we develop
a symbolic encoding of the dynamics of PADE models, enabling
the use of highly efficient model-checking tools for analyzing
incompletely parametrized models. The symbolic encoding avoids
explicit state space generation and the enumeration of possible
parametrizations. We demonstrate that the proposed approach scales
up to relatively complex synthetic networks. Although developed for
PADE models, the main ideas underlying the approach carry over
to logical models (Thomas and d’Ari, 1990).

On the biological side, we show the practical relevance
of the approach by means of an application to the IRMA
network. The parameter constraints we obtained are precise,
have a clear biological interpretation, and are consistent with
independent experimental observations. Even when considering
complex dynamical properties, the search of the parameter space
takes at most a few minutes. Our results seem to confirm the intended
separation of IRMAfrom the host network, and suggest that to obtain
a more robust response to the addition of galactose, an effective
rewiring of the network would be needed.

In comparison with traditional quantitative approaches, the results
we obtain are quite general, since they do not depend on specific
molecular mechanisms or parameter values. Moreover, the analysis
is exhaustive in the sense that the entire parameter space is scanned.
These two features are particularly interesting for ‘negative results’,
such as showing that a given design is not likely to show a desired
behavior. In contrast, quantitative ODE models like those developed
in Cantone et al. (2009) do not predict a range of possible behaviors
but rather single out one likely behavior with quantitative precision.
Qualitative and quantitative approaches provide complementary
information on system dynamics.

In comparison with other analysis and verification methods
developed for similar modeling formalisms (Barnat et al., 2009;
Bernot et al., 2004; Corblin et al., 2009; Fromentin et al., 2007),
our approach is original in two respects. First, it applies to
incompletely parametrized models and can handle any dynamical
property expressible in temporal logics supported by the model
checker. Second, we reason at a finer abstraction level, in that we take
into account dynamics on the thresholds and work with a partition of
the state space preserving derivative sign patterns. The latter feature
is particularly well-suited for the comparison of model predictions
with time-series data in IRMA.

An interesting direction for further research is to consider more
general problems in which not only parameters but also regulation
functions are incompletely specified. This would make a connection
with work on the reverse engineering of Boolean models (Martin
et al., 2007; Perkins et al., 2004).
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